Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ffc8defa
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ffc8defa
编写于
8月 04, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
8月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle-TRT] add Rnn (#44678)
* add rnn
上级
b2727020
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
718 addition
and
0 deletion
+718
-0
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+2
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+2
-0
paddle/fluid/inference/tensorrt/convert/fill_constant_batch_size_like_op.cc
...ence/tensorrt/convert/fill_constant_batch_size_like_op.cc
+86
-0
paddle/fluid/inference/tensorrt/convert/rnn_op.cc
paddle/fluid/inference/tensorrt/convert/rnn_op.cc
+320
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+55
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_rnn.py
...luid/tests/unittests/ir/inference/test_trt_convert_rnn.py
+253
-0
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
ffc8defa
...
@@ -2096,6 +2096,8 @@ USE_TRT_CONVERTER(preln_residual_bias)
...
@@ -2096,6 +2096,8 @@ USE_TRT_CONVERTER(preln_residual_bias)
USE_TRT_CONVERTER
(
c_allreduce_sum
)
USE_TRT_CONVERTER
(
c_allreduce_sum
)
USE_TRT_CONVERTER
(
roll
)
USE_TRT_CONVERTER
(
roll
)
USE_TRT_CONVERTER
(
strided_slice
)
USE_TRT_CONVERTER
(
strided_slice
)
USE_TRT_CONVERTER
(
rnn
)
USE_TRT_CONVERTER
(
fill_constant_batch_size_like
)
USE_TRT_CONVERTER
(
transformer_input_convert
)
USE_TRT_CONVERTER
(
transformer_input_convert
)
USE_TRT_CONVERTER
(
cast
)
USE_TRT_CONVERTER
(
cast
)
USE_TRT_CONVERTER
(
recover_padding
)
USE_TRT_CONVERTER
(
recover_padding
)
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
ffc8defa
...
@@ -69,6 +69,8 @@ list(
...
@@ -69,6 +69,8 @@ list(
top_k_op.cc
top_k_op.cc
squeeze2_op.cc
squeeze2_op.cc
unsqueeze2_op.cc
unsqueeze2_op.cc
rnn_op.cc
fill_constant_batch_size_like_op.cc
sum_op.cc
sum_op.cc
shape_op.cc
shape_op.cc
fill_constant_op.cc
fill_constant_op.cc
...
...
paddle/fluid/inference/tensorrt/convert/fill_constant_batch_size_like_op.cc
0 → 100644
浏览文件 @
ffc8defa
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
FillConstantBatchSizeLikeOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
#if IS_TRT_VERSION_GE(7000)
VLOG
(
4
)
<<
"convert a fluid fill_constant_batch_size_like op to tensorrt "
"fill_constant_batch_size_like layer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Input"
)[
0
]);
int
dtype
=
PADDLE_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"dtype"
));
// be float
PADDLE_ENFORCE_EQ
(
dtype
,
5
,
platform
::
errors
::
InvalidArgument
(
"fill_constant_batch_size_like's input data type "
"must be float in Paddle-TRT."
));
int
input_dim_idx
=
PADDLE_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"input_dim_idx"
));
size_t
output_dim_idx
=
PADDLE_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"output_dim_idx"
));
std
::
string
str_value
=
PADDLE_GET_CONST
(
std
::
string
,
op_desc
.
GetAttr
(
"str_value"
));
std
::
vector
<
int32_t
>
shape
=
PADDLE_GET_CONST
(
std
::
vector
<
int32_t
>
,
op_desc
.
GetAttr
(
"shape"
));
float
value
=
std
::
stof
(
str_value
);
auto
*
input_shape_tensor
=
Shape
(
input
);
auto
*
batch_tensor
=
GetEleTensorOfShape
(
input_shape_tensor
,
input_dim_idx
);
std
::
string
name
=
"_add_fill_constant_batch_size_like_op_"
;
auto
shape_attr_tensor
=
Add1DConstantLayer
(
shape
,
name
+
"shape_attr"
);
std
::
vector
<
int32_t
>
gather_out_shape_indices
;
for
(
size_t
i
=
0
;
i
<
shape
.
size
();
i
++
)
{
if
(
i
==
output_dim_idx
)
{
gather_out_shape_indices
.
push_back
(
shape
.
size
());
continue
;
}
gather_out_shape_indices
.
push_back
(
i
);
}
std
::
vector
<
nvinfer1
::
ITensor
*>
concat_inputs
{
shape_attr_tensor
,
batch_tensor
};
auto
out_shape_tensor
=
Gather
(
Concat
(
concat_inputs
),
gather_out_shape_indices
);
auto
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Fill
,
nvinfer1
::
Dims
{},
nvinfer1
::
FillOperation
::
kLINSPACE
);
std
::
vector
<
float
>
value_vec
(
1
,
value
);
std
::
vector
<
float
>
beta_vec
(
3
,
0.
