Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fc701369
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fc701369
编写于
12月 17, 2021
作者:
Y
Yuang Liu
提交者:
GitHub
12月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[fleet_executor] run time graph on python side (#38164)
上级
e097a748
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
279 addition
and
8 deletion
+279
-8
paddle/fluid/distributed/fleet_executor/fleet_executor.cc
paddle/fluid/distributed/fleet_executor/fleet_executor.cc
+17
-0
paddle/fluid/distributed/fleet_executor/task_node.cc
paddle/fluid/distributed/fleet_executor/task_node.cc
+23
-1
paddle/fluid/distributed/fleet_executor/task_node.h
paddle/fluid/distributed/fleet_executor/task_node.h
+7
-2
paddle/fluid/pybind/bind_fleet_executor.cc
paddle/fluid/pybind/bind_fleet_executor.cc
+8
-1
python/paddle/distributed/fleet/fleet_executor_utils.py
python/paddle/distributed/fleet/fleet_executor_utils.py
+203
-0
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+19
-3
python/paddle/fluid/tests/unittests/test_fleet_executor.py
python/paddle/fluid/tests/unittests/test_fleet_executor.py
+2
-1
未找到文件。
paddle/fluid/distributed/fleet_executor/fleet_executor.cc
浏览文件 @
fc701369
...
...
@@ -17,6 +17,9 @@
#include "paddle/fluid/distributed/fleet_executor/message_bus.h"
#include "paddle/fluid/distributed/fleet_executor/runtime_graph.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
...
...
@@ -38,16 +41,30 @@ void FleetExecutor::Init(
const
platform
::
Place
&
place
,
const
std
::
vector
<
TaskNode
*>&
task_nodes
,
const
std
::
unordered_map
<
int64_t
,
int64_t
>&
task_id_to_rank
)
{
if
(
task_nodes
.
size
()
==
0
)
{
LOG
(
INFO
)
<<
"fleet executor will use c++ side scheduler construction."
;
runtime_graph_
=
std
::
make_shared
<
RuntimeGraph
>
(
program_desc
,
exe_desc_
);
}
else
{
LOG
(
INFO
)
<<
"fleet executor has been set dependency on python side."
;
// TODO(fleet_exe devs): the unused_vars should be got from run time graph
std
::
vector
<
std
::
unique_ptr
<
framework
::
OperatorBase
>>
ops
;
for
(
auto
task_node
:
task_nodes
)
{
for
(
auto
op
:
task_node
->
ops
())
{
ops
.
emplace_back
(
std
::
unique_ptr
<
framework
::
OperatorBase
>
(
op
));
}
}
auto
unused_vars
=
framework
::
GetUnusedVars
(
program_desc
.
Block
(
0
),
ops
,
{});
runtime_graph_
=
std
::
make_shared
<
RuntimeGraph
>
();
std
::
unordered_map
<
int64_t
,
TaskNode
*>
interceptor_id_to_task
;
for
(
auto
task_node
:
task_nodes
)
{
task_node
->
SetUnusedVars
(
unused_vars
);
int64_t
interceptor_id
=
task_node
->
task_id
();
interceptor_id_to_task
.
emplace
(
interceptor_id
,
task_node
);
}
runtime_graph_
->
SetInterceptorIdToRank
(
task_id_to_rank
);
runtime_graph_
->
SetInterceptorIdToNode
(
interceptor_id_to_task
);
for
(
auto
&
unique_op
:
ops
)
{
unique_op
.
release
();
}
}
root_scope_
=
scope
;
place_
=
place
;
...
...
paddle/fluid/distributed/fleet_executor/task_node.cc
浏览文件 @
fc701369
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
...
...
