未验证 提交 ff83655f 编写于 作者: F FlyingQianMM 提交者: GitHub

add detection output operator for supporting retinanet (#17896)

* test=develop
add detection output for supporting retinanet

* test=develop
add test_layers.py

* test=develop
add API.spec

* test=develop
alter test_retinanet_detection_output.py

* test=develop
alter round 2

* test=develop
alter retinanet_detection_output

* test=develop
alter paddle/fluid/API.spec

* test=devlop
alter detection.py

* test=develop
alter retinanet_detection_output

* test=develop
alter paddle/fluid/API.spec

* test=develop
alter detection.py

* test=develop
alter API.spec

* test=develop
alter retinanet_detection_output

* test=develop
alter paddle/fluid/API.spec

* test=develop
alter python/paddle/fluid/tests/unittests/test_retinanet_detection_output.py

* test=develop
alter python/paddle/fluid/tests/unittests/test_retinanet_detection_output.py

* test=develop
fix grammer error

* test=develop
fix grammer error

* test=develop
fix grammer error

* test=develop
alter python/paddle/fluid/tests/unittests/test_layers.py

* test=develop
alter paddle/fluid/API.spec
上级 0941e3e0
...@@ -362,6 +362,7 @@ paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'ancho ...@@ -362,6 +362,7 @@ paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'ancho
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'f332fb8c5bb581bd1a6b5be450a99990')) paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'f332fb8c5bb581bd1a6b5be450a99990'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '04384378ff00a42ade8fabd52e27cbc5')) paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '04384378ff00a42ade8fabd52e27cbc5'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'ca7d1107b6c5d2d6d8221039a220fde0')) paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'ca7d1107b6c5d2d6d8221039a220fde0'))
paddle.fluid.layers.retinanet_detection_output (ArgSpec(args=['bboxes', 'scores', 'anchors', 'im_info', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0.05, 1000, 100, 0.3, 1.0)), ('document', '078d28607ce261a0cba2b965a79f6bb8'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7bb011ec26bace2bc23235aa4a17647d')) paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7bb011ec26bace2bc23235aa4a17647d'))
paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'box_score', 'box_clip', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'dfc953994fd8fef35c49dd9c6eea37a5')) paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'box_score', 'box_clip', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'dfc953994fd8fef35c49dd9c6eea37a5'))
paddle.fluid.layers.collect_fpn_proposals (ArgSpec(args=['multi_rois', 'multi_scores', 'min_level', 'max_level', 'post_nms_top_n', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '82ffd896ecc3c005ae1cad40854dcace')) paddle.fluid.layers.collect_fpn_proposals (ArgSpec(args=['multi_rois', 'multi_scores', 'min_level', 'max_level', 'post_nms_top_n', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '82ffd896ecc3c005ae1cad40854dcace'))
......
...@@ -36,6 +36,7 @@ detection_library(yolov3_loss_op SRCS yolov3_loss_op.cc) ...@@ -36,6 +36,7 @@ detection_library(yolov3_loss_op SRCS yolov3_loss_op.cc)
detection_library(yolo_box_op SRCS yolo_box_op.cc yolo_box_op.cu) detection_library(yolo_box_op SRCS yolo_box_op.cc yolo_box_op.cu)
detection_library(box_decoder_and_assign_op SRCS box_decoder_and_assign_op.cc box_decoder_and_assign_op.cu) detection_library(box_decoder_and_assign_op SRCS box_decoder_and_assign_op.cc box_decoder_and_assign_op.cu)
detection_library(sigmoid_focal_loss_op SRCS sigmoid_focal_loss_op.cc sigmoid_focal_loss_op.cu) detection_library(sigmoid_focal_loss_op SRCS sigmoid_focal_loss_op.cc sigmoid_focal_loss_op.cu)
detection_library(retinanet_detection_output_op SRCS retinanet_detection_output_op.cc)
if(WITH_GPU) if(WITH_GPU)
detection_library(generate_proposals_op SRCS generate_proposals_op.cc generate_proposals_op.cu DEPS memory cub) detection_library(generate_proposals_op SRCS generate_proposals_op.cc generate_proposals_op.cu DEPS memory cub)
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
class RetinanetDetectionOutputOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_GE(
ctx->Inputs("BBoxes").size(), 1UL,
"Input(BBoxes) of RetinanetDetectionOutput should not be null.");
PADDLE_ENFORCE_GE(
ctx->Inputs("Scores").size(), 1UL,
"Input(Scores) of RetinanetDetectionOutput should not be null.");
PADDLE_ENFORCE_GE(
ctx->Inputs("Anchors").size(), 1UL,
"Input(Anchors) of RetinanetDetectionOutput should not be null.");
PADDLE_ENFORCE_EQ(
ctx->Inputs("BBoxes").size(), ctx->Inputs("Scores").size(),
"Input tensors(BBoxes and Scores) should have the same size.");
PADDLE_ENFORCE_EQ(
ctx->Inputs("BBoxes").size(), ctx->Inputs("Anchors").size(),
"Input tensors(BBoxes and Anchors) should have the same size.");
PADDLE_ENFORCE(
ctx->HasInput("ImInfo"),
"Input(ImInfo) of RetinanetDetectionOutput should not be null");