);
layer
->
setAlpha
(
value
);
layer
->
setBeta
(
0.
f
);
layer
->
setInput
(
0
,
*
out_shape_tensor
);
layer
->
setInput
(
1
,
*
Add1DConstantLayer
(
value_vec
,
name
+
"alpha"
,
true
));
layer
->
setInput
(
2
,
*
Add1DConstantLayer
(
beta_vec
,
name
+
"beta"
,
false
));
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"fill_constant_batch_size_like"
,
{
output_name
},
test_mode
);
#endif
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
fill_constant_batch_size_like
,
FillConstantBatchSizeLikeOpConverter
);
paddle/fluid/inference/tensorrt/convert/rnn_op.cc
0 → 100644
浏览文件 @
ffc8defa
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
RnnNativeOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
#if IS_TRT_VERSION_GE(7000)
VLOG
(
4
)
<<
"convert a fluid rnn op to tensorrt rnn layer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
// [seq_len, batch ,in_size],
// [K * num_layers, batch ,in_size], [K * num_layers, batch ,in_size]
// K is defined below
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Input"
)[
0
]);
auto
*
prev_c
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"PreState"
)[
0
]);
auto
*
prev_h
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"PreState"
)[
1
]);
PADDLE_ENFORCE_EQ
(
input
->
getDimensions
().
nbDims
,
3
,
platform
::
errors
::
InvalidArgument
(
"RNN(LSTM)'s input must be 3 dimensions, i.e. "
"[seq_len, batch, input_size],"
"but now is %d dimensions."
,
input
->
getDimensions
().
nbDims
));
PADDLE_ENFORCE_EQ
(
prev_h
->
getDimensions
().
nbDims
,
3
,
platform
::
errors
::
InvalidArgument
(
"RNN(LSTM)'s PreState(Hidden) must be 3 dimensions, "
"i.e. [num_layers, batch, hidden_size],"
"but now is %d dimensions."
,
prev_h
->
getDimensions
().
nbDims
));
PADDLE_ENFORCE_EQ
(
prev_c
->
getDimensions
().
nbDims
,
3
,
platform
::
errors
::
InvalidArgument
(
"RNN(LSTM)'s PreState(Cell) must be 3 dimensions, "
"i.e. [num_layers, batch, hidden_size],"
"but now is %d dimensions."
,
prev_c
->
getDimensions
().
nbDims
));
int
num_layers
=
PADDLE_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"num_layers"
));
int
hidden_size
=
PADDLE_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"hidden_size"
));
int
input_size
=
PADDLE_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"input_size"
));
bool
is_bidirec
=
PADDLE_GET_CONST
(
bool
,
op_desc
.
GetAttr
(
"is_bidirec"
));
int
K
=
is_bidirec
?
2
:
1
;
// extract weights
// if is_bidirec, make forward and backward weight/bias concated
std
::
vector
<
const
float
*>
weight_bias_vec
;
for
(
int
layer_id
=
0
;
layer_id
<
num_layers
;
layer_id
++
)
{
if
(
is_bidirec
)
{
auto
extract_and_combine_weight
=
[
&
](
int
start
)
{
// k and k + 2 is combined !
// k + 1 and k + 3 is combined !
for
(
int
k
=
0
;
k
<
K
;
k
++
)
{
std
::
string
var0_name
=
op_desc
.
Input
(
"WeightList"
)[
k
+
start
];
std
::
string
var1_name
=
op_desc
.
Input
(
"WeightList"
)[
k
+
2
+
start
];
auto
*
var0_v
=
scope
.
FindVar
(
var0_name
);
auto
*
var1_v
=
scope
.
