Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fc9e1347
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fc9e1347
编写于
11月 15, 2018
作者:
X
xiaolil1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
revert conv for pr
上级
a4d8b919
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
113 addition
and
133 deletion
+113
-133
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+113
-133
未找到文件。
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
fc9e1347
...
...
@@ -18,8 +18,6 @@
#include <unordered_map>
#include <map>
#include "paddle/fluid/framework/data_layout_transform.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -118,6 +116,7 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
"@data-weights_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireResidualDataMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_residual_data_mem_p"
);
...
...
@@ -131,7 +130,7 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
this
->
AcquireDstMemoryFromPrimitive
(
dst_ptr
),
"@residual_data_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffSrcMemoryFromDataPrimitive
(
void
*
ptr
)
{
return
this
->
AcquireMemoryFromPrimitive
(
...
...
@@ -340,7 +339,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
bool
fuse_relu
=
ctx
.
Attr
<
bool
>
(
"fuse_relu"
);
bool
force_fp32_output
=
ctx
.
Attr
<
bool
>
(
"force_fp32_output"
);
bool
fuse_residual_conn
=
ctx
.
Attr
<
bool
>
(
"fuse_residual_connection"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
...
...
@@ -375,34 +373,31 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
src_tz
,
weights_tz
,
strides
,
paddings
,
dilations
,
groups
,
ctx
.
op
().
Output
(
"Output"
));
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
static
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
float
>
>>
scale_map
;
static
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
scale_map
;
//scale_map.insert({key_conv_pd,{1.0f}});
//scale_map[key_conv_pd]={0.1f};
bool
scale_reuse
=
tru
e
;
//
auto scale_in_key = key + "@scale_in";
//
auto scale_weights_key = key + "@scale_weights";
//
auto scale_out_key = key + "@scale_out";
//
auto output_shift_scale_key = key + "@output_shift_scale";
//
auto sum_scale_key = key + "@sum_scale";
//
auto scale_in_eltwise_key = key + "@scale_in_eltwise";
bool
scale_reuse
=
fals
e
;
auto
scale_in_key
=
key
+
"@scale_in"
;
auto
scale_weights_key
=
key
+
"@scale_weights"
;
auto
scale_out_key
=
key
+
"@scale_out"
;
auto
output_shift_scale_key
=
key
+
"@output_shift_scale"
;
auto
sum_scale_key
=
key
+
"@sum_scale"
;
auto
scale_in_eltwise_key
=
key
+
"@scale_in_eltwise"
;
std
::
vector
<
float
>
scale_in_data
;
std
::
vector
<
float
>
scale_out_data
;
std
::
vector
<
float
>
scale_weights_data
;
std
::
vector
<
float
>
scale_in_eltwise_data
=
{
1.0
f
}
;
std
::
vector
<
float
>
scale_in_eltwise_data
;
std
::
vector
<
float
>
output_shift_scale
;
std
::
vector
<
float
>
sum_scale
=
{
1.0
f
};
std
::
vector
<
float
>
scale_bias_data
=
{
1.0
f
};
std
::
vector
<
std
::
vector
<
float
>>
none_scale
=
{{
0.0
f
}};
std
::
vector
<
std
::
vector
<
float
>>
scale_datas
(
7
,{
1.0
f
});
std
::
vector
<
float
>
none_scale
=
{
0
};
if
(
is_INT8
&&
GetScaleMap
(
scale_map
,
key
)
==
none_scale
){
scale_reuse
=
false
;
}
else
{
scale_datas
=
GetScaleMap
(
scale_map
,
key
);
if
(
is_INT8
&&
GetScaleMap
(
scale_map
,
scale_in_key
)
==
none_scale
){
scale_reuse
=
true
;
}
//std::cout<<"scale_reuse = "<<scale_reuse<<std::endl;
if
(
is_INT8
){
if
(
!
scale_reuse
){
if
(
scale_reuse
){
//std::cout<<"load scale!!!!!!!!"<<std::endl;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
scale_in_data
=
{
*
(
scale_in
->
data
<
float
>
())};
scale_weights_data
.
resize
(
count
);
...
...
@@ -411,8 +406,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
scale_weights_data
[
i
]
=*
(
scale_weights
->
data
<
float
>
()
+
i
);
}
scale_out_data
=
{
*
(
scale_out
->
data
<
float
>
())};
if
(
force_fp32_output
)
scale_out_data
[
0
]
=
1.0
;
output_shift_scale
.
resize
(
count
);
#pragma omp parallel for if (count > 1)
for
(
int
i
=
0
;
i
<
count
;
i
++
){
...
...
