Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fe125780
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fe125780
编写于
9月 27, 2020
作者:
B
baiyfbupt
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
migrate code example and doc
上级
96daa259
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
38 addition
and
106 deletion
+38
-106
python/paddle/fluid/layers/loss.py
python/paddle/fluid/layers/loss.py
+20
-70
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+18
-28
python/paddle/nn/functional/__init__.py
python/paddle/nn/functional/__init__.py
+0
-4
python/paddle/nn/functional/pooling.py
python/paddle/nn/functional/pooling.py
+0
-4
未找到文件。
python/paddle/fluid/layers/loss.py
浏览文件 @
fe125780
...
...
@@ -316,47 +316,24 @@ def square_error_cost(input, label):
Out = (input - label)^2
Parameters:
input (
Variable
): Input tensor, the data type should be float32.
label (
Variable
): Label tensor, the data type should be float32.
input (
Tensor
): Input tensor, the data type should be float32.
label (
Tensor
): Label tensor, the data type should be float32.
Returns:
The tensor
variable
storing the element-wise squared error
\
The tensor storing the element-wise squared error
\
difference between input and label.
Return type:
Variable
.
Return type:
Tensor
.
Examples:
.. code-block:: python
# declarative mode
import paddle.fluid as fluid
import numpy as np
input = fluid.data(name="input", shape=[1])
label = fluid.data(name="label", shape=[1])
output = fluid.layers.square_error_cost(input,label)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.array([1.5]).astype("float32")
label_data = np.array([1.7]).astype("float32")
output_data = exe.run(fluid.default_main_program(),
feed={"input":input_data, "label":label_data},
fetch_list=[output],
return_numpy=True)
print(output_data)
# [array([0.04000002], dtype=float32)]
# imperative mode
import paddle.fluid.dygraph as dg
with dg.guard(place) as g:
input = dg.to_variable(input_data)
label = dg.to_variable(label_data)
output = fluid.layers.square_error_cost(input, label)
print(output.numpy())
import paddle
input = paddle.to_tensor([1.1, 1.9])
label = paddle.to_tensor([1.0, 2.0])
output = paddle.fluid.layers.square_error_cost(input, label)
# output = [0.01, 0.01]
# [0.04000002]
"""
...
...
@@ -1777,9 +1754,6 @@ def npair_loss(anchor, positive, labels, l2_reg=0.002):
def
mse_loss
(
input
,
label
):
"""
:alias_main: paddle.nn.functional.mse_loss
:alias: paddle.nn.functional.mse_loss,paddle.nn.functional.loss.mse_loss
:old_api: paddle.fluid.layers.mse_loss
This op accepts input predications and target label and returns the mean square error.
...
...
@@ -1790,46 +1764,22 @@ def mse_loss(input, label):
Out = MEAN((input - label)^2)
Parameters:
input (
Variable
): Input tensor, the data type should be float32.
label (
Variable
): Label tensor, the data type should be float32.
input (
Tensor
): Input tensor, the data type should be float32.
label (
Tensor
): Label tensor, the data type should be float32.
Returns:
Variable: The tensor variable
storing the mean square error difference of input and label.
Tensor: The tensor
storing the mean square error difference of input and label.
Return type:
Variable
.
Return type:
Tensor
.
Examples:
.. code-block:: python
# declarative mode
import paddle.fluid as fluid
import numpy as np
input = fluid.data(name="input", shape=[1])
label = fluid.data(name="label", shape=[1])
output = fluid.layers.mse_loss(input,label)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.array([1.5]).astype("float32")
label_data = np.array([1.7]).astype("float32")
output_data = exe.run(fluid.default_main_program(),
feed={"input":input_data, "label":label_data},
fetch_list=[output],
return_numpy=True)
print(output_data)
# [array([0.04000002], dtype=float32)]
# imperative mode
import paddle.fluid.dygraph as dg
with dg.guard(place) as g:
input = dg.to_variable(input_data)
label = dg.to_variable(label_data)
output = fluid.layers.mse_loss(input, label)
print(output.numpy())
# [0.04000002]
import paddle
input = paddle.to_tensor([1.1, 1.9])
label = paddle.to_tensor([1.0, 2.0])
output = paddle.fluid.layers.mse_loss(input, label)
# output = 0.01
"""
check_variable_and_dtype
(
input
,
"input"
,
[
'float32'
,
'float64'
],
'mse_loss'
)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
fe125780
...
...
@@ -2306,7 +2306,7 @@ def pool3d(input,
return pool_out
@deprecated(since="2.0.0"
, update_to="paddle.nn.functional.adaptive_pool2d"
)
@deprecated(since="2.0.0")
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
pool_size,
...
...
@@ -2314,9 +2314,6 @@ def adaptive_pool2d(input,
require_index=False,
name=None):
"""
:alias_main: paddle.nn.functional.adaptive_pool2d
:alias: paddle.nn.functional.adaptive_pool2d,paddle.nn.functional.pooling.adaptive_pool2d
:old_api: paddle.fluid.layers.adaptive_pool2d
This operation calculates the output based on the input, pool_size,
pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
...
...
@@ -2340,7 +2337,7 @@ def adaptive_pool2d(input,
Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
Args:
input (
Variable
): The input tensor of pooling operator, which is a 4-D tensor
input (
Tensor
): The input tensor of pooling operator, which is a 4-D tensor
with shape [N, C, H, W]. The format of input tensor is NCHW,
where N is batch size, C is the number of channels, H is the
height of the feature, and W is the width of the feature.
...
...
@@ -2355,7 +2352,7 @@ def adaptive_pool2d(input,
None by default.
Returns:
Variable
: The output tensor of adaptive pooling result. The data type is same
Tensor
: The output tensor of adaptive pooling result. The data type is same
as input tensor.