FindVar
(
var1_name
);
auto
*
var0_t
=
var0_v
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
var1_t
=
var1_v
->
GetMutable
<
framework
::
LoDTensor
>
();
const
float
*
data0_ptr
=
reinterpret_cast
<
const
float
*>
(
engine_
->
GetTrtWeight
(
var0_name
,
*
var0_t
).
get
().
values
);
const
float
*
data1_ptr
=
reinterpret_cast
<
const
float
*>
(
engine_
->
GetTrtWeight
(
var1_name
,
*
var1_t
).
get
().
values
);
float
*
data_ptr
=
new
float
[
K
*
var0_t
->
numel
()];
// remember free
memcpy
(
data_ptr
,
data0_ptr
,
sizeof
(
float
)
*
var0_t
->
numel
());
memcpy
(
data_ptr
+
var0_t
->
numel
(),
data1_ptr
,
sizeof
(
float
)
*
var1_t
->
numel
());
weight_bias_vec
.
push_back
(
data_ptr
);
}
};
extract_and_combine_weight
(
4
*
layer_id
);
extract_and_combine_weight
(
4
*
layer_id
+
4
*
num_layers
);
}
else
{
auto
extract_weight
=
[
&
](
int
start
)
{
for
(
int
k
=
0
;
k
<
2
*
K
;
k
++
)
{
std
::
string
var_name
=
op_desc
.
Input
(
"WeightList"
)[
k
+
start
];
auto
*
var_v
=
scope
.
FindVar
(
var_name
);
auto
*
var_t
=
var_v
->
GetMutable
<
framework
::
LoDTensor
>
();
const
float
*
data_ptr
=
reinterpret_cast
<
const
float
*>
(
engine_
->
GetTrtWeight
(
var_name
,
*
var_t
).
get
().
values
);
weight_bias_vec
.
push_back
(
data_ptr
);
}
};
extract_weight
(
2
*
layer_id
);
// filter
extract_weight
(
2
*
num_layers
+
2
*
layer_id
);
// bias
}
}
// [seq_len, batch ,in_size]
nvinfer1
::
ITensor
*
this_input
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Identity
,
*
input
)
->
getOutput
(
0
);
nvinfer1
::
ILayer
*
finally_layer
=
nullptr
;
for
(
int
layer_id
=
0
;
layer_id
<
num_layers
;
layer_id
++
)
{
auto
*
loop
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Loop
);
auto
*
input_shape_tensor
=
Shape
(
this_input
);
auto
*
seq_len_scalar
=
GetEleTensorOfShape
(
input_shape_tensor
,
0
,
true
);
auto
*
seq_len_tensor
=
GetEleTensorOfShape
(
input_shape_tensor
,
0
);
auto
*
batch_tensor
=
GetEleTensorOfShape
(
input_shape_tensor
,
1
);
auto
*
K_tensor
=
Add1DConstantLayer
(
K
);
auto
*
hidden_size_tensor
=
Add1DConstantLayer
(
hidden_size
);
if
(
layer_id
>
0
)
input_size
=
K
*
hidden_size
;
auto
*
input_size_tensor
=
Add1DConstantLayer
(
input_size
);
loop
->
addTripLimit
(
*
seq_len_scalar
,
nvinfer1
::
TripLimit
::
kCOUNT
);
nvinfer1
::
ITensor
*
iter_input_tensor
;
auto
*
iter_input_forward_tensor
=
loop
->
addIterator
(
*
this_input
)
->
getOutput
(
0
);
// [batch, input_size]
// this function shuffle tensor -> 4 dims
auto
reshape2four
=
[
&
](
nvinfer1
::
ITensor
**
tensor
)
{
#if TRT_VERSION == 7234
auto
*
tmp_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
**
tensor
);
std
::
vector
<
nvinfer1
::
ITensor
*>
concat_inputs
{
Add1DConstantLayer
(
1
),
Add1DConstantLayer
(
1
),
Shape
(
*
tensor
)};
tmp_layer
->
setInput
(
1
,
*
Concat
(
concat_inputs
));
*
tensor
=
tmp_layer
->
getOutput
(
0
);
#endif
};
reshape2four
(
&
iter_input_forward_tensor
);
if
(
is_bidirec
)
{
auto
*
iter_input_reverse_tensor
=
loop
->
addIterator
(
*
this_input
,
0
,
true
)
->
getOutput
(
0
);
// [batch, input_size]
reshape2four
(
&
iter_input_reverse_tensor
);
std
::
vector
<
nvinfer1
::
ITensor
*>
concat_inputs
{
iter_input_forward_tensor
,
iter_input_reverse_tensor
};
iter_input_tensor
=
Concat
(
concat_inputs
);
}
else
{
iter_input_tensor
=
iter_input_forward_tensor
;
}
auto
*
tmp_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
iter_input_tensor
);
tmp_layer
->
setInput
(
1
,
*
Concat
(
std
::
vector
<
nvinfer1
::
ITensor
*>
{
K_tensor
,
batch_tensor
,
input_size_tensor
}));
iter_input_tensor
=
tmp_layer
->
getOutput
(
0
);
// [K, batch, input_size]
std
::
vector
<
int32_t
>
tmp_vec
(
K
);
std
::
iota
(
tmp_vec
.