@@ -424,37 +417,37 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
if
(
fuse_residual_conn
){
scale_in_eltwise_data
=
{
*
(
scale_in_eltwise
->
data
<
float
>
())};
sum_scale
[
0
]
=
scale_out_data
[
0
]
/
scale_in_eltwise_data
[
0
];
SetScaleMap
(
scale_map
,
scale_in_eltwise_key
,
scale_in_eltwise_data
);
}
//scale reuse
scale_datas
[
0
]
=
scale_in_data
;
scale_datas
[
1
]
=
scale_in_eltwise_data
;
scale_datas
[
2
]
=
scale_weights_data
;
scale_datas
[
4
]
=
scale_out_data
;
scale_datas
[
5
]
=
output_shift_scale
;
scale_datas
[
6
]
=
sum_scale
;
SetScaleMap
(
scale_map
,
scale_in_key
,
scale_in_data
);
SetScaleMap
(
scale_map
,
scale_weights_key
,
scale_weights_data
);
SetScaleMap
(
scale_map
,
scale_out_key
,
scale_out_data
);
SetScaleMap
(
scale_map
,
output_shift_scale_key
,
output_shift_scale
);
SetScaleMap
(
scale_map
,
sum_scale_key
,
sum_scale
);
}
else
{
scale_in_data
=
scale_datas
[
0
]
;
scale_out_data
=
scale_datas
[
3
]
;
scale_weights_data
=
scale_datas
[
2
]
;
scale_in_data
=
GetScaleMap
(
scale_map
,
scale_in_key
)
;
scale_out_data
=
GetScaleMap
(
scale_map
,
scale_out_key
)
;
scale_weights_data
=
GetScaleMap
(
scale_map
,
scale_weights_key
)
;
if
(
fuse_residual_conn
){
scale_in_eltwise_data
=
scale_datas
[
1
]
;
scale_in_eltwise_data
=
GetScaleMap
(
scale_map
,
scale_in_eltwise_key
)
;
}
output_shift_scale
=
scale_datas
[
5
];
sum_scale
=
scale_datas
[
6
];
output_shift_scale
=
GetScaleMap
(
scale_map
,
output_shift_scale_key
);
sum_scale
=
GetScaleMap
(
scale_map
,
sum_scale_key
);
//printf("pause!!!");
}
}
std
::
shared_ptr
<
mkldnn
::
memory
::
desc
>
user_src_md
;
std
::
shared_ptr
<
mkldnn
::
memory
::
desc
>
user_weights_md
;
std
::
vector
<
primitive
>
pipeline
;
user_src_md
.
reset
(
new
mkldnn
::
memory
::
desc
(
platform
::
MKLDNNMemDesc
(
{
src_tz
},
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
()),
input
->
format
())
));
user_weights_md
.
reset
(
new
mkldnn
::
memory
::
desc
(
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
(
g
==
1
)
?
mkldnn
::
memory
::
format
::
oihw
:
mkldnn
::
memory
::
format
::
goihw
))
);
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
()),
input
->
format
(
));
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
(
g
==
1
)
?
mkldnn
::
memory
::
format
::
oihw
:
mkldnn
::
memory
::
format
::
goihw
);
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
...
...
@@ -465,60 +458,53 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
auto
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
std
::
shared_ptr
<
mkldnn
::
memory
::
desc
>
src_md
;
std
::
shared_ptr
<
mkldnn
::
memory
::
desc
>
weights_md
;
std
::
shared_ptr
<
mkldnn
::
memory
::
desc
>
dst_md
;
if
(
is_INT8
){
src_md
.
reset
(
new
mkldnn
::
memory
::
desc
(
platform
::
MKLDNNMemDesc
(
src_tz
,
memory
::
data_type
::
u8
,
chosen_memory_format
)));
weights_md
.
reset
(
new
mkldnn
::
memory
::
desc
(
platform
::
MKLDNNMemDesc
(
weights_tz
,
memory
::
data_type
::
s8
,
chosen_memory_format
)));
auto
dst_dt
=
fuse_relu
?
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
unsigned
char
)))
:
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
signed
char
)));
if
(
fuse_residual_conn
){
auto
residual
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual
->
type
());
if
(
dst_dt
!=
residual_dt
)
dst_dt
=
residual_dt
;
}
if
(
force_fp32_output
)
dst_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
float
)));
dst_md
.
reset
(
new
mkldnn
::
memory
::
desc
(
platform
::
MKLDNNMemDesc
(
dst_tz
,
dst_dt
,
chosen_memory_format
)));
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
memory
::
data_type
::
u8
,
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
memory
::
data_type
::
s8
,
(
g
==
1
)
?
chosen_memory_format
:
mkldnn
::
memory
::
format
::
goihw
);
auto
dst_dt
=
fuse_relu
?
