1. 14 11月, 2022 1 次提交
  2. 11 11月, 2022 1 次提交
  3. 10 11月, 2022 2 次提交
  4. 09 11月, 2022 3 次提交
  5. 08 11月, 2022 4 次提交
  6. 04 11月, 2022 2 次提交
  7. 03 11月, 2022 2 次提交
  8. 02 11月, 2022 2 次提交
  9. 01 11月, 2022 3 次提交
  10. 31 10月, 2022 1 次提交
  11. 28 10月, 2022 2 次提交
  12. 27 10月, 2022 4 次提交
  13. 26 10月, 2022 2 次提交
  14. 24 10月, 2022 1 次提交
  15. 23 10月, 2022 1 次提交
  16. 21 10月, 2022 1 次提交
  17. 20 10月, 2022 1 次提交
  18. 19 10月, 2022 1 次提交
  19. 18 10月, 2022 1 次提交
    • Z
      [code-gen] Support code-gen for opmaker of sparse op (#46993) · bdd3dde3
      zyfncg 提交于
      * support generating code of opmaker for backward op invoke forward op
      
      * gsupport code-gen of opmaker for sparse op
      
      * refind logic of choose phi kernrel
      
      * fix complie budg
      
      * fix code_gen bug
      
      * fix bug
      
      * fix kernel signature code-gen
      
      * fix complie bug of VarType
      
      * fix complie bug of VarType
      
      * fix test_sparse_conv_op
      
      * fix test_sparse_norm_op
      bdd3dde3
  20. 17 10月, 2022 1 次提交
    • O
      [Hackathon 3rd No.22 ] add paddle.incubate.sparse.reshape (#46694) · abb38136
      OccupyMars2025 提交于
      * add sparse reshape
      
      * change the dtype in all test cases to int64
      
      * just one test case
      
      * modify comments
      
      * Update test_sparse_reshape_op.py
      
      * chang the type of "shape"  from  vector<int64_t>  to  IntArray
      
      * check whether sp_out.to_dense() is the cause  of error
      
      * print sp_out
      
      * Update reshape_kernel.cc
      
      * use numpy to generate the equal paddle tensor
      
      * just check dense_tensor.numpy()
      
      * check cpu and cuda versions
      
      * Update test_sparse_reshape_op.py
      
      * supply all test cases for cpu forward coo kernel
      
      * test forward coo cuda kernel
      
      * change configuration of cuda kernel
      
      * keep only one test case
      
      * test coo cpu kernel (forward and backward)
      
      * row major or column major ???
      
      * test cuda coo forward kernel
      
      * complete declaration and registration
      
      * Update __init__.py
      
      * rebuild
      
      * retrigger CI
      
      * add cudaMalloc and cudaMemcpy  in  ReshapeCooKernel  and change back to row major order in a cuda dense tensor
      
      * midify minor error
      
      * test only cpu coo forward kernel
      
      * add all test cases for coo forward kernel  (both cpu and gpu)
      
      * test all forward kernels (coo, csr; cpu, gpu)
      
      * add all test cases for all kinds of kernels
      
      * just retrigger CI
      
      * Update sparse_ops.yaml
      
      * Update sparse_ops.yaml
      
      * Update sparse_ops.yaml
      
      * resolve conflicts
      
      * Update sparse_ops.yaml
      
      * don't specify tensor place
      
      * new shape has -1 or 0 in it
      
      * Update unary_grad_kernel.h
      
      * correct lvalue error
      
      * code style
      
      * Update sparse_backward.yaml
      
      * Update sparse_ops.yaml
      
      * Update unary_kernel.h
      
      * Update unary.py
      
      * Update sparse_backward.yaml
      
      * Update unary.py
      
      * code style
      
      * code style
      
      * code style
      
      * Update unary.py
      
      * specify tensor place explicitly
      
      * do not use numpy array
      
      * use numpy array in unit test again
      
      * modify example code in docstring
      abb38136
  21. 12 10月, 2022 3 次提交
  22. 10 10月, 2022 1 次提交
    • Y
      [PHI]Add RNN yaml (#46812) · ab60fd8b
      YuanRisheng 提交于
      * add yaml entry for rnn and rrnn_grad, move infershape function for rnn_grad to phi infer meta
      
      * WIP: move rnn kernrl to phi
      
      * Change the code generation to avoid converting from intializer list to tuple of heterogeneous types.
      This is only triggered when an api has intermediate outputs, and the result of the outputs are of heterogeneous types.
      
      * fix the bug that when none in a vector of tensors requires gradient, the conversion to InferShapeContext to InferMetaContext (a.k.a. BuildInferMetaContext) produces errorous results.
      
      * fix ci bugs
      
      * fix ci bugs
      
      * fix ci bugs
      
      * modify code according comment
      Co-authored-by: Nchenfeiyu <chenfeiyu@baidu.com>
      ab60fd8b