begin
(),
tmp_vec
.
end
(),
2
*
layer_id
);
auto
*
first_prev_h
=
Gather
(
prev_h
,
tmp_vec
);
auto
*
first_prev_c
=
Gather
(
prev_c
,
tmp_vec
);
nvinfer1
::
IRecurrenceLayer
*
Hlayer
=
loop
->
addRecurrence
(
*
first_prev_h
);
nvinfer1
::
IRecurrenceLayer
*
Clayer
=
loop
->
addRecurrence
(
*
first_prev_c
);
// k is weight
// k + 2 is bias
auto
run_matmul_bias
=
[
&
](
int
k
,
bool
is_input
)
->
nvinfer1
::
ITensor
*
{
int
h
=
4
*
hidden_size
;
int
w
=
is_input
?
input_size
:
hidden_size
;
if
(
is_input
&&
k
>
0
)
w
=
K
*
hidden_size
;
auto
weight_shape
=
nvinfer1
::
Dims3
{
K
,
h
,
w
};
auto
*
weight_tensor
=
AddConstantLayer
(
weight_bias_vec
[
k
],
weight_shape
,
" "
);
auto
bias_shape
=
nvinfer1
::
Dims3
{
K
,
1
,
h
};
auto
*
bias_tensor
=
AddConstantLayer
(
weight_bias_vec
[
k
+
2
],
bias_shape
,
" "
);
nvinfer1
::
ITensor
*
iter_tensor
=
k
%
2
?
Hlayer
->
getOutput
(
0
)
:
iter_input_tensor
;
auto
*
iter_w_tensor
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
MatrixMultiply
,
*
iter_tensor
,
nvinfer1
::
MatrixOperation
::
kNONE
,
*
weight_tensor
,
nvinfer1
::
MatrixOperation
::
kTRANSPOSE
)
->
getOutput
(
0
);
auto
*
iter_w_b_tensor
=
Sum
(
iter_w_tensor
,
bias_tensor
);
return
iter_w_b_tensor
;
};
nvinfer1
::
ITensor
*
iter_input_w_b_tensor
=
run_matmul_bias
(
layer_id
*
4
,
true
);
nvinfer1
::
ITensor
*
iter_hidden_w_b_tensor
=
run_matmul_bias
(
layer_id
*
4
+
1
,
false
);
auto
*
iter_input_hidden_add_tensor
=
Sum
(
iter_input_w_b_tensor
,
iter_hidden_w_b_tensor
);
nvinfer1
::
Dims
start_dims
=
nvinfer1
::
Dims3
{
0
,
0
,
0
};
nvinfer1
::
Dims
size_dims
=
nvinfer1
::
Dims3
{
0
,
0
,
0
};
auto
*
size_dims_tensor
=
Concat
(
std
::
vector
<
nvinfer1
::
ITensor
*>
{
K_tensor
,
batch_tensor
,
hidden_size_tensor
});
nvinfer1
::
Dims
step_dims
=
nvinfer1
::
Dims3
{
1
,
1
,
1
};
std
::
vector
<
nvinfer1
::
ActivationType
>
lstm_act
{
nvinfer1
::
ActivationType
::
kSIGMOID
,
nvinfer1
::
ActivationType
::
kTANH
};
auto
split_gate
=
[
&
](
int
i
,
int
act_i
=
0
)
->
nvinfer1
::
ITensor
*
{
start_dims
.
