Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fdf63b4e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fdf63b4e
编写于
4月 13, 2021
作者:
J
jiangcheng
提交者:
GitHub
4月 13, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize check_finite_and_unscale_op by fused kernel, test=develop (#31954)
上级
4a09c1a1
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
84 addition
and
21 deletion
+84
-21
paddle/fluid/operators/amp/check_finite_and_unscale_op.cu
paddle/fluid/operators/amp/check_finite_and_unscale_op.cu
+84
-21
未找到文件。
paddle/fluid/operators/amp/check_finite_and_unscale_op.cu
浏览文件 @
fdf63b4e
...
@@ -26,18 +26,48 @@ __global__ void InverseAndMemset(const T* s, T* o, bool* found_inf) {
...
@@ -26,18 +26,48 @@ __global__ void InverseAndMemset(const T* s, T* o, bool* found_inf) {
}
}
template
<
typename
T
,
typename
MT
>
template
<
typename
T
,
typename
MT
>
__global__
void
CheckFiniteAndUnscale
(
const
T
*
in
,
const
MT
*
scale
,
int
num
,
__global__
void
CheckFiniteAndUnscale
(
const
T
**
xs
,
const
MT
*
scale
,
bool
*
found_inf
,
T
*
out
)
{
int64_t
size
,
int64_t
*
starts
,
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
bool
*
found_inf
,
T
**
outs
)
{
const
int64_t
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
num
)
{
MT
val
=
static_cast
<
MT
>
(
in
[
idx
])
*
(
*
scale
);
// copy starts array from global memory to shared memory
extern
__shared__
int64_t
s_starts
[];
for
(
int
i
=
threadIdx
.
x
;
i
<=
size
;
i
+=
blockDim
.
x
)
{
s_starts
[
i
]
=
starts
[
i
];
}
__syncthreads
();
const
int64_t
num
=
s_starts
[
size
];
int
pre_xs_index
=
0
;
bool
t_found_inf
=
false
;
const
MT
t_scale
=
*
scale
;
for
(
int64_t
idx
=
tid
;
idx
<
num
;
idx
+=
gridDim
.
x
*
blockDim
.
x
)
{
// get the xs's index of thread
int
xs_index
=
pre_xs_index
;
while
(
idx
<
s_starts
[
xs_index
])
xs_index
++
;
// avoid some tensor's numel is zero
while
(
idx
>=
s_starts
[
xs_index
])
xs_index
++
;
pre_xs_index
=
xs_index
-
1
;
// get in data and out data
const
T
*
in
=
xs
[
pre_xs_index
];
T
*
out
=
outs
[
pre_xs_index
];
int64_t
in_idx
=
idx
-
s_starts
[
pre_xs_index
];
// Unscale
MT
val
=
static_cast
<
MT
>
(
in
[
in_idx
])
*
t_scale
;
T
narrow_val
=
static_cast
<
T
>
(
val
);
T
narrow_val
=
static_cast
<
T
>
(
val
);
out
[
idx
]
=
narrow_val
;
out
[
in_idx
]
=
narrow_val
;
// CheckFinite
if
(
!
isfinite
(
narrow_val
))
{
if
(
!
isfinite
(
narrow_val
))
{
*
found_inf
=
true
;
t_
found_inf
=
true
;
}
}
}
}
if
(
t_found_inf
)
{
*
found_inf
=
true
;
}
}
}
template
<
typename
T
>
template
<
typename
T
>
...
@@ -63,21 +93,54 @@ class CheckFiniteAndUnscaleGpuKernel : public framework::OpKernel<T> {
...
