Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fcd44b54
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fcd44b54
编写于
11月 26, 2021
作者:
Z
Zhanlue Yang
提交者:
GitHub
11月 26, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Added Eager Dygraph AutoCodeGen dependencies #1 (#37574)
上级
e05540f7
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
854 addition
and
0 deletion
+854
-0
paddle/fluid/eager/auto_code_generator/CMakeLists.txt
paddle/fluid/eager/auto_code_generator/CMakeLists.txt
+18
-0
paddle/fluid/eager/auto_code_generator/eager_generator.cc
paddle/fluid/eager/auto_code_generator/eager_generator.cc
+745
-0
paddle/fluid/eager/auto_code_generator/generate_file_structures.py
...uid/eager/auto_code_generator/generate_file_structures.py
+87
-0
paddle/fluid/eager/auto_code_generator/op_list.txt
paddle/fluid/eager/auto_code_generator/op_list.txt
+4
-0
未找到文件。
paddle/fluid/eager/auto_code_generator/CMakeLists.txt
0 → 100644
浏览文件 @
fcd44b54
set
(
EAGER_GENERETOR_DEPS
${
GLOB_OP_LIB
}
${
GLOB_OPERATOR_DEPS
}
pybind proto_desc executor layer tracer engine imperative_profiler imperative_flag
)
add_executable
(
eager_generator eager_generator.cc
)
target_link_libraries
(
eager_generator
${
EAGER_GENERETOR_DEPS
}
)
get_property
(
os_dependency_modules GLOBAL PROPERTY OS_DEPENDENCY_MODULES
)
target_link_libraries
(
eager_generator
${
os_dependency_modules
}
)
# Prepare file structure
message
(
"Generate dygraph file structure at path:
${
PADDLE_SOURCE_DIR
}
/paddle/fluid/eager/generated"
)
execute_process
(
COMMAND
"
${
PYTHON_EXECUTABLE
}
"
"
${
PADDLE_SOURCE_DIR
}
/paddle/fluid/eager/auto_code_generator/generate_file_structures.py"
"
${
PADDLE_SOURCE_DIR
}
/paddle/fluid/eager/"
)
add_custom_target
(
eager_codegen
COMMAND
"
${
CMAKE_CURRENT_BINARY_DIR
}
/eager_generator"
"
${
PADDLE_SOURCE_DIR
}
/paddle/fluid/eager/api/generated/fluid_generated"
DEPENDS eager_generator
VERBATIM
)
paddle/fluid/eager/auto_code_generator/eager_generator.cc
0 → 100644
浏览文件 @
fcd44b54
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <fstream>
#include <iostream>
#include <string>
#include <unordered_set>
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"
static
std
::
unordered_set
<
std
::
string
>
operators_to_skip
=
{
"fused_elemwise_add_activation"
,
// No Default Attr
"fused_elemwise_activation"
,
// No Default Attr
"reverse"
,
// Attr Error
"flip"
,
// Attr Error
"cast"
,
// Attr Error
"sum"
,
"minus"
,
// Multiple ops_
"pull_sparse"
,
"pull_box_extended_sparse"
,
"pull_sparse_v2"
,
"pull_box_sparse"
,
"fused_attention"
,
"diag_v2"
,
};
/*
static std::unordered_set<std::string> operators_to_codegen = {
"sigmoid", "matmul_v2", "reduce_sum", "elementwise_add",
"share_buffer", "var_conv_2d", "split"};
*/
static
std
::
unordered_set
<
std
::
string
>
skipped_operators
=
{};
namespace
paddle
{
namespace
framework
{
static
std
::
string
AttrTypeToString
(
const
proto
::
AttrType
&
type
)
{
std
::
string
ret
;
switch
(
type
)
{
case
(
proto
::
AttrType
::
INT
):
{
ret
=
"int"
;
break
;
}
case
(
proto
::
AttrType
::
FLOAT
):
{
ret
=
"float"
;
break
;
}
case
(
proto
::
AttrType
::
STRING
):
{
ret
=
"std::string&"
;
break
;
}
case
(
proto
::
AttrType
::
INTS
):
{
ret
=
"std::vector<int>&"
;
break
;
}
case
(
proto
::
AttrType
::
FLOATS
):
{
ret
=
"std::vector<float>&"
;
break
;
}
case
(
proto
::
AttrType
::
STRINGS
):
{
ret
=
"std::vector<std::string>&"
;
break
;
}
case
(
proto
::
AttrType
::
BOOLEAN
):
{
ret
=
"bool"
;
break
;
}
case
(
proto
::
AttrType
::
BOOLEANS
):
{
ret
=
"std::vector<bool>&"
;
break
;
}
case
(
proto
::
AttrType
::
LONG
):
{
ret
=
"int64_t"
;
break
;
}
case
(
proto
::
AttrType
::
LONGS
):
{
ret
=
"std::vector<int64_t>&"
;
break
;
}
case
(
proto
::
AttrType
::
BLOCK
):
{
ret
=
"paddle::framework::BlockDesc*"
;
break
;
}
case
(
proto
::
AttrType
::
BLOCKS
):
{
ret
=
"std::vector<paddle::framework::BlockDesc*>&"
;
break
;
}
case
(
proto
::
AttrType
::
FLOAT64S
):
{
ret
=
"std::vector<double>&"
;
break
;
}
default:
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"Unable to recognize AttrType: %d"
,
type
));
}
}
return
ret
;
}
template
<
typename
T
>
static
std
::
string
GetAttrValue
(
const
framework
::
Attribute
&
attr
,
bool
is_vector
)
{
std
::
string
val
=
""
;
if
(
is_vector
)
{
val
+=
"{"
;
for
(
auto
x
:
BOOST_GET_CONST
(
std
::
vector
<
T
>
,
attr
))
{
val
+=
std
::
to_string
(
x
)
+
","
;
}
if
(
val
.