d
[
2
]
=
i
*
hidden_size
;
auto
*
gate_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
iter_input_hidden_add_tensor
,
start_dims
,
size_dims
,
step_dims
);
gate_layer
->
setInput
(
2
,
*
size_dims_tensor
);
auto
*
gate
=
gate_layer
->
getOutput
(
0
);
gate
=
Act
(
gate
,
lstm_act
[
act_i
]);
return
gate
;
};
auto
*
i_gate
=
split_gate
(
0
);
auto
*
f_gate
=
split_gate
(
1
);
auto
*
c_gate
=
split_gate
(
2
,
1
);
auto
*
o_gate
=
split_gate
(
3
);
// C_t = i_gate * c_gate + f_gate * C_{t-1}
auto
*
ic_gate
=
Prod
(
i_gate
,
c_gate
);
auto
*
fCt1_gate
=
Prod
(
f_gate
,
Clayer
->
getOutput
(
0
));
auto
*
Ct
=
Sum
(
ic_gate
,
fCt1_gate
);
Clayer
->
setInput
(
1
,
*
Ct
);
// H_t = tanh(C_t) * o_gate
auto
*
tanh_Ct
=
Act
(
Ct
,
lstm_act
[
1
]);
auto
*
Ht
=
Prod
(
o_gate
,
tanh_Ct
);
Hlayer
->
setInput
(
1
,
*
Ht
);
// Ht: [K, batch, hidden_size]
nvinfer1
::
ILayer
*
layer
=
nullptr
;
nvinfer1
::
ITensor
*
tensor
=
nullptr
;
if
(
is_bidirec
)
{
auto
*
slice_forward_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
Ht
,
nvinfer1
::
Dims3
{
0
,
0
,
0
},
nvinfer1
::
Dims3
{
0
,
0
,
0
},
nvinfer1
::
Dims3
{
1
,
1
,
1
});
auto
*
slice_reverse_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
Ht
,
nvinfer1
::
Dims3
{
1
,
0
,
0
},
nvinfer1
::
Dims3
{
0
,
0
,
0
},
nvinfer1
::
Dims3
{
1
,
1
,
1
});
auto
*
one_tensor
=
Add1DConstantLayer
(
1
);
auto
*
size_dims_tensor
=
Concat
(
std
::
vector
<
nvinfer1
::
ITensor
*>
{
one_tensor
,
batch_tensor
,
hidden_size_tensor
});
slice_forward_layer
->
setInput
(
2
,
*
size_dims_tensor
);
slice_reverse_layer
->
setInput
(
2
,
*
size_dims_tensor
);
auto
*
layer0
=
loop
->
addLoopOutput
(
*
slice_forward_layer
->
getOutput
(
0
),
nvinfer1
::
LoopOutput
::
kCONCATENATE
);
auto
*
layer1
=
loop
->
addLoopOutput
(
*
slice_reverse_layer
->
getOutput
(
0
),
nvinfer1
::
LoopOutput
::
kREVERSE
);
layer0
->
setInput
(
1
,
*
seq_len_scalar
);
layer1
->
setInput
(
1
,
*
seq_len_scalar
);
std
::
vector
<
nvinfer1
::
ITensor
*>
concat_inputs
{
layer0
->
getOutput
(
0
),
layer1
->
getOutput
(
0
)};
tensor
=
Concat
(
concat_inputs
,
3
);
}
else
{
layer
=
loop
->
addLoopOutput
(
*
Ht
,
nvinfer1
::
LoopOutput
::
kCONCATENATE
);
layer
->
setInput
(
1
,
*
seq_len_scalar
);
tensor
=
layer
->
getOutput
(
0
);
}
finally_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
tensor
);
auto
*
hidden_size_k_tensor
=
Add1DConstantLayer
(
hidden_size
*
K
);
nvinfer1
::
ITensor
*
final_dims_tensor
=
Concat
(
std
::
vector
<
nvinfer1
::
ITensor
*>
{
seq_len_tensor
,
batch_tensor
,
hidden_size_k_tensor
});
finally_layer
->
setInput
(
1
,
*
final_dims_tensor
);
// update input
this_input
=
finally_layer
->
getOutput
(
0
);
}
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
finally_layer
,
"rnn"
,
{
output_name
},
test_mode
);
// free
if
(
is_bidirec
)
{
for
(
size_t
i
=
0
;
i
<
weight_bias_vec
.
size
();
i
++
)
delete
[]
weight_bias_vec
[
i
];
}
#endif
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
rnn
,
RnnNativeOpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
ffc8defa
...
@@ -40,6 +40,10 @@ struct SimpleOpTypeSetTeller : public Teller {
...