Raises:
...
...
@@ -2381,9 +2378,9 @@ def adaptive_pool2d(input,
# wend = ceil((i + 1) * W / n)
# output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
#
import paddle
.fluid as fluid
data =
fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32'
)
pool_out = fluid.layers.adaptive_pool2d(
import paddle
data =
paddle.rand(shape=[1,3,32,32]
)
pool_out =
paddle.
fluid.layers.adaptive_pool2d(
input=data,
pool_size=[3, 3],
pool_type='avg')
...
...
@@ -2403,9 +2400,9 @@ def adaptive_pool2d(input,
# wend = ceil((i + 1) * W / n)
# output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
#
import paddle
.fluid as fluid
data =
fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32'
)
pool_out = fluid.layers.adaptive_pool2d(
import paddle
data =
paddle.rand(shape=[1,3,32,32]
)
pool_out =
paddle.
fluid.layers.adaptive_pool2d(
input=data,
pool_size=[3, 3],
pool_type='max')
...
...
@@ -2454,7 +2451,7 @@ def adaptive_pool2d(input,
return (pool_out, mask) if require_index else pool_out
@deprecated(since="2.0.0"
, update_to="paddle.nn.functional.adaptive_pool3d"
)
@deprecated(since="2.0.0")
@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
pool_size,
...
...
@@ -2462,9 +2459,6 @@ def adaptive_pool3d(input,
require_index=False,
name=None):
"""
:alias_main: paddle.nn.functional.adaptive_pool3d
:alias: paddle.nn.functional.adaptive_pool3d,paddle.nn.functional.pooling.adaptive_pool3d
:old_api: paddle.fluid.layers.adaptive_pool3d
This operation calculates the output based on the input, pool_size,
pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
...
...
@@ -2493,7 +2487,7 @@ def adaptive_pool3d(input,
Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
Args:
input (
Variable
): The input tensor of pooling operator, which is a 5-D tensor with
input (
Tensor
): The input tensor of pooling operator, which is a 5-D tensor with
shape [N, C, D, H, W]. The format of input tensor is NCDHW, where
N is batch size, C is the number of channels, D is the depth of the feature,
H is the height of the feature, and W is the width of the feature.
...
...
@@ -2508,7 +2502,7 @@ def adaptive_pool3d(input,
None by default.
Returns:
Variable
: The output tensor of adaptive pooling result. The data type is same as input tensor.
Tensor
: The output tensor of adaptive pooling result. The data type is same as input tensor.
Raises:
ValueError: 'pool_type' is not 'max' nor 'avg'.
...
...
@@ -2538,11 +2532,9 @@ def adaptive_pool3d(input,
# avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
#
import paddle.fluid as fluid
data = fluid.data(
name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
pool_out = fluid.layers.adaptive_pool3d(
import paddle
data = paddle.rand(shape=[1,3,32,32,32])
pool_out = paddle.fluid.layers.adaptive_pool3d(
input=data,
pool_size=[3, 3, 3],
pool_type='avg')
...
...
@@ -2567,11 +2559,9 @@ def adaptive_pool3d(input,
# avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
#
import paddle.fluid as fluid
data = fluid.data(
name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
pool_out = fluid.layers.adaptive_pool3d(
import paddle
data = paddle.rand(shape=[1,3,32,32,32])
pool_out = paddle.fluid.layers.adaptive_pool3d(
input=data,
pool_size=[3, 3, 3],
pool_type='max')
...
...
python/paddle/nn/functional/__init__.py
浏览文件 @
fe125780
...
...
@@ -174,16 +174,12 @@ from .norm import normalize #DEFINE_ALIAS
from
.pooling
import
pool2d
#DEFINE_ALIAS
from
.pooling
import
pool3d
#DEFINE_ALIAS
from
.pooling
import
avg_pool1d
#DEFINE_ALIAS
from
.pooling
import
adaptive_pool2d
#DEFINE_ALIAS
from
.pooling
import
adaptive_pool3d
#DEFINE_ALIAS
from
.pooling
import
avg_pool2d
#DEFINE_ALIAS
from
.pooling
import
avg_pool3d
#DEFINE_ALIAS
from
.pooling
import
max_pool1d
#DEFINE_ALIAS
from
.pooling
import
max_pool2d
#DEFINE_ALIAS
from
.pooling
import
max_pool3d
#DEFINE_ALIAS
from
.pooling
import
adaptive_pool2d
#DEFINE_ALIAS
from
.pooling
import
adaptive_pool3d
#DEFINE_ALIAS
from
.pooling
import
adaptive_max_pool1d
#DEFINE_ALIAS
from
.pooling
import
adaptive_max_pool2d
#DEFINE_ALIAS
from
.pooling
import
adaptive_max_pool3d
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/pooling.py
浏览文件 @
fe125780
...
...
@@ -15,8 +15,6 @@
# TODO: define pooling functions
from
...fluid.layers
import
pool2d
#DEFINE_ALIAS
from
...fluid.layers
import
pool3d
#DEFINE_ALIAS
from
...fluid.layers
import
adaptive_pool2d
#DEFINE_ALIAS
from
...fluid.layers
import
adaptive_pool3d
#DEFINE_ALIAS
from
...fluid
import
core
from
...fluid.framework
import
in_dygraph_mode
from
...fluid.layers
import
utils
,
LayerHelper
,
unsqueeze
,
squeeze
...
...
@@ -25,8 +23,6 @@ from ...fluid.data_feeder import check_type, check_variable_and_dtype
__all__
=
[
'pool2d'
,
'pool3d'
,
'adaptive_pool2d'
,
'adaptive_pool3d'
,
'avg_pool1d'
,
'avg_pool2d'
,
'avg_pool3d'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录