size
()
>
1
)
val
.
pop_back
();
val
+=
"}"
;
}
else
{
val
=
std
::
to_string
(
BOOST_GET_CONST
(
T
,
attr
));
}
return
val
;
}
static
std
::
pair
<
std
::
string
,
std
::
string
>
GetAttrType
(
const
framework
::
Attribute
&
attr
,
bool
is_arg
)
{
std
::
string
ret
=
""
;
std
::
string
val
=
""
;
size_t
variant_pos
=
attr
.
which
();
switch
(
variant_pos
)
{
case
(
1
):
{
ret
=
"int"
;
val
=
GetAttrValue
<
int
>
(
attr
,
false
);
break
;
}
case
(
2
):
{
ret
=
"float"
;
val
=
GetAttrValue
<
float
>
(
attr
,
false
);
break
;
}
case
(
3
):
{
ret
=
"std::string"
;
if
(
is_arg
)
ret
+=
"&"
;
val
=
"
\"
"
+
BOOST_GET_CONST
(
std
::
string
,
attr
)
+
"
\"
"
;
break
;
}
case
(
4
):
{
ret
=
"std::vector<int>"
;
if
(
is_arg
)
ret
+=
"&"
;
val
=
GetAttrValue
<
int
>
(
attr
,
true
);
break
;
}
case
(
5
):
{
ret
=
"std::vector<float>"
;
if
(
is_arg
)
ret
+=
"&"
;
val
=
GetAttrValue
<
float
>
(
attr
,
true
);
break
;
}
case
(
6
):
{
ret
=
"std::vector<std::string>"
;
if
(
is_arg
)
ret
+=
"&"
;
val
+=
"{"
;
for
(
auto
x
:
BOOST_GET_CONST
(
std
::
vector
<
std
::
string
>
,
attr
))
{
val
+=
"
\"
"
+
x
+
"
\"
"
+
","
;
}
if
(
val
.
size
()
>
1
)
val
.
pop_back
();
val
+=
"};"
;
break
;
}
case
(
7
):
{
ret
=
"bool"
;
val
=
GetAttrValue
<
bool
>
(
attr
,
false
);
break
;
}
case
(
8
):
{
ret
=
"std::vector<bool>"
;
if
(
is_arg
)
ret
+=
"&"
;
val
=
GetAttrValue
<
bool
>
(
attr
,
true
);
break
;
}
case
(
9
):
{
ret
=
"BlockDesc*"
;
break
;
}
case
(
10
):
{
ret
=
"int64_t"
;
val
=
GetAttrValue
<
int64_t
>
(
attr
,
false
);
break
;
}
case
(
11
):
{
ret
=
"std::vector<BlockDesc*>"
;
if
(
is_arg
)
ret
+=
"&"
;
break
;
}
case
(
12
):
{
ret
=
"std::vector<int64_t>"
;
if
(
is_arg
)
ret
+=
"&"
;
val
=
GetAttrValue
<
int64_t
>
(
attr
,
true
);
break
;
}
case
(
13
):
{
ret
=
"std::vector<double>"
;
if
(
is_arg
)
ret
+=
"&"
;
val
=
GetAttrValue
<
double
>
(
attr
,
true
);
break
;
}
default:
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"Unable to recognize AttrType: %d"
,
variant_pos
));
}
}
return
{
ret
,
val
};
}
static
void
SlotNameMatching
(
const
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>>&
grad_map
,
const
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>>&
fwd_ins
,
const
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>>&
fwd_outs
,
std
::
map
<
std
::
string
,
std
::
string
>*
grad_fwd_slotname_map_ptr
,
std
::
map
<
std
::
string
,
std
::
string
>*
grad_grad_slotname_map_ptr
)
{
std
::
map
<
std
::
string
,
std
::
string
>&
grad_fwd_slotname_map
=
*
grad_fwd_slotname_map_ptr
;
std
::
map
<
std
::
string
,
std
::
string
>&
grad_grad_slotname_map
=
*
grad_grad_slotname_map_ptr
;
for
(
const
auto
&
iter
:
grad_map
)
{
const
std
::
string
&
grad_slot_name
=
iter
.
