提交 fd9b14c3 编写于 作者: L Luo Tao

Merge branch 'develop' into remove_v1_api_doc

......@@ -39,6 +39,11 @@ N-dim tensor. X and Y could be any type. The each element of the Out tensor is
calculated by %s
)DOC",
comment.type, comment.equation));
AddAttr<int>("axis",
"(int, default -1). The start dimension index "
"for broadcasting Y onto X.")
.SetDefault(-1)
.EqualGreaterThan(-1);
}
};
......@@ -95,11 +100,5 @@ REGISTER_LOGICAL_OP(less_than, "Out = X < Y");
REGISTER_LOGICAL_KERNEL(less_than, CPU, paddle::operators::LessThanFunctor);
REGISTER_LOGICAL_OP(less_equal, "Out = X <= Y");
REGISTER_LOGICAL_KERNEL(less_equal, CPU, paddle::operators::LessEqualFunctor);
REGISTER_LOGICAL_OP(greater_than, "Out = X > Y");
REGISTER_LOGICAL_KERNEL(greater_than, CPU,
paddle::operators::GreaterThanFunctor);
REGISTER_LOGICAL_OP(greater_equal, "Out = X >= Y");
REGISTER_LOGICAL_KERNEL(greater_equal, CPU,
paddle::operators::GreaterEqualFunctor);
REGISTER_LOGICAL_OP(equal, "Out = X == Y");
REGISTER_LOGICAL_KERNEL(equal, CPU, paddle::operators::EqualFunctor);
......@@ -16,8 +16,4 @@ limitations under the License. */
REGISTER_LOGICAL_KERNEL(less_than, CUDA, paddle::operators::LessThanFunctor);
REGISTER_LOGICAL_KERNEL(less_equal, CUDA, paddle::operators::LessEqualFunctor);
REGISTER_LOGICAL_KERNEL(greater_than, CUDA,
paddle::operators::GreaterThanFunctor);
REGISTER_LOGICAL_KERNEL(greater_equal, CUDA,
paddle::operators::GreaterEqualFunctor);
REGISTER_LOGICAL_KERNEL(equal, CUDA, paddle::operators::EqualFunctor);
......@@ -16,6 +16,7 @@ limitations under the License. */
#include <math.h>
#include <type_traits>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/elementwise_op_function.h"
#include "paddle/platform/transform.h"
namespace paddle {
......@@ -33,18 +34,6 @@ struct LessEqualFunctor {
HOSTDEVICE bool operator()(const T& a, const T& b) const { return a <= b; }
};
template <typename T>
struct GreaterThanFunctor {
using ELEM_TYPE = T;
HOSTDEVICE bool operator()(const T& a, const T& b) const { return a > b; }
};
template <typename T>
struct GreaterEqualFunctor {
using ELEM_TYPE = T;
HOSTDEVICE bool operator()(const T& a, const T& b) const { return a >= b; }
};
template <typename T>
struct EqualFunctor {
using ELEM_TYPE = T;
......@@ -65,14 +54,7 @@ class CompareOpKernel
public:
void Compute(const framework::ExecutionContext& context) const override {
using T = typename Functor::ELEM_TYPE;
auto* x = context.Input<framework::Tensor>("X");
auto* y = context.Input<framework::Tensor>("Y");
auto* out = context.Output<framework::Tensor>("Out");
Functor binary_func;
platform::Transform<DeviceContext> trans;
trans(context.template device_context<DeviceContext>(), x->data<T>(),
x->data<T>() + x->numel(), y->data<T>(),
out->mutable_data<bool>(context.GetPlace()), binary_func);
ElementwiseComputeEx<Functor, DeviceContext, T, bool>(context);
}
};
......
......@@ -176,14 +176,15 @@ class MidWiseTransformIterator<T, platform::CUDADeviceContext>
};
#endif
template <typename Functor, typename T, typename DeviceContext>
template <typename Functor, typename T, typename DeviceContext,
typename OutType = T>
class TransformFunctor {
public:
TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
framework::Tensor* z, const DeviceContext& ctx, Functor func)
: x_(x->data<T>()),
y_(y->data<T>()),
z_(z->mutable_data<T>(ctx.GetPlace())),
z_(z->mutable_data<OutType>(ctx.GetPlace())),
nx_(x->numel()),
ctx_(ctx),
func_(func) {}
......@@ -208,7 +209,7 @@ class TransformFunctor {
private:
const T* x_;
const T* y_;
T* z_;
OutType* z_;
int64_t nx_;
const DeviceContext& ctx_;
Functor func_;
......@@ -364,15 +365,16 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
}
}
template <typename Functor, typename DeviceContext, typename T>
template <typename Functor, typename DeviceContext, typename T,
typename OutType = T>
void ElementwiseComputeEx(const framework::ExecutionContext& ctx) {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
TransformFunctor<Functor, T, DeviceContext> functor(
z->mutable_data<OutType>(ctx.GetPlace());
TransformFunctor<Functor, T, DeviceContext, OutType> functor(
x, y, z, ctx.template device_context<DeviceContext>(), Functor());
auto x_dims = x->dims();
......