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
unsigned
char
)))
:
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
signed
char
)));
if
(
fuse_residual_conn
){
auto
residual
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual
->
type
());
if
(
dst_dt
!=
residual_dt
)
dst_dt
=
residual_dt
;
}
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
dst_dt
,
chosen_memory_format
);
// create a conv primitive descriptor and save it for usage in backward
if
(
bias
)
{
std
::
shared_ptr
<
mkldnn
::
memory
::
desc
>
bias_md
;
bias_md
.
reset
(
new
mkldnn
::
memory
::
desc
(
platform
::
MKLDNNMemDesc
(
bias_tz
,
memory
::
data_type
::
s32
,
memory
::
format
::
x
)));
conv_pd
=
ConvFwdPrimitiveDesc
(
*
src_md
,
*
weights_md
,
*
bias_md
,
*
dst_md
,
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
memory
::
data_type
::
s32
,
memory
::
format
::
x
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
,
output_shift_scale
,
sum_scale
[
0
],
is_test
);
}
else
{
conv_pd
=
ConvFwdPrimitiveDesc
(
*
src_md
,
*
weights_md
,
*
dst_md
,
strides
,
paddings
,
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
,
output_shift_scale
,
sum_scale
[
0
],
is_test
);
}
}
else
{
src_md
.
reset
(
new
mkldnn
::
memory
::
desc
(
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
float
>
(),
chosen_memory_format
)));
weights_md
.
reset
(
new
mkldnn
::
memory
::
desc
(
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
float
>
(),
chosen_memory_format
)));
dst_md
.
reset
(
new
mkldnn
::
memory
::
desc
(
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
float
>
(),
chosen_memory_format
)));
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
float
>
(),
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
float
>
(),
(
g
==
1
)
?
chosen_memory_format
:
mkldnn
::
memory
::
format
::
goihw
);
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
float
>
(),
chosen_memory_format
);
// create a conv primitive descriptor and save it for usage in backward
if
(
bias
)
{
std
::
shared_ptr
<
mkldnn
::
memory
::
desc
>
bias_md
;
bias_md
.
reset
(
new
mkldnn
::
memory
::
desc
(
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
float
>
(),
memory
::
format
::
x
)));
conv_pd
=
ConvFwdPrimitiveDesc
(
*
src_md
,
*
weights_md
,
*
bias_md
,
*
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
,
is_test
);
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
float
>
(),
memory
::
format
::
x
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
,
is_test
);
}
else
{
conv_pd
=
ConvFwdPrimitiveDesc
(
*
src_md
,
*
weights_md
,
*
dst_md
,
strides
,
paddings
,
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
,
is_test
);
}
}
...
...
@@ -527,10 +513,11 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
ConvMKLDNNHandler
handler
(
conv_pd
,
dev_ctx
,
mkldnn_engine
,
key
);
// create mkldnn memory from input tensors (data/weights)
auto
user_src_memory_p
=
handler
.
AcquireSrcMemory
(
*
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
handler
.
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
.
AcquireWeightsMemory
(
*
user_weights_md
,
to_void_cast
<
float
>
(
filter_data
));
user_weights_md
,
to_void_cast
<
float
>
(
filter_data
));
// create reorder primitive if the input format is not the preferred one
auto
src_memory_p
=
...
...
@@ -555,47 +542,42 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
"same dimension sizes"
);
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
if
(
residual_param
->
format
()
!=
handler
.
GetDstFormat
())
{
std
::
shared_ptr
<
mkldnn
::
memory
::
desc
>
user_residual_md
;
auto
residual_data_tz
=
paddle
::
framework
::
vectorize2int
(
residual_param
->
dims
());
auto
residual_data_type
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
user_residual_md
.
reset
(
new
mkldnn
::
memory
::
desc
(
platform
::
MKLDNNMemDesc
(
residual_data_tz
,
residual_data_type
,
residual_param
->
format
())
))
;
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
residual_data_tz
,
residual_data_type
,
residual_param
->
format
());
if
(
is_INT8
){
PADDLE_ENFORCE
(
force_fp32_output
==
false
,
"Conv and sum does not support force_fp32_output"
);
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
auto
residual_param_data
=
residual_param
->
data
<
uint8_t
>
();
auto
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
*
user_residual_md
,
to_void_cast
<
uint8_t
>
(
residual_param_data
));
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
uint8_t
>
(
output_data
),
pipeline
);
auto
residual_param_data
=
residual_param
->
data
<
uint8_t
>
();
auto
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
user_residual_md
,
to_void_cast
<
uint8_t
>
(
residual_param_data
));
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
uint8_t
>
(
output_data
),
pipeline
);
}
else
{
auto
residual_param_data
=
residual_param
->
data
<
int8_t
>
();
auto
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
*
user_residual_md
,
to_void_cast
<
int8_t
>
(
residual_param_data
));
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
int8_t
*
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
int8_t
>
(
output_data
),
pipeline
);
auto
residual_param_data
=
residual_param
->
data
<
int8_t
>
();
auto
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
user_residual_md
,
to_void_cast
<
int8_t
>
(
residual_param_data
));
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
int8_t
*
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
int8_t
>
(
output_data
),
pipeline
);
if
(
fuse_relu
)
need_s8_to_u8
=
true
;
}
}
else
{
auto
residual_param_data
=
residual_param
->
data
<
T
>
();
auto
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
*
user_residual_md
,
to_void_cast
<
T
>
(
residual_param_data
));
user_residual_md
,
to_void_cast
<
T
>
(
residual_param_data
));
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
...