first
;
const
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>&
grad_vars
=
iter
.
second
;
// Find matching fwd_slot_name
bool
found_matching
=
false
;
for
(
const
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>&
grad_var
:
grad_vars
)
{
for
(
const
auto
&
fwd_iter
:
fwd_ins
)
{
const
std
::
string
&
fwd_slot_name
=
fwd_iter
.
first
;
const
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>&
fwd_vars
=
fwd_iter
.
second
;
for
(
const
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>&
fwd_var
:
fwd_vars
)
{
if
(
grad_var
==
fwd_var
)
{
if
(
grad_fwd_slotname_map
.
count
(
grad_slot_name
)
&&
grad_fwd_slotname_map
[
grad_slot_name
]
!=
fwd_slot_name
)
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"grad_slot_name %s matches both %s and %s fwd_slot_name"
,
grad_slot_name
,
grad_fwd_slotname_map
[
grad_slot_name
],
fwd_slot_name
));
}
grad_fwd_slotname_map
[
grad_slot_name
]
=
fwd_slot_name
;
found_matching
=
true
;
}
if
(
fwd_var
->
GetGradVar
()
&&
grad_var
==
fwd_var
->
GetGradVar
())
{
if
(
grad_grad_slotname_map
.
count
(
grad_slot_name
)
&&
grad_grad_slotname_map
[
grad_slot_name
]
!=
fwd_slot_name
)
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"grad_slot_name %s matches both %s and %s fwd_slot_name"
,
grad_slot_name
,
grad_grad_slotname_map
[
grad_slot_name
],
fwd_slot_name
));
}
grad_grad_slotname_map
[
grad_slot_name
]
=
fwd_slot_name
;
found_matching
=
true
;
}
}
}
for
(
const
auto
&
fwd_iter
:
fwd_outs
)
{
const
std
::
string
&
fwd_slot_name
=
fwd_iter
.
first
;
const
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>&
fwd_vars
=
fwd_iter
.
second
;
for
(
const
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>&
fwd_var
:
fwd_vars
)
{
if
(
grad_var
==
fwd_var
)
{
if
(
grad_fwd_slotname_map
.
count
(
grad_slot_name
)
&&
grad_fwd_slotname_map
[
grad_slot_name
]
!=
fwd_slot_name
)
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"grad_slot_name %s matches both %s and %s fwd_slot_name"
,
grad_slot_name
,
grad_fwd_slotname_map
[
grad_slot_name
],
fwd_slot_name
));
}
grad_fwd_slotname_map
[
grad_slot_name
]
=
fwd_slot_name
;
found_matching
=
true
;
}
if
(
fwd_var
->
GetGradVar
()
&&
grad_var
==
fwd_var
->
GetGradVar
())
{
if
(
grad_grad_slotname_map
.
count
(
grad_slot_name
)
&&
grad_grad_slotname_map
[
grad_slot_name
]
!=
fwd_slot_name
)
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"grad_slot_name %s matches both %s and %s fwd_slot_name"
,
grad_slot_name
,
grad_grad_slotname_map
[
grad_slot_name
],
fwd_slot_name
));
}
grad_grad_slotname_map
[
grad_slot_name
]
=
fwd_slot_name
;
found_matching
=
true
;
}
}
}
}
if
(
!
found_matching
)
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"Found no matching fwd_slot_name for grad_slot_name: %s"
,
grad_slot_name
));
}
else
{
std
::
string
fwd_slot_name
=
grad_grad_slotname_map
.
count
(
grad_slot_name
)
?
grad_grad_slotname_map
[
grad_slot_name
]
:
grad_fwd_slotname_map
[
grad_slot_name
];
VLOG
(
6
)
<<
"Found matching fwd_slot_name: "
<<
fwd_slot_name
<<
" for grad_slot_name: "
<<
grad_slot_name
;
}
}
}
static
bool
CheckOpProto
(
proto
::
OpProto
*
op_proto
)
{
if
(
op_proto
==
nullptr
)
{
return
false
;
}
const
std
::
string
&
op_type
=
op_proto
->
type
();
// Skip ooerator which is not inherit form OperatorWithKernel, like while,
// since only OperatorWithKernel can run in dygraph mode.
auto
&
all_kernels
=
paddle
::
framework
::
OperatorWithKernel
::
AllOpKernels
();
if
(
!
all_kernels
.
count
(
op_type
))
{
return
false
;
}
// Only handle matmul_v2 for now
VLOG
(
1
)
<<
"------ Analyzing Op ------: "
<<
op_type
;
// if (!operators_to_codegen.count(op_type)) return false;
if
(
operators_to_skip
.