@@ -40,6 +40,10 @@ struct SimpleOpTypeSetTeller : public Teller {
#if IS_TRT_VERSION_GE(7000)
#if IS_TRT_VERSION_GE(7000)
teller_set
.
insert
(
"tile"
);
teller_set
.
insert
(
"tile"
);
teller_set
.
insert
(
"flatten_contiguous_range"
);
teller_set
.
insert
(
"flatten_contiguous_range"
);
teller_set
.
insert
(
"rnn"
);
int8_teller_set
.
insert
(
"rnn"
);
teller_set
.
insert
(
"fill_constant_batch_size_like"
);
int8_teller_set
.
insert
(
"fill_constant_batch_size_like"
);
#endif
#endif
#if CUDA_VERSION >= 10020
#if CUDA_VERSION >= 10020
teller_set
.
insert
(
"reshape"
);
teller_set
.
insert
(
"reshape"
);
...
@@ -1249,6 +1253,57 @@ bool OpTeller::Tell(const framework::ir::Node* node,
...
@@ -1249,6 +1253,57 @@ bool OpTeller::Tell(const framework::ir::Node* node,
}
}
}
}
if
(
op_type
==
"rnn"
)
{
if
(
!
with_dynamic_shape
)
{
return
false
;
}
if
(
desc
.
HasAttr
(
"mode"
))
{
std
::
string
mode
=
PADDLE_GET_CONST
(
std
::
string
,
desc
.
GetAttr
(
"mode"
));
if
(
mode
!=
"LSTM"
)
return
false
;
}
if
(
desc
.
HasAttr
(
"dropout_prob"
))
{
float
dropout_prob
=
PADDLE_GET_CONST
(
float
,
desc
.
GetAttr
(
"dropout_prob"
));
if
(
dropout_prob
>
1e-5
)
return
false
;
}
// not support following four inputs for rnn in paddle-trt
auto
rnn_inputs
=
desc
.
Inputs
();
if
(
rnn_inputs
.
find
(
"SequenceLength"
)
!=
rnn_inputs
.
end
())
{
if
(
desc
.
Input
(
"SequenceLength"
).
size
())
{
return
false
;
}
}
}
if
(
op_type
==
"fill_constant_batch_size_like"
)
{
if
(
!
with_dynamic_shape
)
{
return
false
;
}
if
(
!
desc
.
HasAttr
(
"input_dim_idx"
))
{
return
false
;
}
if
(
!
desc
.
HasAttr
(
"output_dim_idx"
))
{
return
false
;
}
if
(
!
desc
.
HasAttr
(
"shape"
))
{
return
false
;
}
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
{
VLOG
(
3
)
<<
"The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass."
;
return
false
;
}
auto
x_var_name
=
desc
.
Input
(
"Input"
)[
0
];
auto
*
x_var_desc
=
block
->
FindVar
(
x_var_name
);
auto
dtype
=
x_var_desc
->
GetDataType
();
// At present, only support float32 into trt.
if
(
dtype
!=
5
)
{
return
false
;
}
}
if
(
op_type
==
"slice"
)
{
if
(
op_type
==
"slice"
)
{
if
(
desc
.
HasAttr
(
"decrease_axis"
))
{
if
(
desc
.
HasAttr
(
"decrease_axis"
))
{
std
::
vector
<
int
>
decrease_axis
=
std
::
vector
<
int
>
decrease_axis
=
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_rnn.py
0 → 100644
浏览文件 @
ffc8defa
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
import
os
class
TrtConvertSliceTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
self
.
trt_param
.
workspace_size
=
1073741824
for
hidden_size
in
[
30
]:
for
input_size
in
[
30
]:
for
batch
in
[
2
]:
for
seq_len
in
[
5
]:
for
num_layers
in
[
1
,
2
]:
for
is_bidirec
in
[
True
,
False
]:
dics
=
[]
dics
.
append
({
"hidden_size"
:
hidden_size
,
"input_size"
:
input_size
,
"num_layers"
:
num_layers
,
"mode"
:
"LSTM"
,
"is_bidirec"
:
is_bidirec
,
"is_test"
:
True
,
"dropout_prob"
:
0.0
,
# for my convience
"batch"
:
batch
,
"seq_len"
:
seq_len
,
})
K
=
1
if
(
dics
[
0
][
"is_bidirec"
]):
K
=
2
def
generate_input1
():
return
np
.
random
.
random
([
batch
,
seq_len
,
input_size
]).
astype
(
np
.