@@ -63,21 +93,54 @@ class CheckFiniteAndUnscaleGpuKernel : public framework::OpKernel<T> {
InverseAndMemset
<
MPDType
><<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
InverseAndMemset
<
MPDType
><<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
scale_data
,
inverse_scale_v
,
found_inf_data
);
scale_data
,
inverse_scale_v
,
found_inf_data
);
for
(
size_t
i
=
0
;
i
<
xs
.
size
();
++
i
)
{
size_t
xs_size
=
xs
.
size
();
const
auto
*
x
=
xs
[
i
];
// calculate each tensor's start index and copy to device
auto
*
out
=
outs
[
i
];
auto
h_starts_tensor
=
const
T
*
x_data
=
x
->
data
<
T
>
();
memory
::
Alloc
(
platform
::
CPUPlace
(),
(
xs_size
+
1
)
*
sizeof
(
int64_t
));
T
*
out_data
=
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
int64_t
*
h_starts
=
reinterpret_cast
<
int64_t
*>
(
h_starts_tensor
->
ptr
());
auto
d_starts_tensor
=
memory
::
Alloc
(
dev_ctx
,
(
xs_size
+
1
)
*
sizeof
(
int64_t
));
int64_t
*
d_starts
=
reinterpret_cast
<
int64_t
*>
(
d_starts_tensor
->
ptr
());
h_starts
[
0
]
=
0
;
for
(
int
i
=
1
;
i
<=
xs_size
;
i
++
)
{
// the start index value of each tensor is
// the sum of previous tensor's size
h_starts
[
i
]
=
h_starts
[
i
-
1
]
+
xs
[
i
-
1
]
->
numel
();
}
int64_t
total_num
=
h_starts
[
xs_size
];
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
dev_ctx
.
GetPlace
()),
d_starts
,
platform
::
CPUPlace
(),
h_starts
,
(
xs_size
+
1
)
*
sizeof
(
int64_t
),
dev_ctx
.
stream
());
// copy each tensor's data address to device
auto
h_mem
=
memory
::
Alloc
(
platform
::
CPUPlace
(),
2
*
xs_size
*
sizeof
(
T
*
));
const
T
**
h_xs
=
reinterpret_cast
<
const
T
**>
(
h_mem
->
ptr
());
T
**
h_outs
=
reinterpret_cast
<
T
**>
(
h_mem
->
ptr
())
+
xs_size
;
auto
d_mem
=
memory
::
Alloc
(
dev_ctx
,
2
*
xs_size
*
sizeof
(
T
*
));
const
T
**
d_xs
=
reinterpret_cast
<
const
T
**>
(
d_mem
->
ptr
());
T
**
d_outs
=
reinterpret_cast
<
T
**>
(
d_mem
->
ptr
())
+
xs_size
;
for
(
size_t
i
=
0
;
i
<
xs_size
;
++
i
)
{
h_xs
[
i
]
=
xs
[
i
]
->
data
<
T
>
();
h_outs
[
i
]
=
outs
[
i
]
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
}
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
dev_ctx
.
GetPlace
()),
d_xs
,
platform
::
CPUPlace
(),
h_xs
,
2
*
xs_size
*
sizeof
(
T
*
),
dev_ctx
.
stream
());
int
num
=
x
->
numel
();
// Launch Kernel
int
block
=
1024
;
int
block
=
1024
;
int
grid
=
(
num
+
block
-
1
)
/
block
;
int
block_num
=
block
*
20
;
// each thread deal with 20 number
int
grid
=
(
total_num
+
block_num
-
1
)
/
block_num
;
VLOG
(
3
)
<<
"launch kernel"
;
VLOG
(
3
)
<<
"launch kernel"
;
CheckFiniteAndUnscale
<
T
,
MPDType
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
CheckFiniteAndUnscale
<
T
,
MPDType
><<<
x_data
,
inverse_scale_v
,
num
,
found_inf_data
,
out_data
);
grid
,
block
,
(
xs_size
+
1
)
*
sizeof
(
int64_t
),
dev_ctx
.
stream
()
>>>
(
d_xs
,
inverse_scale_v
,
xs_size
,
d_starts
,
found_inf_data
,
d_outs
);
VLOG
(
3
)
<<
"finish kernel"
;
VLOG
(
3
)
<<
"finish kernel"
;
}
}
}
};
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录