count
(
op_type
))
return
false
;
return
true
;
}
/* -------------------------------- */
/* --------- Collect Info --------- */
/* -------------------------------- */
static
bool
CollectInformationFromOpInfo
(
const
paddle
::
framework
::
OpInfo
&
op_info
,
std
::
vector
<
paddle
::
framework
::
AttributeMap
>*
grad_node_default_attr_maps
,
std
::
vector
<
std
::
string
>*
grad_op_types
,
std
::
unordered_map
<
std
::
string
,
size_t
>*
fwd_inputs_name_pos_map
,
std
::
unordered_map
<
std
::
string
,
size_t
>*
fwd_outputs_name_pos_map
,
std
::
map
<
std
::
string
,
std
::
string
>*
grad_outs_slotname_map
,
std
::
map
<
std
::
string
,
std
::
string
>*
grad_ins_fwd_slotname_map
,
std
::
map
<
std
::
string
,
std
::
string
>*
grad_ins_grad_slotname_map
,
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>>*
grad_ins
,
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>>*
grad_outs
)
{
const
proto
::
OpProto
&
op_proto
=
*
op_info
.
proto_
;
const
std
::
string
&
op_type
=
op_proto
.
type
();
std
::
vector
<
int64_t
>
dims
=
{
1
,
1
,
1
,
1
};
/* ------ Prepare "ins" ------ */
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VarBase
>>>
ins
;
for
(
const
proto
::
OpProto
::
Var
&
input
:
op_proto
.
inputs
())
{
const
std
::
string
&
in_name
=
input
.
name
();
// Handle dispensable input:
// 1. At python level, dispensable input will be detected at Python-C
// interface and filled with an empty vector
// 2. At C++ level, customers should always pass an empty vector for any
// dispensable input
// 3. During further lowering, there will always be a placeholder VarBase
// in ins/outs no matter whether it's dispensable or not
// As a result, we always create input VarBase regardless of its
// dispensability.
// Handle duplicable input: list(VarBase) or VarBase
// We dont know the exact number of inputs expected,
// but we only need to identify the slot name order,
// therefore fill in 1 single input VarBase is enough in this scenario
ins
[
in_name
]
=
{
std
::
shared_ptr
<
paddle
::
imperative
::
VarBase
>
(
new
paddle
::
imperative
::
VarBase
(
"auto_"
+
in_name
))};
ins
[
in_name
][
0
]
->
SetOverridedStopGradient
(
false
);
ins
[
in_name
][
0
]
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
}
VLOG
(
6
)
<<
"Prepared Forward Ins Map, size = "
<<
ins
.
size
();
/* ------ Prepare "outs" ------ */
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VarBase
>>>
outs
;
for
(
const
proto
::
OpProto
::
Var
&
output
:
op_proto
.
outputs
())
{
const
std
::
string
&
out_name
=
output
.
name
();
// We always create output VarBase regardless of its dispensability.
// We dont know the exact number of outputs during code generation,
// however, simply identifying the slot name order would be enough
outs
[
out_name
]
=
{
std
::
shared_ptr
<
paddle
::
imperative
::
VarBase
>
(
new
paddle
::
imperative
::
VarBase
(
"auto_"
+
out_name
))};
outs
[
out_name
][
0
]
->
SetOverridedStopGradient
(
false
);
outs
[
out_name
][
0
]
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
}
VLOG
(
6
)
<<
"Prepared Forward Outs Map, size = "
<<
outs
.
size
();
framework
::
AttributeMap
attrs
;
paddle
::
framework
::
AttributeMap
default_attrs
;
auto
*
attr_checker
=
op_info
.
Checker
();
if
(
attr_checker
)
{
attr_checker
->
Check
(
&
attrs
,
true
,
/*only_check_exist_value=*/
true
);
default_attrs
=
attr_checker
->
GetDefaultAttrMap
();
}
else
{
VLOG
(
6
)
<<
"Detected Null Attribute Checker, use empty default_attrs"
;
}
VLOG
(
6
)
<<
"Prepared Default Attributes Map, size = "
<<
default_attrs
.
size
();
/* ---------------------------- */
/* --------- Backward --------- */
/* ---------------------------- */
/* ------ Fwd paddle::imperative::VariableWrapper Map ------ */
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>>
fwd_ins
;
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>>
fwd_outs
;
for
(
const
auto
&
iter
:
ins
)
{
fwd_ins
[
iter
.
first
]
=
{};
for
(
const
std
::
shared_ptr
<
paddle
::
imperative
::
VarBase
>&
var_base
:
iter
.
second
)
{
fwd_ins
[
iter
.
first
].
push_back
(
var_base
->
SharedVar
());
}
}
for
(
const
auto
&
iter
:
outs
)
{
fwd_outs
[
iter
.
first
]
=
{};
for
(
const
std
::
shared_ptr
<
paddle
::
imperative
::
VarBase
>&
var_base
:
iter
.
second
)
{
fwd_outs
[
iter
.
first
].
push_back
(
var_base
->
SharedVar
());
}
}
VLOG
(
6
)
<<
"Constructed Forward paddle::imperative::VariableWrapper Map"
;
/* ------ Run GradOpMaker ------ */
if
(
!
op_info
.
