Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fd41456f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fd41456f
编写于
11月 27, 2021
作者:
J
JingZhuangzhuang
提交者:
GitHub
11月 27, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix save inference model conditional op (#37579)
上级
72241a6a
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
167 addition
and
25 deletion
+167
-25
paddle/fluid/framework/prune.cc
paddle/fluid/framework/prune.cc
+19
-25
python/paddle/fluid/tests/unittests/test_save_inference_model_conditional_op.py
...sts/unittests/test_save_inference_model_conditional_op.py
+148
-0
未找到文件。
paddle/fluid/framework/prune.cc
浏览文件 @
fd41456f
...
...
@@ -145,6 +145,23 @@ int FindMapByValue(const std::map<int, int>& m, int val) {
return
-
1
;
}
// In other two cases,the op that has feed vars as output vars is dependent:
// 1. op has subblock, like while/for/ifelse/recurrent
// 2. op is in subblock
bool
IsSubBlockDependent
(
const
proto
::
OpDesc
&
op_desc
,
const
std
::
set
<
std
::
string
>&
feed_vars
,
int
parent_block_id
)
{
for
(
auto
&
var
:
op_desc
.
outputs
())
{
for
(
auto
&
argu
:
var
.
arguments
())
{
if
((
HasSubBlock
(
op_desc
)
||
parent_block_id
!=
-
1
)
&&
feed_vars
.
count
(
argu
)
!=
0
)
{
return
true
;
}
}
}
return
false
;
}
// block_id is the idx of the current block in the input desc
// parent_block_id is the idx of the parent of the current block
// in the output desc, -1 means the current block is global block
...
...
@@ -210,7 +227,8 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
// }
if
(
IsTarget
(
op_desc
)
||
(
HasDependentOutputVar
(
op_desc
,
*
dependent_vars
)
&&
((
HasDependentOutputVar
(
op_desc
,
*
dependent_vars
)
||
(
IsSubBlockDependent
(
op_desc
,
feed_var_names
,
parent_block_id
)))
&&
(
GetOpRole
(
op_desc
)
&
static_cast
<
int
>
(
OpRole
::
kOptimize
))
==
0
))
{
// NOTE(zhiqiu): since optimize op takes the trainable parameters as
// inputs and output, it may introduce wrong dependency graph.
...
...
@@ -227,30 +245,6 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
should_run
.
push_back
(
true
);
}
else
{
should_run
.
push_back
(
false
);
// If the output of an op modifies feed vars, the op should not clip.
// For example, in the transformer structure, the third parameter returned
// by beam_search op is generally assigned to a feed var. Cutting the
// assign op will cause an error.
if
(
parent_block_id
!=
-
1
)
{
bool
flag
=
false
;
for
(
auto
&
var
:
op_desc
.
outputs
())
{
for
(
auto
&
argu
:
var
.
arguments
())
{
if
(
feed_var_names
.
count
(
argu
))
{
flag
=
true
;
}
}
}
if
(
flag
)
{
should_run
.
back
()
=
true
;
// If any op should run, then there inputs are dependent_vars
for
(
auto
&
var
:
op_desc
.
inputs
())
{
for
(
auto
&
argu
:
var
.
arguments
())
{
dependent_vars
->
insert
(
argu
);
}
}
}
}
}
}
...
...
python/paddle/fluid/tests/unittests/test_save_inference_model_conditional_op.py
0 → 100644
浏览文件 @
fd41456f
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.nn.functional
as
F
def
getModelOp
(
model_path
):
model_bytes
=
paddle
.
static
.
load_from_file
(
model_path
)
pg
=
paddle
.
static
.
deserialize_program
(
model_bytes
)
main_block
=
pg
.
desc
.
block
(
0
)
size
=
main_block
.
op_size
()
result
=
set
()
for
i
in
range
(
0
,
size
):
#print(main_block.op(i).type())
result
.
add
(
main_block
.
op
(
i
).
type
())
return
result
class
WhileNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
WhileNet
,
self
).
__init__
()
def
forward
(
self
,
x
):
y
=
paddle
.
rand
(
shape
=
[
1
,
3
,
4
,
4
])
w1
=
paddle
.
shape
(
y
)[
0
]
w2
=
paddle
.
shape
(
x
)[
0
]
while
w2
!=
w1
:
x
=
F
.
avg_pool2d
(
x
,
kernel_size
=
3
,
padding
=
1
,
stride
=
2
)
w2
=
paddle
.
shape
(
x
)[
0
]
return
x
+
y
class
ForNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
ForNet
,
self
).
__init__
()
def
forward
(
self
,
x
):
y
=
paddle
.
randint
(
low
=
0
,
high
=
5
,
shape
=
[
1
],
dtype
=
'int32'
)
z
=
paddle
.
randint
(
low
=
0
,
high
=
5
,
shape
=
[
1
],
dtype
=
'int32'
)
for
i
in
range
(
0
,
z
):
x
=
x
+
i
return
x
+
y
class
IfElseNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
IfElseNet
,
self
).
__init__
()
def
forward
(
self
,
x
):
y
=
paddle
.
to_tensor
([
5
])
if
x
>
y
:
x
=
x
+
1
else
:
x
=
x
-
1
return
x
class
TestConditionalOp
(
unittest
.
TestCase
):
def
test_while_op
(
self
):
paddle
.
disable_static
()
net
=
WhileNet
()
net
=
paddle
.
jit
.
to_static
(
net
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
1
,
3
,
8
,
8
],
dtype
=
'float32'
)
])
paddle
.
jit
.
save
(
net
,
'./while_net'
)
right_pdmodel
=
set
([
"uniform_random"
,
"shape"
,
"slice"
,
"not_equal"
,
"while"
,
"elementwise_add"
])
paddle
.
enable_static
()
pdmodel
=
getModelOp
(
"while_net.pdmodel"
)
#print(len(right_pdmodel.difference(pdmodel)))
self
.
assertTrue
(
len
(
right_pdmodel
.
difference
(
pdmodel
))
==
0
,
"The while op is pruned by mistake."
)
def
test_for_op
(
self
):
paddle
.
disable_static
()
net
=
ForNet
()
net
=
paddle
.
jit
.
to_static
(
net
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
1
],
dtype
=
'int32'
)])
paddle
.
jit
.
save
(
net
,
'./for_net'
)
right_pdmodel
=
set
([
"randint"
,
"fill_constant"
,
"cast"
,
"less_than"
,
"while"
,
"elementwise_add"
])
paddle
.
enable_static
()
pdmodel
=
getModelOp
(
"for_net.pdmodel"
)
#print(len(right_pdmodel.difference(pdmodel)))
self
.
assertTrue
(
len
(
right_pdmodel
.
difference
(
pdmodel
))
==
0
,
"The for op is pruned by mistake."
)
def
test_if_op
(
self
):
paddle
.
disable_static
()
net
=
IfElseNet
()
net
=
paddle
.
jit
.
to_static
(
net
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
1
],
dtype
=
'int32'
)])
paddle
.
jit
.
save
(
net
,
'./if_net'
)
right_pdmodel
=
set
([
"assign_value"
,
"greater_than"
,
"cast"
,
"conditional_block"
,
"logical_not"
,
"select_input"
])
paddle
.
enable_static
()
pdmodel
=
getModelOp
(
"if_net.pdmodel"
)
#print(len(right_pdmodel.difference(pdmodel)))
self
.
assertTrue
(
len
(
right_pdmodel
.
difference
(
pdmodel
))
==
0
,
"The if op is pruned by mistake."
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录