PADDLE_ENFORCE(
ctx->HasOutput("Out"),
"Output(Out) of RetinanetDetectionOutput should not be null.");
auto bboxes_dims = ctx->GetInputsDim("BBoxes");
auto scores_dims = ctx->GetInputsDim("Scores");
auto anchors_dims = ctx->GetInputsDim("Anchors");
auto im_info_dims = ctx->GetInputDim("ImInfo");
const size_t b_n = bboxes_dims.size();
PADDLE_ENFORCE_GT(b_n, 0, "Input bbox tensors count should > 0.");
const size_t s_n = scores_dims.size();
PADDLE_ENFORCE_GT(s_n, 0, "Input score tensors count should > 0.");
const size_t a_n = anchors_dims.size();
PADDLE_ENFORCE_GT(a_n, 0, "Input anchor tensors count should > 0.");
auto bbox_dims = bboxes_dims[0];
auto score_dims = scores_dims[0];
auto anchor_dims = anchors_dims[0];
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(score_dims.size(), 3,
"The rank of Input(Scores) must be 3");
PADDLE_ENFORCE_EQ(bbox_dims.size(), 3,
"The rank of Input(BBoxes) must be 3");
PADDLE_ENFORCE_EQ(anchor_dims.size(), 2,
"The rank of Input(Anchors) must be 2");
PADDLE_ENFORCE(bbox_dims[2] == 4,
"The last dimension of Input(BBoxes) must be 4, "
"represents the layout of coordinate "
"[xmin, ymin, xmax, ymax]");
PADDLE_ENFORCE_EQ(bbox_dims[1], score_dims[1],
"The 2nd dimension of Input(BBoxes) must be equal to "
"2nd dimension of Input(Scores), which represents the "
"number of the predicted boxes.");
PADDLE_ENFORCE_EQ(anchor_dims[0], bbox_dims[1],
"The 1st dimension of Input(Anchors) must be equal to "
"2nd dimension of Input(BBoxes), which represents the "
"number of the predicted boxes.");
PADDLE_ENFORCE_EQ(im_info_dims.size(), 2,
"The rank of Input(ImInfo) must be 2.");
}
// Here the box_dims[0] is not the real dimension of output.
// It will be rewritten in the computing kernel.
ctx->SetOutputDim("Out", {bbox_dims[1], bbox_dims[2] + 2});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto input_data_type =
framework::GetDataTypeOfVar(ctx.MultiInputVar("Scores")[0]);
return framework::OpKernelType(input_data_type,
platform::CPUPlace()); // ctx.GetPlace());
}
};
template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
const std::pair<float, T>& pair2) {
return pair1.first > pair2.first;
}
template <class T>
bool SortScoreTwoPairDescend(const std::pair<float, std::pair<T, T>>& pair1,
const std::pair<float, std::pair<T, T>>& pair2) {
return pair1.first > pair2.first;
}
template <class T>
static inline void GetMaxScoreIndex(
const std::vector<T>& scores, const T threshold, int top_k,
std::vector<std::pair<T, int>>* sorted_indices) {
for (size_t i = 0; i < scores.size(); ++i) {
if (scores[i] > threshold) {
sorted_indices->push_back(std::make_pair(scores[i], i));
}
}
// Sort the score pair according to the scores in descending order
std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
SortScorePairDescend<int>);
// Keep top_k scores if needed.
if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
sorted_indices->resize(top_k);
}
}
template <class T>
static inline T BBoxArea(const std::vector<T>& box, const bool normalized) {
if (box[2] < box[0] || box[3] < box[1]) {
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return static_cast<T>(0.);
} else {
const T w = box[2] - box[0];
const T h = box[3] - box[1];
if (normalized) {
return w * h;
} else {
// If coordinate values are not within range [0, 1].
return (w + 1) * (h + 1);
}
}
}
template <class T>
static inline T JaccardOverlap(const std::vector<T>& box1,
const std::vector<T>& box2,
const bool normalized) {
if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
box2[3] < box1[1]) {
return static_cast<T>(0.);
} else {
const T inter_xmin = std::max(box1[0], box2[0]);
const T inter_ymin = std::max(box1[1], box2[1]);
const T inter_xmax = std::min(box1[2], box2[2]);
const T inter_ymax = std::min(box1[3], box2[3]);
T norm = normalized ? static_cast<T>(0.) : static_cast<T>(1.);
T inter_w = inter_xmax - inter_xmin + norm;
T inter_h = inter_ymax - inter_ymin + norm;
const T inter_area = inter_w * inter_h;
const T bbox1_area = BBoxArea<T>(box1, normalized);
const T bbox2_area = BBoxArea<T>(box2, normalized);
return inter_area / (bbox1_area + bbox2_area - inter_area);
}
}
template <typename T>
class RetinanetDetectionOutputKernel : public framework::OpKernel<T> {
public:
void NMSFast(const std::vector<std::vector<T>>& cls_dets,
const T nms_threshold, const T eta,
std::vector<int>* selected_indices) const {
int64_t num_boxes = cls_dets.size();
std::vector<std::pair<T, int>> sorted_indices;
for (int64_t i = 0; i < num_boxes; ++i) {
sorted_indices.push_back(std::make_pair(cls_dets[i][4], i));
}
// Sort the score pair according to the scores in descending order
std::stable_sort(sorted_indices.begin(), sorted_indices.end(),
SortScorePairDescend<int>);
selected_indices->clear();
T adaptive_threshold = nms_threshold;
while (sorted_indices.size() != 0) {
const int idx = sorted_indices.front().second;
bool keep = true;
for (size_t k = 0; k < selected_indices->size(); ++k) {