dygraph_grad_op_maker_
)
{
VLOG
(
6
)
<<
op_type
<<
" has no GradOpMaker, skip it"
;
skipped_operators
.
insert
(
op_type
);
return
false
;
}
std
::
shared_ptr
<
paddle
::
imperative
::
GradOpNode
>
grad_node
=
op_info
.
dygraph_grad_op_maker_
(
op_type
,
ins
,
outs
,
attrs
,
default_attrs
,
{});
if
(
!
grad_node
)
{
VLOG
(
6
)
<<
"Got nullptr GradOpNode for "
<<
op_type
<<
" likely registered EmptyGradOpMaker, skip it"
;
skipped_operators
.
insert
(
op_type
);
return
false
;
}
if
(
grad_node
->
size
()
>
1
)
{
// Backward attributes can be super complicated
VLOG
(
6
)
<<
"Skip GradOpNode with multiple OpBases for now: "
<<
op_type
;
skipped_operators
.
insert
(
op_type
);
return
false
;
}
VLOG
(
6
)
<<
"Prepared GradOpNode"
;
/* ---- Collect Default Attr Map ---- */
for
(
auto
iter
=
grad_node
->
begin
();
iter
<
grad_node
->
end
();
iter
++
)
{
// Each OpBase
paddle
::
imperative
::
OpBase
&
op_base
=
*
iter
;
grad_node_default_attr_maps
->
push_back
(
op_base
.
DefaultAttrsMap
());
grad_op_types
->
push_back
(
op_base
.
Type
());
}
/* ------ Get Grad ins/outs ---- */
// In case of multiple OpBase, stitch all the respective ins/outs into one
VLOG
(
6
)
<<
"In function size: "
<<
grad_node
->
size
();
for
(
auto
iter
=
grad_node
->
begin
();
iter
<
grad_node
->
end
();
iter
++
)
{
const
paddle
::
imperative
::
OpBase
&
op_base
=
*
iter
;
const
std
::
map
<
std
::
string
,
paddle
::
imperative
::
SavedVariableWrapperList
>&
g_ins
=
op_base
.
GetInsMap
();
const
std
::
map
<
std
::
string
,
paddle
::
imperative
::
SavedVariableWrapperList
>&
g_outs
=
op_base
.
GetOutsMap
();
for
(
const
auto
&
it
:
g_ins
)
{
if
(
!
grad_ins
->
count
(
it
.
first
))
(
*
grad_ins
)[
it
.
first
]
=
{};
for
(
auto
vw_iter
=
it
.
second
.
begin
();
vw_iter
!=
it
.
second
.
end
();
vw_iter
++
)
{
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>
vw
=
*
vw_iter
;
(
*
grad_ins
)[
it
.
first
].
push_back
(
vw
);
}
}
for
(
const
auto
&
it
:
g_outs
)
{
if
(
!
grad_outs
->
count
(
it
.
first
))
(
*
grad_outs
)[
it
.
first
]
=
{};
for
(
auto
vw_iter
=
it
.
second
.
begin
();
vw_iter
!=
it
.
second
.
end
();
vw_iter
++
)
{
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>
vw
=
*
vw_iter
;
(
*
grad_outs
)[
it
.
first
].
push_back
(
vw
);
}
}
}
/* ------ Slot Name Matching ---- */
// grad_ins -> fwd_ins, fwd_outs
SlotNameMatching
(
*
grad_ins
,
fwd_ins
,
fwd_outs
,
grad_ins_fwd_slotname_map
,
grad_ins_grad_slotname_map
);
VLOG
(
6
)
<<
"Finished Slotname Matching for Grad_Ins"
;
// grad_outs -> fwd_ins, fwd_outs
SlotNameMatching
(
*
grad_outs
,
fwd_ins
,
fwd_outs
,
grad_outs_slotname_map
,
grad_outs_slotname_map
);
VLOG
(
6
)
<<
"Finished Slotname Matching for Grad_Outs"
;
/* ------ Maping forward slot name to fwd position ------ */
size_t
in_pos
=
0
;
for
(
const
auto
&
iter
:
ins
)
{
VLOG
(
6
)
<<
"Mapping input tensor: "
<<
iter
.
first
<<
" To position: "
<<
in_pos
;
(
*
fwd_inputs_name_pos_map
)[
iter
.
first
]
=
in_pos
;
in_pos
++
;
}
size_t
out_pos
=
0
;
for
(
const
auto
&
iter
:
outs
)
{
VLOG
(
6
)
<<
"Mapping output tensor: "
<<
iter
.
first
<<
" To position: "
<<
out_pos
;
(
*
fwd_outputs_name_pos_map
)[
iter
.