......@@ -11,13 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
from ..layer_helper import LayerHelper, unique_name
from ..framework import Program, Variable, Operator
from .. import core
from layer_function_generator import autodoc
from tensor import assign, fill_constant
import contextlib
from ..registry import autodoc
from .. import core
from ..framework import Program, Variable, Operator
from ..layer_helper import LayerHelper, unique_name
__all__ = [
'split_lod_tensor',
......@@ -1477,7 +1477,7 @@ class DynamicRNN(object):
method))
@autodoc
@autodoc()
def reorder_lod_tensor_by_rank(x, rank_table):
helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
helper.is_instance('x', Variable)
......
......@@ -15,14 +15,14 @@
All util layers.
"""
from ..layer_helper import LayerHelper
from layer_function_generator import autodoc
from ..framework import unique_name
from ..registry import autodoc
from ..layer_helper import LayerHelper
__all__ = ['get_places']
@autodoc
@autodoc()
def get_places(device_count=None, device_type=None):
helper = LayerHelper('get_places', **locals())
out_places = helper.create_variable(name=unique_name(helper.name + ".out"))
......
......@@ -13,17 +13,19 @@
# limitations under the License.
import re
import cStringIO
import warnings
import functools
import inspect
import warnings
from .. import proto
import proto.framework_pb2 as framework_pb2
from framework import OpProtoHolder, Variable, Program, Operator
from paddle.v2.fluid.layer_helper import LayerHelper, unique_name
framework_pb2 = proto.framework_pb2
from ..framework import OpProtoHolder, Variable
from ..layer_helper import LayerHelper
__all__ = [
'deprecated',
'register_layer',
'generate_layer_fn',
'autodoc',
]
......@@ -96,7 +98,7 @@ def _generate_doc_string_(op_proto):
return buf.getvalue()
def register_layer(op_type):
def generate_layer_fn(op_type):
"""Register the Python layer for an Operator.
Args:
......@@ -207,7 +209,10 @@ def deprecated(func_or_class):
return func_wrapper
def autodoc(func):
func.__doc__ = _generate_doc_string_(OpProtoHolder.instance().get_op_proto(
func.__name__))
def autodoc(comment=""):
def __impl__(func):
func.__doc__ = _generate_doc_string_(OpProtoHolder.instance(
).get_op_proto(func.__name__)) + comment
return func
return __impl__
......@@ -11,8 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..registry import register_layer
from layer_function_generator import generate_layer_fn
__activations__ = [
'sigmoid',
......@@ -53,4 +52,4 @@ __all__ = [
] + __activations__
for _OP in set(__all__):
globals()[_OP] = register_layer(_OP)
globals()[_OP] = generate_layer_fn(_OP)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
......
......@@ -38,8 +38,6 @@ def create_test_class(op_type, typename, callback):
for _type_name in {'float32', 'float64', 'int32', 'int64'}:
create_test_class('less_than', _type_name, lambda _a, _b: _a < _b)
create_test_class('less_equal', _type_name, lambda _a, _b: _a <= _b)
create_test_class('greater_than', _type_name, lambda _a, _b: _a > _b)
create_test_class('greater_equal', _type_name, lambda _a, _b: _a >= _b)
create_test_class('equal', _type_name, lambda _a, _b: _a == _b)
if __name__ == '__main__':
......
......@@ -11,26 +11,21 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import warnings
import paddle.v2.fluid as fluid
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.registry as registry
import numpy as np
import decorators
class TestRegistry(unittest.TestCase):
@decorators.prog_scope()
def test_registry_layer(self):
self.layer_type = "mean"
program = framework.Program()
x = fluid.layers.data(name='X', shape=[10, 10], dtype='float32')
output = layers.mean(x)
output = fluid.layers.mean(x=x)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
X = np.random.random((10, 10)).astype("float32")
mean_out = exe.run(program, feed={"X": X}, fetch_list=[output])
self.assertAlmostEqual(np.mean(X), mean_out)
mean_out = exe.run(feed={"X": X}, fetch_list=[output])
self.assertAlmostEqual(np.mean(X), mean_out[0])
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册