if (keep) {
const int kept_idx = (*selected_indices)[k];
T overlap = T(0.);
overlap = JaccardOverlap<T>(cls_dets[idx], cls_dets[kept_idx], false);
keep = overlap <= adaptive_threshold;
} else {
break;
}
}
if (keep) {
selected_indices->push_back(idx);
}
sorted_indices.erase(sorted_indices.begin());
if (keep && eta < 1 && adaptive_threshold > 0.5) {
adaptive_threshold *= eta;
}
}
}
void DeltaScoreToPrediction(
const std::vector<T>& bboxes_data, const std::vector<T>& anchors_data,
T im_height, T im_width, T im_scale, int class_num,
const std::vector<std::pair<T, int>>& sorted_indices,
std::map<int, std::vector<std::vector<T>>>* preds) const {
im_height = static_cast<T>(round(im_height / im_scale));
im_width = static_cast<T>(round(im_width / im_scale));
T zero(0);
int i = 0;
for (const auto& it : sorted_indices) {
T score = it.first;
int idx = it.second;
int a = idx / class_num;
int c = idx % class_num;
int box_offset = a * 4;
T anchor_box_width =
anchors_data[box_offset + 2] - anchors_data[box_offset] + 1;
T anchor_box_height =
anchors_data[box_offset + 3] - anchors_data[box_offset + 1] + 1;
T anchor_box_center_x = anchors_data[box_offset] + anchor_box_width / 2;
T anchor_box_center_y =
anchors_data[box_offset + 1] + anchor_box_height / 2;
T target_box_center_x = 0, target_box_center_y = 0;
T target_box_width = 0, target_box_height = 0;
target_box_center_x =
bboxes_data[box_offset] * anchor_box_width + anchor_box_center_x;
target_box_center_y =
bboxes_data[box_offset + 1] * anchor_box_height + anchor_box_center_y;
target_box_width =
std::exp(bboxes_data[box_offset + 2]) * anchor_box_width;
target_box_height =
std::exp(bboxes_data[box_offset + 3]) * anchor_box_height;
T pred_box_xmin = target_box_center_x - target_box_width / 2;
T pred_box_ymin = target_box_center_y - target_box_height / 2;
T pred_box_xmax = target_box_center_x + target_box_width / 2 - 1;
T pred_box_ymax = target_box_center_y + target_box_height / 2 - 1;
pred_box_xmin = pred_box_xmin / im_scale;
pred_box_ymin = pred_box_ymin / im_scale;
pred_box_xmax = pred_box_xmax / im_scale;
pred_box_ymax = pred_box_ymax / im_scale;
pred_box_xmin = std::max(std::min(pred_box_xmin, im_width - 1), zero);
pred_box_ymin = std::max(std::min(pred_box_ymin, im_height - 1), zero);
pred_box_xmax = std::max(std::min(pred_box_xmax, im_width - 1), zero);
pred_box_ymax = std::max(std::min(pred_box_ymax, im_height - 1), zero);
std::vector<T> one_pred;
one_pred.push_back(pred_box_xmin);
one_pred.push_back(pred_box_ymin);
one_pred.push_back(pred_box_xmax);
one_pred.push_back(pred_box_ymax);
one_pred.push_back(score);
(*preds)[c].push_back(one_pred);
i++;
}
}
void MultiClassNMS(const std::map<int, std::vector<std::vector<T>>>& preds,
int class_num, const int keep_top_k, const T nms_threshold,
const T nms_eta, std::vector<std::vector<T>>* nmsed_out,
int* num_nmsed_out) const {
std::map<int, std::vector<int>> indices;
int num_det = 0;
for (int c = 0; c < class_num; ++c) {
if (static_cast<bool>(preds.count(c))) {
const std::vector<std::vector<T>> cls_dets = preds.at(c);
NMSFast(cls_dets, nms_threshold, nms_eta, &(indices[c]));
num_det += indices[c].size();
}
}
std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
for (const auto& it : indices) {
int label = it.first;
const std::vector<int>& label_indices = it.second;
for (size_t j = 0; j < label_indices.size(); ++j) {
int idx = label_indices[j];
score_index_pairs.push_back(std::make_pair(preds.at(label)[idx][4],
std::make_pair(label, idx)));
}
}
// Keep top k results per image.
std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
SortScoreTwoPairDescend<int>);
if (num_det > keep_top_k) {
score_index_pairs.resize(keep_top_k);
}
// Store the new indices.
std::map<int, std::vector<int>> new_indices;
for (const auto& it : score_index_pairs) {
int label = it.second.first;
int idx = it.second.second;
std::vector<T> one_pred;
one_pred.push_back(label);
one_pred.push_back(preds.at(label)[idx][4]);
one_pred.push_back(preds.at(label)[idx][0]);
one_pred.push_back(preds.at(label)[idx][1]);
one_pred.push_back(preds.at(label)[idx][2]);
one_pred.push_back(preds.at(label)[idx][3]);
nmsed_out->push_back(one_pred);
}
*num_nmsed_out = (num_det > keep_top_k ? keep_top_k : num_det);
}
void RetinanetDetectionOutput(const framework::ExecutionContext& ctx,
const std::vector<Tensor>& scores,
const std::vector<Tensor>& bboxes,
const std::vector<Tensor>& anchors,
const Tensor& im_info,
std::vector<std::vector<T>>* nmsed_out,
int* num_nmsed_out) const {
int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
int64_t class_num = scores[0].dims()[1];
std::map<int, std::vector<std::vector<T>>> preds;
for (size_t l = 0; l < scores.size(); ++l) {
// Fetch per level score
Tensor scores_per_level = scores[l];
// Fetch per level bbox
Tensor bboxes_per_level = bboxes[l];
// Fetch per level anchor
Tensor anchors_per_level = anchors[l];
int64_t scores_num = scores_per_level.numel();