first
]
=
out_pos
;
out_pos
++
;
}
return
true
;
}
/* --------------------------------------------------- */
/* --------- CodeGen: Forward GradNode Creation ------ */
/* --------------------------------------------------- */
static
std
::
string
GenerateGradNodeCreationContent
(
const
std
::
vector
<
paddle
::
framework
::
AttributeMap
>&
grad_node_default_attr_maps
,
const
std
::
unordered_map
<
std
::
string
,
size_t
>&
fwd_inputs_name_pos_map
,
const
std
::
unordered_map
<
std
::
string
,
size_t
>&
fwd_outputs_name_pos_map
,
const
std
::
map
<
std
::
string
,
std
::
string
>&
grad_ins_fwd_slotname_map
,
const
proto
::
OpProto
&
op_proto
)
{
VLOG
(
6
)
<<
"Generating GradNode Creation codes"
;
const
std
::
string
&
op_type
=
op_proto
.
type
();
// [Generation] Construct GradOpNode
// Run ComputeRequiredGrad
// If single output slotname and not duplicable,
// then generate: "egr::AutogradMeta* p_autograd_out =
// egr::EagerUtils::autograd_meta("op_proto->outputs()[0].name()")"
// TODO(zhanlve): in case of multiple slotname but none of which are
// duplicable,
// avoid constructing vector<AutogradMeta*>, generate seperate
// AutogradMeta* objects respectively.
std
::
string
get_autograd_meta_str
=
" // Prepare Autograd Meta
\n
"
;
for
(
const
proto
::
OpProto
::
Var
&
input
:
op_proto
.
inputs
())
{
const
std
::
string
&
input_name
=
input
.
name
();
const
std
::
string
&
input_autograd_name
=
"p_autograd_"
+
input_name
;
if
(
input
.
duplicable
())
{
const
char
*
GET_MULTI_AUTOGRAD_META_TEMPLATE
=
" std::vector<egr::AutogradMeta*> %s = "
"egr::EagerUtils::unsafe_autograd_meta(%s);
\n
"
;
get_autograd_meta_str
+=
paddle
::
string
::
Sprintf
(
GET_MULTI_AUTOGRAD_META_TEMPLATE
,
input_autograd_name
,
input_name
);
}
else
{
const
char
*
GET_SINGLE_AUTOGRAD_META_TEMPLATE
=
" egr::AutogradMeta& %s = "
"*egr::EagerUtils::unsafe_autograd_meta(%s);
\n
"
;
get_autograd_meta_str
+=
paddle
::
string
::
Sprintf
(
GET_SINGLE_AUTOGRAD_META_TEMPLATE
,
input_autograd_name
,
input_name
);
}
}
VLOG
(
6
)
<<
"Generated inputs autograd_meta"
;
// If single output slotname and not duplicable,
// then generate: "egr::AutogradMeta* p_autograd_out =
// egr::EagerUtils::autograd_meta("op_proto.outputs()[0].name()")"
// TODO(zhanlve): in case of multiple slotname but none of which are
// duplicable,
// avoid constructing vector<AutogradMeta*>, generate seperate
// AutogradMeta* objects respectively.
for
(
const
proto
::
OpProto
::
Var
&
output
:
op_proto
.
outputs
())
{
const
std
::
string
&
output_name
=
output
.
name
();
const
std
::
string
&
output_autograd_name
=
"p_autograd_"
+
output_name
;
if
(
output
.
duplicable
())
{
const
char
*
GET_MULTI_AUTOGRAD_META_TEMPLATE
=
" std::vector<egr::AutogradMeta*> %s = "
"egr::EagerUtils::multi_autograd_meta(&%s);
\n
"
;
get_autograd_meta_str
+=
paddle
::
string
::
Sprintf
(
GET_MULTI_AUTOGRAD_META_TEMPLATE
,
output_autograd_name
,
output_name
);
}
else
{
const
char
*
GET_SINGLE_AUTOGRAD_META_TEMPLATE
=
" egr::AutogradMeta& %s = "
"*egr::EagerUtils::autograd_meta(&%s);
\n
"
;
get_autograd_meta_str
+=
paddle
::
string
::
Sprintf
(
GET_SINGLE_AUTOGRAD_META_TEMPLATE
,
output_autograd_name
,
output_name
);
}
}
VLOG
(
6
)
<<
"Generated outputs autograd_meta"
;
std
::
string
prepare_autograd_meta_str
=
""
;
prepare_autograd_meta_str
+=
get_autograd_meta_str
;
prepare_autograd_meta_str
+=
"
\n
"
;
// [GradOpNode] GetTraceBackward
std
::
string
trace_backward_str
=
" bool trace_backward = egr::Controller::Instance().HasGrad();
\n
"
;
prepare_autograd_meta_str
+=
trace_backward_str
;
prepare_autograd_meta_str
+=
"
\n
"
;
// [GradOpNode] Generation
std
::
string
grad_node_creation_str
=
""
;
size_t
bwd_in_slot_num
=
op_proto
.
outputs
().
size
();
size_t
bwd_out_slot_num
=
op_proto
.
inputs
().