float32
)
*
2
-
1
# initial input -> hidden
def
generate_w0
():
return
np
.
random
.
random
([
4
*
hidden_size
,
input_size
]).
astype
(
np
.
float32
)
*
2
-
1
# prev layer's output -> hidden
def
generate_w1
():
return
np
.
random
.
random
([
4
*
hidden_size
,
K
*
hidden_size
]).
astype
(
np
.
float32
)
*
2
-
1
#
def
generate_w2
():
return
np
.
random
.
random
([
4
*
hidden_size
,
hidden_size
]).
astype
(
np
.
float32
)
*
2
-
1
def
generate_b
():
return
np
.
random
.
random
([
4
*
hidden_size
]).
astype
(
np
.
float32
)
*
2
-
1
dics
.
append
({
"dtype"
:
5
,
"input_dim_idx"
:
0
,
"str_value"
:
"0.0"
,
"shape"
:
[
K
*
num_layers
,
-
1
,
hidden_size
],
"output_dim_idx"
:
1
,
})
dics
.
append
({
"axis"
:
[
1
,
0
,
2
]})
# set weights
WeightList
=
[
"weight"
+
str
(
i
)
for
i
in
range
(
4
*
K
*
dics
[
0
][
"num_layers"
])
]
weights
=
{}
for
i
in
range
((
int
)(
len
(
WeightList
)
/
2
)):
# mean this weight : input->hidden
# input has 2 case: initial input input_size, K * hidden form the prev layer.
if
(
i
%
2
==
0
):
if
(
i
<=
K
):
weights
[
WeightList
[
i
]]
=
TensorConfig
(
data_gen
=
partial
(
generate_w0
))
else
:
weights
[
WeightList
[
i
]]
=
TensorConfig
(
data_gen
=
partial
(
generate_w1
))
# mean this weight : hidden->hidden
if
(
i
%
2
==
1
):
weights
[
WeightList
[
i
]]
=
TensorConfig
(
data_gen
=
partial
(
generate_w2
))
for
i
in
range
((
int
)(
len
(
WeightList
)
/
2
),
len
(
WeightList
)):
weights
[
WeightList
[
i
]]
=
TensorConfig
(
data_gen
=
partial
(
generate_b
))
ops_config
=
[
{
"op_type"
:
"fill_constant_batch_size_like"
,
"op_inputs"
:
{
"Input"
:
[
"input_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"prestate1"
]
},
"op_attrs"
:
dics
[
1
]
},
{
"op_type"
:
"fill_constant_batch_size_like"
,
"op_inputs"
:
{
"Input"
:
[
"input_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"prestate2"
]
},
"op_attrs"
:
dics
[
1
]
},
{
"op_type"
:
"transpose2"
,
"op_inputs"
:
{
"X"
:
[
"input_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"rnn_input_data"
]
},
"op_attrs"
:
dics
[
2
]
},
{
"op_type"
:
"rnn"
,
"op_inputs"
:
{
"Input"
:
[
"rnn_input_data"
],
# prev_c, prev_h
"PreState"
:
[
"prestate1"
,
"prestate2"
],
"WeightList"
:
WeightList
,
},
"op_outputs"
:
{
"Out"
:
[
"rnn_output_data"
],
"State"
:
[
"state_output_data0"
,
"state_output_data1"
],
"Reserve"
:
[
"reserve_data"
],
"DropoutState"
:
[
"DropoutState_data"
]
},
"op_attrs"
:
dics
[
0
]
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
weights
,
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
))
},
outputs
=
[
"rnn_output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
num_layers
=
attrs
[
3
][
"num_layers"
]
hidden_size
=
attrs
[
3
][
"hidden_size"
]
batch
=
attrs
[
3
][
"batch"
]
input_size
=
attrs
[
3
][
"input_size"
]
seq_len
=
attrs
[
3
][
"seq_len"
]
K
=
1
if
attrs
[
3
][
"is_bidirec"
]:
K
=
2
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
batch
-
1
,
seq_len
,
input_size
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
batch
+
1
,
seq_len
,
input_size
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
batch
,
seq_len
,
input_size
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# The output has diff between gpu and trt in PR-CI-Windows-Inference
tol_fp32
=
1e-5
tol_half
=
1e-2
if
(
os
.
name
==
'nt'
):
tol_fp32
=
1e-2
tol_half
=
1e-1
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
tol_fp32
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
tol_half
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录