int64_t bboxes_num = bboxes_per_level.numel();
std::vector<T> scores_data(scores_num);
std::vector<T> bboxes_data(bboxes_num);
std::vector<T> anchors_data(bboxes_num);
std::copy_n(scores_per_level.data<T>(), scores_num, scores_data.begin());
std::copy_n(bboxes_per_level.data<T>(), bboxes_num, bboxes_data.begin());
std::copy_n(anchors_per_level.data<T>(), bboxes_num,
anchors_data.begin());
std::vector<std::pair<T, int>> sorted_indices;
// For the highest level, we take the threshold 0.0
T threshold = (l < (scores.size() - 1) ? score_threshold : 0.0);
GetMaxScoreIndex(scores_data, threshold, nms_top_k, &sorted_indices);
auto* im_info_data = im_info.data<T>();
auto im_height = im_info_data[0];
auto im_width = im_info_data[1];
auto im_scale = im_info_data[2];
DeltaScoreToPrediction(bboxes_data, anchors_data, im_height, im_width,
im_scale, class_num, sorted_indices, &preds);
}
MultiClassNMS(preds, class_num, keep_top_k, nms_threshold, nms_eta,
nmsed_out, num_nmsed_out);
}
void MultiClassOutput(const platform::DeviceContext& ctx,
const std::vector<std::vector<T>>& nmsed_out,
Tensor* outs) const {
auto* odata = outs->data<T>();
int count = 0;
int64_t out_dim = 6;
for (size_t i = 0; i < nmsed_out.size(); ++i) {
odata[count * out_dim] = nmsed_out[i][0] + 1; // label
odata[count * out_dim + 1] = nmsed_out[i][1]; // score
odata[count * out_dim + 2] = nmsed_out[i][2]; // xmin
odata[count * out_dim + 3] = nmsed_out[i][3]; // xmin
odata[count * out_dim + 4] = nmsed_out[i][4]; // xmin
odata[count * out_dim + 5] = nmsed_out[i][5]; // xmin
count++;
}
}
void Compute(const framework::ExecutionContext& ctx) const override {
auto boxes = ctx.MultiInput<Tensor>("BBoxes");
auto scores = ctx.MultiInput<Tensor>("Scores");
auto anchors = ctx.MultiInput<Tensor>("Anchors");
auto* im_info = ctx.Input<LoDTensor>("ImInfo");
auto* outs = ctx.Output<LoDTensor>("Out");
std::vector<Tensor> boxes_list(boxes.size());
std::vector<Tensor> scores_list(scores.size());
std::vector<Tensor> anchors_list(anchors.size());
for (size_t j = 0; j < boxes_list.size(); ++j) {
boxes_list[j] = *boxes[j];
scores_list[j] = *scores[j];
anchors_list[j] = *anchors[j];
}
auto score_dims = scores_list[0].dims();
int64_t batch_size = score_dims[0];
auto box_dims = boxes_list[0].dims();
int64_t box_dim = box_dims[2];
int64_t out_dim = box_dim + 2;
auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
std::vector<std::vector<std::vector<T>>> all_nmsed_out;
std::vector<size_t> batch_starts = {0};
for (int i = 0; i < batch_size; ++i) {
int num_nmsed_out = 0;
std::vector<Tensor> box_per_batch_list(boxes_list.size());
std::vector<Tensor> score_per_batch_list(scores_list.size());
for (size_t j = 0; j < boxes_list.size(); ++j) {
auto score_dims = scores_list[j].dims();
score_per_batch_list[j] = scores_list[j].Slice(i, i + 1);
score_per_batch_list[j].Resize({score_dims[1], score_dims[2]});
box_per_batch_list[j] = boxes_list[j].Slice(i, i + 1);
box_per_batch_list[j].Resize({score_dims[1], box_dim});
}
Tensor im_info_slice = im_info->Slice(i, i + 1);
std::vector<std::vector<T>> nmsed_out;
RetinanetDetectionOutput(ctx, score_per_batch_list, box_per_batch_list,
anchors_list, im_info_slice, &nmsed_out,
&num_nmsed_out);
all_nmsed_out.push_back(nmsed_out);
batch_starts.push_back(batch_starts.back() + num_nmsed_out);
}
int num_kept = batch_starts.back();
if (num_kept == 0) {
outs->Resize({0, out_dim});
} else {
outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
for (int i = 0; i < batch_size; ++i) {
int64_t s = batch_starts[i];
int64_t e = batch_starts[i + 1];
if (e > s) {
Tensor out = outs->Slice(s, e);
MultiClassOutput(dev_ctx, all_nmsed_out[i], &out);
}
}
}
framework::LoD lod;
lod.emplace_back(batch_starts);
outs->set_lod(lod);
}
};
class RetinanetDetectionOutputOpMaker
: public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("BBoxes",
"(List) A list of tensors from multiple FPN levels. Each "
"element is a 3-D Tensor with shape [N, Mi, 4] represents the "
"predicted locations of Mi bounding boxes, N is the batch size. "
"Mi is the number of bounding boxes from i-th FPN level. Each "
"bounding box has four coordinate values and the layout is "
"[xmin, ymin, xmax, ymax].")
.AsDuplicable();
AddInput("Scores",
"(List) A list of tensors from multiple FPN levels. Each "
"element is a 3-D Tensor with shape [N, Mi, C] represents the "
"predicted confidence from its FPN level. N is the batch size, "
"C is the class number (excluding background), Mi is the number "
"of bounding boxes from i-th FPN level. For each bounding box, "
"there are total C scores.")
.AsDuplicable();
AddInput("Anchors",
"(List) A list of tensors from multiple FPN levels. Each"
"element is a 2-D Tensor with shape [Mi, 4] represents the "
"locations of Mi anchor boxes from i-th FPN level. Each "
"bounding box has four coordinate values and the layout is "
"[xmin, ymin, xmax, ymax].")
.AsDuplicable();
AddInput("ImInfo",