size
();
const
char
*
GRAD_OP_NODE_TEMPLATE
=
" auto grad_node = std::make_shared<GradNode%s>(%d, %d);
\n
"
;
grad_node_creation_str
+=
" // Create GradOpNode
\n
"
;
grad_node_creation_str
+=
paddle
::
string
::
Sprintf
(
GRAD_OP_NODE_TEMPLATE
,
op_type
,
bwd_in_slot_num
,
bwd_out_slot_num
);
grad_node_creation_str
+=
"
\n
"
;
VLOG
(
6
)
<<
"Generated GradOpNode construction"
;
// [GradOpNode] Set Attrs
grad_node_creation_str
+=
" // Set Attributes
\n
"
;
grad_node_creation_str
+=
" grad_node->SetAttrMap(std::move(attrs));
\n
"
;
grad_node_creation_str
+=
" grad_node->SetDefaultAttrMap(std::move(default_attrs));
\n
"
;
grad_node_creation_str
+=
"
\n
"
;
// [GradOpNode] Set TensorWrappers
grad_node_creation_str
+=
" // Set Tensor Wrappers
\n
"
;
for
(
auto
&
kv
:
grad_ins_fwd_slotname_map
)
{
const
std
::
string
&
tensor_wrapper_name
=
kv
.
second
;
const
char
*
SET_TENSOR_WRAPPER_TEMPLATE
=
" grad_node->SetTensorWrapper%s(%s);
\n
"
;
grad_node_creation_str
+=
paddle
::
string
::
Sprintf
(
SET_TENSOR_WRAPPER_TEMPLATE
,
tensor_wrapper_name
,
tensor_wrapper_name
);
}
grad_node_creation_str
+=
"
\n
"
;
VLOG
(
6
)
<<
"Generated SetTensorWrapper"
;
// [GradOpNode] SetGradOutMeta
// [GradOpNode] Add Edges
std
::
string
compute_require_grad_args
=
"trace_backward"
;
for
(
const
proto
::
OpProto
::
Var
&
input
:
op_proto
.
inputs
())
{
const
std
::
string
&
input_name
=
input
.
name
();
const
std
::
string
&
input_autograd_name
=
"p_autograd_"
+
input_name
;
compute_require_grad_args
+=
", &"
+
input_autograd_name
;
size_t
input_position
=
fwd_inputs_name_pos_map
.
at
(
input_name
);
const
char
*
SET_GRAD_OUT_META_TEMPLATE
=
" grad_node->SetGradOutMeta(%s, %d);
\n
"
;
grad_node_creation_str
+=
paddle
::
string
::
Sprintf
(
SET_GRAD_OUT_META_TEMPLATE
,
input_autograd_name
,
input_position
);
const
char
*
ADD_EDGES_TEMPLATE
=
" grad_node->AddEdges(%s, %d);
\n
"
;
grad_node_creation_str
+=
paddle
::
string
::
Sprintf
(
ADD_EDGES_TEMPLATE
,
input_autograd_name
,
input_position
);
}
// [GradOpNode] SetGradInMeta
// [AutogradMeta] SetOutRank
// [AutogradMeta] SetHistory
std
::
string
pass_stop_gradient_args
=
"false"
;
for
(
const
proto
::
OpProto
::
Var
&
output
:
op_proto
.
outputs
())
{
const
std
::
string
&
output_name
=
output
.
name
();
const
std
::
string
&
output_autograd_name
=
"p_autograd_"
+
output_name
;
pass_stop_gradient_args
+=
", &"
+
output_autograd_name
;
size_t
output_position
=
fwd_outputs_name_pos_map
.
at
(
output_name
);
const
char
*
SET_GRAD_IN_META_TEMPLATE
=
" grad_node->SetGradInMeta(%s, %d);
\n
"
;
grad_node_creation_str
+=
paddle
::
string
::
Sprintf
(
SET_GRAD_IN_META_TEMPLATE
,
output_autograd_name
,
output_position
);
const
char
*
SET_OUT_RANK_TEMPLATE
=
" egr::EagerUtils::SetOutRankWithSlot(&%s, %d);
\n
"
;
grad_node_creation_str
+=
paddle
::
string
::
Sprintf
(
SET_OUT_RANK_TEMPLATE
,
output_autograd_name
,
output_position
);
const
char
*
SET_HISTORY_TEMPLATE
=
" egr::EagerUtils::SetHistory(&%s, grad_node);
\n
"
;
grad_node_creation_str
+=
paddle
::
string
::
Sprintf
(
SET_HISTORY_TEMPLATE
,
output_autograd_name
);
}
VLOG
(
6
)
<<
"Generated SetGradIn/OutMeta"
;
// [Generation] GradNode Creation
const
char
*
GRAD_NODE_CREATION_TEMPLATE
=
" %s"
" bool require_any_grad = egr::ComputeRequireGrad(%s);
\n
"
" if(require_any_grad) {
\n
"
" egr::PassStopGradient(%s);
\n
"
"%s
\n
}"
;
std
::
string
grad_node_creation_body_str
=
paddle
::
string
::
Sprintf
(
GRAD_NODE_CREATION_TEMPLATE
,
prepare_autograd_meta_str
,
compute_require_grad_args
,
pass_stop_gradient_args
,
grad_node_creation_str
);
return
grad_node_creation_body_str
;
}
static
std
::
string
AppendUseOp
(
const
std
::
string
&
op_type
)
{
// [Generation] Append USE_OP
const
char
*
USE_OP_TEMPLATE
=
"USE_OP(%s);
\n
"
;
std
::
string
return_str
=
paddle
::
string
::
Sprintf
(
USE_OP_TEMPLATE
,
op_type
);
// Special Ops
if
(
op_type
==
"reduce_sum"
)
return_str
+=
paddle
::
string
::
Sprintf
(
USE_OP_TEMPLATE
,
"reduce_sum_grad"
);
return
return_str
;
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/eager/auto_code_generator/generate_file_structures.py
0 → 100644
浏览文件 @
fcd44b54
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
os
if
__name__
==
"__main__"
:
assert
len
(
sys
.