...
@@ -608,6 +590,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
output
->
ShareDataWith
(
*
residual_param
);
if
(
is_INT8
){
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
uint8_t
>
(
output_data
));
...
...
@@ -625,7 +608,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
}
}
else
{
if
(
is_INT8
&&
!
force_fp32_output
){
if
(
is_INT8
){
if
(
fuse_relu
){
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
dst_memory_p
=
...
...
@@ -645,29 +628,27 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
// create convolution op primitive
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
conv_p
;
std
::
vector
<
float
>
scale_bias_data
;
auto
scale_bias_key
=
key
+
"@scale_bias"
;
if
(
bias
)
{
const
float
*
bias_data
=
bias
->
data
<
float
>
();
std
::
shared_ptr
<
mkldnn
::
memory
::
desc
>
user_bias_md
;
user_bias_md
.
reset
(
new
mkldnn
::
memory
::
desc
(
platform
::
MKLDNNMemDesc
(
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
memory
::
format
::
x
)));
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
memory
::
format
::
x
);
auto
user_bias_memory_p
=
handler
.
AcquireBiasMemory
(
*
user_bias_md
,
to_void_cast
<
float
>
(
bias_data
));
handler
.
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
float
>
(
bias_data
));
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
;
if
(
is_INT8
){
int
mask_reorder
=
is_multi_channel
?
1
<<
0
:
1
;
if
(
!
scale_reuse
){
if
(
scale_reuse
){
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
scale_bias_data
.
resize
(
count
);
#pragma omp parallel for if (count > 1)
for
(
int
i
=
0
;
i
<
count
;
i
++
){
if
(
scale_weights_data
[
i
]
==
0.0
)
scale_bias_data
[
i
]
=
1.0
;
else
scale_bias_data
[
i
]
=
scale_in_data
[
0
]
*
scale_weights_data
[
i
];
scale_bias_data
[
i
]
=
scale_in_data
[
0
]
*
scale_weights_data
[
i
];
}
scale_datas
[
3
]
=
scale_bias_data
;
SetScaleMap
(
scale_map
,
scale_bias_key
,
scale_bias_data
)
;
}
else
{
scale_bias_data
=
scale_datas
[
3
]
;
scale_bias_data
=
GetScaleMap
(
scale_map
,
scale_bias_key
)
;
}
bias_memory_p
=
handler
.
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
,
is_test
,
is_INT8
,
scale_bias_data
,
mask_reorder
);
...
...
@@ -682,13 +663,12 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
dst_memory_p
);
}
SetScaleMap
(
scale_map
,
key
,
scale_datas
);
// push primitive to stream and wait until it's executed
pipeline
.
push_back
(
*
conv_p
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
if
(
need_s8_to_u8
&&
!
force_fp32_output
){
if
(
need_s8_to_u8
){
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
}
...
...
@@ -698,24 +678,24 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
private:
void
SetScaleMap
(
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
float
>
>>
&
scale_map
,
const
std
::
string
&
name
,
std
::
vector
<
std
::
vector
<
float
>>
scale_datas
)
const
{
void
SetScaleMap
(
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
&
scale_map
,
const
std
::
string
&
name
,
std
::
vector
<
float
>
scale_data
)
const
{
auto
it
=
scale_map
.
find
(
name
);
if
(
it
==
scale_map
.
end
())
{
scale_map
[
name
]
=
scale_data
s
;
// create new blob
scale_map
[
name
]
=
scale_data
;
// create new blob
}
else
{
(
*
it
).
second
=
scale_data
s
;
// set data to existing blob
(
*
it
).
second
=
scale_data
;
// set data to existing blob
}
return
;
}
std
::
vector
<
std
::
vector
<
float
>>
GetScaleMap
(
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
float
>>>
scale_map
,
std
::
vector
<
float
>
GetScaleMap
(
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
&
scale_map
,
const
std
::
string
&
name
)
const
{
auto
it
=
scale_map
.
find
(
name
);
if
(
it
!=
scale_map
.
end
())
{
return
(
*
it
).
second
;
}
return
{
{
0.0
f
}
};
return
{
0
};
}
mkldnn
::
primitive_attr
CreatePostOps
(
bool
fuse_relu
,
bool
fuse_residual_conn
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录