"(LoDTensor) A 2-D LoDTensor with shape [N, 3] represents the "
"image information. N is the batch size, each image information "
"includes height, width and scale.");
AddAttr<float>("score_threshold",
"(float) "
"Threshold to filter out bounding boxes with a confidence "
"score.");
AddAttr<int>("nms_top_k",
"(int64_t) "
"Maximum number of detections per FPN layer to be kept "
"according to the confidence before NMS.");
AddAttr<float>("nms_threshold",
"(float) "
"The threshold to be used in NMS.");
AddAttr<float>("nms_eta",
"(float) "
"The parameter for adaptive NMS.");
AddAttr<int>(
"keep_top_k",
"(int64_t) "
"Number of total bounding boxes to be kept per image after NMS "
"step.");
AddOutput("Out",
"(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
"detections. Each row has 6 values: "
"[label, confidence, xmin, ymin, xmax, ymax]"
"No is the total number of detections in this mini-batch."
"For each instance, "
"the offsets in first dimension are called LoD, the number of "
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
"no detected bbox.");
AddComment(R"DOC(
This operator is to decode boxes and scores from each FPN layer and do
multi-class non maximum suppression (NMS) on merged predictions.
Top-scoring predictions per FPN layer are decoded with the anchor
information. This operator greedily selects a subset of detection bounding
boxes from each FPN layer that have high scores larger than score_threshold,
if providing this threshold, then selects the largest nms_top_k confidences
scores per FPN layer, if nms_top_k is larger than -1.
The decoding schema is described below:
ox = (pw * pxv * tx * + px) - tw / 2
oy = (ph * pyv * ty * + py) - th / 2
ow = exp(pwv * tw) * pw + tw / 2
oh = exp(phv * th) * ph + th / 2
where `tx`, `ty`, `tw`, `th` denote the predicted box's center coordinates, width
and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote the
anchor's center coordinates, width and height. `pxv`, `pyv`, `pwv`,
`phv` denote the variance of the anchor box and `ox`, `oy`, `ow`, `oh` denote the
decoded coordinates, width and height.
Then the top decoded prediction from all levels are merged followed by NMS.
In the NMS step, this operator prunes away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
After NMS step, at most keep_top_k number of total bounding boxes are to be kept
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bounding box for this image. If there is no detected boxes
for all images, all the elements in LoD are set to 0, and the output tensor is
empty (None).
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(retinanet_detection_output, ops::RetinanetDetectionOutputOp,
ops::RetinanetDetectionOutputOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(retinanet_detection_output,
ops::RetinanetDetectionOutputKernel<float>,
ops::RetinanetDetectionOutputKernel<double>);
...@@ -53,6 +53,7 @@ __all__ = [ ...@@ -53,6 +53,7 @@ __all__ = [
'yolo_box', 'yolo_box',
'box_clip', 'box_clip',
'multiclass_nms', 'multiclass_nms',
'retinanet_detection_output',
'distribute_fpn_proposals', 'distribute_fpn_proposals',
'box_decoder_and_assign', 'box_decoder_and_assign',
'collect_fpn_proposals', 'collect_fpn_proposals',
...@@ -2548,6 +2549,113 @@ def box_clip(input, im_info, name=None): ...@@ -2548,6 +2549,113 @@ def box_clip(input, im_info, name=None):
return output return output
def retinanet_detection_output(bboxes,
scores,
anchors,
im_info,
score_threshold=0.05,
nms_top_k=1000,
keep_top_k=100,
nms_threshold=0.3,
nms_eta=1.):
"""
**Detection Output Layer for Retinanet.**
This operation is to get the detection results by performing following
steps:
1. Decode top-scoring bounding box predictions per FPN level according
to the anchor boxes.
2. Merge top predictions from all levels and apply multi-class non
maximum suppression (NMS) on them to get the final detections.
Args:
bboxes(List): A list of tensors from multiple FPN levels. Each
element is a 3-D Tensor with shape [N, Mi, 4] representing the
predicted locations of Mi bounding boxes. N is the batch size,
Mi is the number of bounding boxes from i-th FPN level and each
bounding box has four coordinate values and the layout is
[xmin, ymin, xmax, ymax].
scores(List): A list of tensors from multiple FPN levels. Each
element is a 3-D Tensor with shape [N, Mi, C] representing the
predicted confidence predictions. N is the batch size, C is the
class number (excluding background), Mi is the number of bounding
boxes from i-th FPN level. For each bounding box, there are total
C scores.
anchors(List): A 2-D Tensor with shape [Mi, 4] represents the locations
of Mi anchor boxes from all FPN level. Each bounding box has four
coordinate values and the layout is [xmin, ymin, xmax, ymax].
im_info(Variable): A 2-D LoDTensor with shape [N, 3] represents the
image information. N is the batch size, each image information
includes height, width and scale.
score_threshold(float): Threshold to filter out bounding boxes