argv
)
==
2
eager_dir
=
sys
.
argv
[
1
]
op_list
=
[]
with
open
(
f
"
{
eager_dir
}
/auto_code_generator/op_list.txt"
,
"r"
)
as
f
:
for
line
in
f
:
line
=
str
(
line
.
strip
())
op_list
.
append
(
line
)
"""
paddle/fluid/eager
|- generated
| |- CMakeLists.txt
| | "add_subdirectory(forwards), add_subdirectory(nodes)"
|
| |- forwards
| |- op_name + "_dygraph.cc"
| |- CMakeLists.txt
| | "cc_library(dygraph_function SRCS op_name+"_dygraph.cc" DEPS ${eager_deps} ${fluid_deps} GLOB_OP_LIB)"
|
| |- nodes
| |- op_name + "_node.cc"
| |- op_name + "_node.h"
| |- CMakeLists.txt
| | "cc_library(dygraph_node SRCS op_name+"_node.cc" DEPS ${eager_deps} ${fluid_deps})"
|
| |- dygraph_forward_api.h
"""
# Directory Generation
generated_dir
=
os
.
path
.
join
(
eager_dir
,
"api/generated/fluid_generated"
)
forwards_dir
=
os
.
path
.
join
(
generated_dir
,
"forwards"
)
nodes_dir
=
os
.
path
.
join
(
generated_dir
,
"nodes"
)
dirs
=
[
generated_dir
,
forwards_dir
,
nodes_dir
]
for
directory
in
dirs
:
if
not
os
.
path
.
exists
(
directory
):
os
.
mkdir
(
directory
)
# Empty files
dygraph_forward_api_h_path
=
os
.
path
.
join
(
generated_dir
,
"dygraph_forward_api.h"
)
empty_files
=
[
dygraph_forward_api_h_path
]
for
op_name
in
op_list
:
empty_files
.
append
(
os
.
path
.
join
(
forwards_dir
,
op_name
+
"_dygraph.cc"
))
empty_files
.
append
(
os
.
path
.
join
(
nodes_dir
,
op_name
+
"_node.cc"
))
empty_files
.
append
(
os
.
path
.
join
(
nodes_dir
,
op_name
+
"_node.h"
))
for
path
in
empty_files
:
if
not
os
.
path
.
exists
(
path
):
open
(
path
,
'a'
).
close
()
# CMakeLists
nodes_level_cmakelist_path
=
os
.
path
.
join
(
nodes_dir
,
"CMakeLists.txt"
)
generated_level_cmakelist_path
=
os
.
path
.
join
(
generated_dir
,
"CMakeLists.txt"
)
forwards_level_cmakelist_path
=
os
.
path
.
join
(
forwards_dir
,
"CMakeLists.txt"
)
with
open
(
nodes_level_cmakelist_path
,
"w"
)
as
f
:
f
.
write
(
"cc_library(dygraph_node SRCS %s DEPS ${eager_deps} ${fluid_deps})
\n
"
%
" "
.
join
([
op_name
+
'_node.cc'
for
op_name
in
op_list
]))
f
.
write
(
"add_dependencies(dygraph_node eager_codegen)"
)
with
open
(
forwards_level_cmakelist_path
,
"w"
)
as
f
:
f
.
write
(
"cc_library(dygraph_function SRCS %s DEPS ${eager_deps} ${fluid_deps} ${GLOB_OP_LIB})
\n
"
%
" "
.
join
([
op_name
+
'_dygraph.cc'
for
op_name
in
op_list
]))
f
.
write
(
"add_dependencies(dygraph_function eager_codegen)"
)
with
open
(
generated_level_cmakelist_path
,
"w"
)
as
f
:
f
.
write
(
"add_subdirectory(forwards)
\n
add_subdirectory(nodes)"
)
paddle/fluid/eager/auto_code_generator/op_list.txt
0 → 100644
浏览文件 @
fcd44b54
sigmoid
matmul_v2
reduce_sum
elementwise_add
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录