with a confidence score.
nms_top_k(int): Maximum number of detections per FPN layer to be
kept according to the confidences before NMS.
keep_top_k(int): Number of total bounding boxes to be kept per image after
NMS step. -1 means keeping all bounding boxes after NMS step.
nms_threshold(float): The threshold to be used in NMS.
nms_eta(float): The parameter for adaptive NMS.
Returns:
Variable:
The detection output is a LoDTensor with shape [No, 6].
Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
`No` is the total number of detections in this mini-batch. For each
instance, the offsets in first dimension are called LoD, the offset
number is N + 1, N is the batch size. The i-th image has
`LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
has no detected results. If all images have no detected results,
LoD will be set to 0, and the output tensor is empty (None).
Examples:
.. code-block:: python
import paddle.fluid as fluid
bboxes = layers.data(name='bboxes', shape=[1, 21, 4],
append_batch_size=False, dtype='float32')
scores = layers.data(name='scores', shape=[1, 21, 10],
append_batch_size=False, dtype='float32')
anchors = layers.data(name='anchors', shape=[21, 4],
append_batch_size=False, dtype='float32')
im_info = layers.data(name="im_info", shape=[1, 3],
append_batch_size=False, dtype='float32')
nmsed_outs = fluid.layers.retinanet_detection_output(
bboxes=[bboxes, bboxes],
scores=[scores, scores],
anchors=[anchors, anchors],
im_info=im_info,
score_threshold=0.05,
nms_top_k=1000,
keep_top_k=100,
nms_threshold=0.3,
nms_eta=1.)
"""
helper = LayerHelper('retinanet_detection_output', **locals())
output = helper.create_variable_for_type_inference(
dtype=helper.input_dtype('scores'))
helper.append_op(
type="retinanet_detection_output",
inputs={
'BBoxes': bboxes,
'Scores': scores,
'Anchors': anchors,
'ImInfo': im_info
},
attrs={
'score_threshold': score_threshold,
'nms_top_k': nms_top_k,
'nms_threshold': nms_threshold,
'keep_top_k': keep_top_k,
'nms_eta': 1.,
},
outputs={'Out': output})
output.stop_gradient = True
return output
def multiclass_nms(bboxes, def multiclass_nms(bboxes,
scores, scores,
score_threshold, score_threshold,
......
...@@ -2093,6 +2093,41 @@ class TestBook(LayerTest): ...@@ -2093,6 +2093,41 @@ class TestBook(LayerTest):
x=input, label=label, fg_num=fg_num, gamma=2., alpha=0.25) x=input, label=label, fg_num=fg_num, gamma=2., alpha=0.25)
return (out) return (out)
def test_retinanet_detection_output(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
bboxes = layers.data(
name='bboxes',
shape=[1, 21, 4],
append_batch_size=False,
dtype='float32')
scores = layers.data(
name='scores',
shape=[1, 21, 10],
append_batch_size=False,
dtype='float32')
anchors = layers.data(
name='anchors',
shape=[21, 4],
append_batch_size=False,
dtype='float32')
im_info = layers.data(
name="im_info",
shape=[1, 3],
append_batch_size=False,
dtype='float32')
nmsed_outs = layers.retinanet_detection_output(
bboxes=[bboxes, bboxes],
scores=[scores, scores],
anchors=[anchors, anchors],
im_info=im_info,
score_threshold=0.05,
nms_top_k=1000,
keep_top_k=100,
nms_threshold=0.3,
nms_eta=1.)
return (nmsed_outs)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#Licensed under the Apache License, Version 2.0 (the "License")
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import math
import copy
from op_test import OpTest
from test_anchor_generator_op import anchor_generator_in_python
from test_multiclass_nms_op import iou
from test_multiclass_nms_op import nms
def multiclass_nms(prediction, class_num, keep_top_k, nms_threshold):
selected_indices = {}
num_det = 0
for c in range(class_num):
if c not in prediction.keys():
continue
cls_dets = prediction[c]
all_scores = np.zeros(len(cls_dets))
for i in range(all_scores.shape[0]):
all_scores[i] = cls_dets[i][4]
indices = nms(cls_dets, all_scores, 0.0, nms_threshold, -1, False, 1.0)
selected_indices[c] = indices
num_det += len(indices)
score_index = []
for c, indices in selected_indices.items():
for idx in indices:
score_index.append((prediction[c][idx][4], c, idx))
sorted_score_index = sorted(
score_index, key=lambda tup: tup[0], reverse=True)
if keep_top_k > -1 and num_det > keep_top_k:
sorted_score_index = sorted_score_index[:keep_top_k]
num_det = keep_top_k
nmsed_outs = []
for s, c, idx in sorted_score_index:
xmin = prediction[c][idx][0]
ymin = prediction[c][idx][1]
xmax = prediction[c][idx][2]
ymax = prediction[c][idx][3]
nmsed_outs.append([c + 1, s, xmin, ymin, xmax, ymax])
return nmsed_outs, num_det
def retinanet_detection_out(boxes_list, scores_list, anchors_list, im_info,
score_threshold, nms_threshold, nms_top_k,
keep_top_k):
class_num = scores_list[0].shape[-1]
im_height, im_width, im_scale = im_info
num_level = len(scores_list)
prediction = {}
for lvl in range(num_level):
scores_per_level = scores_list[lvl]
scores_per_level = scores_per_level.flatten()
bboxes_per_level = boxes_list[lvl]
bboxes_per_level = bboxes_per_level.flatten()
anchors_per_level = anchors_list[lvl]
anchors_per_level = anchors_per_level.flatten()
thresh = score_threshold if lvl < (num_level - 1) else 0.0
selected_indices = np.argwhere(scores_per_level > thresh)
scores = scores_per_level[selected_indices]
sorted_indices = np.argsort(-scores, axis=0, kind='mergesort')
if nms_top_k > -1 and nms_top_k < sorted_indices.shape[0]:
sorted_indices = sorted_indices[:nms_top_k]
for i in range(sorted_indices.shape[0]):
idx = selected_indices[sorted_indices[i]]
idx = idx[0][0]
a = int(idx / class_num)
c = int(idx % class_num)
box_offset = a * 4
anchor_box_width = anchors_per_level[
box_offset + 2] - anchors_per_level[box_offset] + 1
anchor_box_height = anchors_per_level[
box_offset + 3] - anchors_per_level[box_offset + 1] + 1
anchor_box_center_x = anchors_per_level[
box_offset] + anchor_box_width / 2
anchor_box_center_y = anchors_per_level[box_offset +
1] + anchor_box_height / 2
target_box_center_x = bboxes_per_level[
box_offset] * anchor_box_width + anchor_box_center_x
target_box_center_y = bboxes_per_level[
box_offset + 1] * anchor_box_height + anchor_box_center_y
target_box_width = math.exp(bboxes_per_level[box_offset +
2]) * anchor_box_width
target_box_height = math.exp(bboxes_per_level[
box_offset + 3]) * anchor_box_height
pred_box_xmin = target_box_center_x - target_box_width / 2
pred_box_ymin = target_box_center_y - target_box_height / 2
pred_box_xmax = target_box_center_x + target_box_width / 2 - 1
pred_box_ymax = target_box_center_y + target_box_height / 2 - 1
pred_box_xmin = pred_box_xmin / im_scale
pred_box_ymin = pred_box_ymin / im_scale
pred_box_xmax = pred_box_xmax / im_scale
pred_box_ymax = pred_box_ymax / im_scale
pred_box_xmin = max(
min(pred_box_xmin, np.round(im_width / im_scale) - 1), 0.)
pred_box_ymin = max(
min(pred_box_ymin, np.round(im_height / im_scale) - 1), 0.)
pred_box_xmax = max(
min(pred_box_xmax, np.round(im_width / im_scale) - 1), 0.)
pred_box_ymax = max(
min(pred_box_ymax, np.round(im_height / im_scale) - 1), 0.)
if c not in prediction.keys():
prediction[c] = []
prediction[c].append([
pred_box_xmin, pred_box_ymin, pred_box_xmax, pred_box_ymax,
scores_per_level[idx]
])
nmsed_outs, nmsed_num = multiclass_nms(prediction, class_num, keep_top_k,
nms_threshold)
return nmsed_outs, nmsed_num
def batched_retinanet_detection_out(boxes, scores, anchors, im_info,
score_threshold, nms_threshold, nms_top_k,
keep_top_k):
batch_size = scores[0].shape[0]
det_outs = []
lod = []
for n in range(batch_size):
boxes_per_batch = []
scores_per_batch = []
num_level = len(scores)
for lvl in range(num_level):
boxes_per_batch.append(boxes[lvl][n])
scores_per_batch.append(scores[lvl][n])
nmsed_outs, nmsed_num = retinanet_detection_out(
boxes_per_batch, scores_per_batch, anchors, im_info[n],
score_threshold, nms_threshold, nms_top_k, keep_top_k)
lod.append(nmsed_num)
if nmsed_num == 0:
continue
det_outs.extend(nmsed_outs)
return det_outs, lod
class TestRetinanetDetectionOutOp1(OpTest):
def set_argument(self):
self.score_threshold = 0.05
self.min_level = 3
self.max_level = 7
self.nms_threshold = 0.3
self.nms_top_k = 1000
self.keep_top_k = 200
self.scales_per_octave = 3
self.aspect_ratios = [1.0, 2.0, 0.5]
self.anchor_scale = 4
self.anchor_strides = [8, 16, 32, 64, 128]
self.box_size = 4
self.class_num = 80
self.batch_size = 1
self.input_channels = 20
self.layer_h = []
self.layer_w = []
num_levels = self.max_level - self.min_level + 1
for i in range(num_levels):
self.layer_h.append(2**(num_levels - i))
self.layer_w.append(2**(num_levels - i))
def init_test_input(self):
anchor_num = len(self.aspect_ratios) * self.scales_per_octave
num_levels = self.max_level - self.min_level + 1
self.scores_list = []
self.bboxes_list = []
self.anchors_list = []
for i in range(num_levels):
layer_h = self.layer_h[i]
layer_w = self.layer_w[i]
input_feat = np.random.random((self.batch_size, self.input_channels,
layer_h, layer_w)).astype('float32')
score = np.random.random(
(self.batch_size, self.class_num * anchor_num, layer_h,
layer_w)).astype('float32')
score = np.transpose(score, [0, 2, 3, 1])
score = score.reshape((self.batch_size, -1, self.class_num))
box = np.random.random((self.batch_size, self.box_size * anchor_num,
layer_h, layer_w)).astype('float32')
box = np.transpose(box, [0, 2, 3, 1])
box = box.reshape((self.batch_size, -1, self.box_size))
anchor_sizes = []
for octave in range(self.scales_per_octave):
anchor_sizes.append(
float(self.anchor_strides[i] * (2**octave)) /
float(self.scales_per_octave) * self.anchor_scale)
anchor, var = anchor_generator_in_python(
input_feat=input_feat,
anchor_sizes=anchor_sizes,
aspect_ratios=self.aspect_ratios,
variances=[1.0, 1.0, 1.0, 1.0],
stride=[self.anchor_strides[i], self.anchor_strides[i]],
offset=0.5)
anchor = np.reshape(anchor, [-1, 4])
self.scores_list.append(score.astype('float32'))
self.bboxes_list.append(box.astype('float32'))
self.anchors_list.append(anchor.astype('float32'))
self.im_info = np.array([[256., 256., 1.5]]).astype(
'float32') #im_height, im_width, scale
def setUp(self):
self.set_argument()
self.init_test_input()
nmsed_outs, lod = batched_retinanet_detection_out(
self.bboxes_list, self.scores_list, self.anchors_list, self.im_info,
self.score_threshold, self.nms_threshold, self.nms_top_k,
self.keep_top_k)
nmsed_outs = np.array(nmsed_outs).astype('float32')
self.op_type = 'retinanet_detection_output'
self.inputs = {
'BBoxes': [('b0', self.bboxes_list[0]), ('b1', self.bboxes_list[1]),
('b2', self.bboxes_list[2]), ('b3', self.bboxes_list[3]),
('b4', self.bboxes_list[4])],
'Scores': [('s0', self.scores_list[0]), ('s1', self.scores_list[1]),
('s2', self.scores_list[2]), ('s3', self.scores_list[3]),
('s4', self.scores_list[4])],
'Anchors':
[('a0', self.anchors_list[0]), ('a1', self.anchors_list[1]),
('a2', self.anchors_list[2]), ('a3', self.anchors_list[3]),
('a4', self.anchors_list[4])],
'ImInfo': (self.im_info, [[1, ]])
}
self.outputs = {'Out': (nmsed_outs, [lod])}
self.attrs = {
'score_threshold': self.score_threshold,
'nms_top_k': self.nms_top_k,
'nms_threshold': self.nms_threshold,
'keep_top_k': self.keep_top_k,
'nms_eta': 1.,
}
def test_check_output(self):
self.check_output()
class TestRetinanetDetectionOutOp2(OpTest):
def set_argument(self):
self.score_threshold = 0.05
self.min_level = 3
self.max_level = 7
self.nms_threshold = 0.3
self.nms_top_k = 1000
self.keep_top_k = 200
self.scales_per_octave = 3
self.aspect_ratios = [1.0, 2.0, 0.5]
self.anchor_scale = 4
self.anchor_strides = [8, 16, 32, 64, 128]
self.box_size = 4
self.class_num = 80
self.batch_size = 1
self.input_channels = 20
# Here test the case there the shape of each FPN level
# is irrelevant.
self.layer_h = [1, 4, 8, 8, 16]
self.layer_w = [1, 4, 8, 8, 16]
class TestRetinanetDetectionOutOpNo3(TestRetinanetDetectionOutOp1):
def set_argument(self):
# Here set 2.0 to test the case there is no outputs.
# In practical use, 0.0 < score_threshold < 1.0
self.score_threshold = 2.0
self.min_level = 3
self.max_level = 7
self.nms_threshold = 0.3
self.nms_top_k = 1000
self.keep_top_k = 200
self.scales_per_octave = 3
self.aspect_ratios = [1.0, 2.0, 0.5]
self.anchor_scale = 4
self.anchor_strides = [8, 16, 32, 64, 128]
self.box_size = 4
self.class_num = 80
self.batch_size = 1
self.input_channels = 20
self.layer_h = []
self.layer_w = []
num_levels = self.max_level - self.min_level + 1
for i in range(num_levels):
self.layer_h.append(2**(num_levels - i))
self.layer_w.append(2**(num_levels - i))
class TestRetinanetDetectionOutOpNo4(TestRetinanetDetectionOutOp1):
def set_argument(self):
self.score_threshold = 0.05
self.min_level = 2
self.max_level = 5
self.nms_threshold = 0.3
self.nms_top_k = 1000
self.keep_top_k = 200
self.scales_per_octave = 3
self.aspect_ratios = [1.0, 2.0, 0.5]
self.anchor_scale = 4
self.anchor_strides = [8, 16, 32, 64, 128]
self.box_size = 4
self.class_num = 80
self.batch_size = 1
self.input_channels = 20
self.layer_h = []
self.layer_w = []
num_levels = self.max_level - self.min_level + 1
for i in range(num_levels):
self.layer_h.append(2**(num_levels - i))
self.layer_w.append(2**(num_levels - i))
def setUp(self):
self.set_argument()
self.init_test_input()
nmsed_outs, lod = batched_retinanet_detection_out(
self.bboxes_list, self.scores_list, self.anchors_list, self.im_info,
self.score_threshold, self.nms_threshold, self.nms_top_k,
self.keep_top_k)
nmsed_outs = np.array(nmsed_outs).astype('float32')
self.op_type = 'retinanet_detection_output'
self.inputs = {
'BBoxes':
[('b0', self.bboxes_list[0]), ('b1', self.bboxes_list[1]),
('b2', self.bboxes_list[2]), ('b3', self.bboxes_list[3])],
'Scores': [('s0', self.scores_list[0]), ('s1', self.scores_list[1]),
('s2', self.scores_list[2]),
('s3', self.scores_list[3])],
'Anchors':
[('a0', self.anchors_list[0]), ('a1', self.anchors_list[1]),
('a2', self.anchors_list[2]), ('a3', self.anchors_list[3])],
'ImInfo': (self.im_info, [[1, ]])
}
self.outputs = {'Out': (nmsed_outs, [lod])}
self.attrs = {
'score_threshold': self.score_threshold,
'nms_top_k': self.nms_top_k,
'nms_threshold': self.nms_threshold,
'keep_top_k': self.keep_top_k,
'nms_eta': 1.,
}
def test_check_output(self):
self.check_output()
class TestRetinanetDetectionOutOpNo5(TestRetinanetDetectionOutOp1):
def set_argument(self):
self.score_threshold = 0.05
self.min_level = 3
self.max_level = 7
self.nms_threshold = 0.3
self.nms_top_k = 100
self.keep_top_k = 10
self.scales_per_octave = 3
self.aspect_ratios = [1.0, 2.0, 0.5]
self.anchor_scale = 4
self.anchor_strides = [8, 16, 32, 64, 128]
self.box_size = 4
self.class_num = 80
self.batch_size = 1
self.input_channels = 20
self.layer_h = []
self.layer_w = []
num_levels = self.max_level - self.min_level + 1
for i in range(num_levels):
self.layer_h.append(2**(num_levels - i))
self.layer_w.append(2**(num_levels - i))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册