@@ -39,7 +40,28 @@ TaskNode::TaskNode(const framework::ProgramDesc& program, int64_t rank,
}
}
TaskNode
::
TaskNode
(
int32_t
role
,
const
std
::
vector
<
OperatorBase
*>&
ops
,
TaskNode
::
TaskNode
(
int32_t
role
,
const
std
::
vector
<
framework
::
OpDesc
*>&
op_descs
,
int64_t
rank
,
int64_t
task_id
,
int64_t
max_run_times
,
int64_t
max_slot_nums
)
:
role_
(
role
),
rank_
(
rank
),
task_id_
(
task_id
),
max_run_times_
(
max_run_times
),
max_slot_nums_
(
max_slot_nums
)
{
if
(
op_descs
.
empty
())
{
return
;
}
for
(
const
auto
&
desc
:
op_descs
)
{
ops_vec_
.
emplace_back
(
framework
::
OpRegistry
::
CreateOp
(
*
desc
));
}
for
(
const
auto
&
op
:
ops_vec_
)
{
ops_
.
emplace_back
(
op
.
get
());
}
}
TaskNode
::
TaskNode
(
int32_t
role
,
const
std
::
vector
<
framework
::
OperatorBase
*>&
ops
,
int64_t
rank
,
int64_t
task_id
,
int64_t
max_run_times
,
int64_t
max_slot_nums
)
:
ops_
(
ops
),
...
...
paddle/fluid/distributed/fleet_executor/task_node.h
浏览文件 @
fc701369
...
...
@@ -25,6 +25,7 @@
namespace
paddle
{
namespace
framework
{
class
OperatorBase
;
class
OpDesc
;
}
namespace
distributed
{
...
...
@@ -33,8 +34,12 @@ class TaskNode final {
using
OperatorBase
=
paddle
::
framework
::
OperatorBase
;
TaskNode
(
int32_t
role
,
int64_t
rank
,
int64_t
task_id
,
int64_t
max_run_times
,
int64_t
max_slot_nums
);
TaskNode
(
int32_t
role
,
const
std
::
vector
<
OperatorBase
*>&
ops
,
int64_t
rank
,
int64_t
task_id
,
int64_t
max_run_times
,
int64_t
max_slot_nums
);
TaskNode
(
int32_t
role
,
const
std
::
vector
<
framework
::
OpDesc
*>&
op_descs
,
int64_t
rank
,
int64_t
task_id
,
int64_t
max_run_times
,
int64_t
max_slot_nums
);
TaskNode
(
int32_t
role
,
const
std
::
vector
<
framework
::
OperatorBase
*>&
ops
,
int64_t
rank
,
int64_t
task_id
,
int64_t
max_run_times
,
int64_t
max_slot_nums
);
TaskNode
(
const
paddle
::
framework
::
ProgramDesc
&
program
,
int64_t
rank
,
int64_t
max_run_times
,
int64_t
max_slot_nums
);
~
TaskNode
()
=
default
;
...
...
paddle/fluid/pybind/bind_fleet_executor.cc
浏览文件 @
fc701369
...
...
@@ -28,6 +28,7 @@ namespace pybind {
using
paddle
::
distributed
::
FleetExecutor
;
using
paddle
::
distributed
::
TaskNode
;
using
paddle
::
framework
::
OpDesc
;
void
BindFleetExecutor
(
py
::
module
*
m
)
{
py
::
class_
<
FleetExecutor
>
(
*
m
,
"FleetExecutor"
)
...
...
@@ -38,9 +39,15 @@ void BindFleetExecutor(py::module* m) {
py
::
class_
<
TaskNode
>
(
*
m
,
"TaskNode"
)
.
def
(
py
::
init
<
const
framework
::
ProgramDesc
&
,
int64_t
,
int64_t
,
int64_t
>
())
.
def
(
py
::
init
<
int32_t
,
const
std
::
vector
<
framework
::
OpDesc
*>&
,
int64_t
,
int64_t
,
int64_t
,
int64_t
>
())
.
def
(
"task_id"
,
&
TaskNode
::
task_id
)
.
def
(
"add_upstream_task"
,
&
TaskNode
::
AddUpstreamTask
)
.
def
(
"add_downstream_task"
,
&
TaskNode
::
AddDownstreamTask
);
.
def
(
"add_downstream_task"
,
&
TaskNode
::
AddDownstreamTask
)
.
def
(
"set_run_pre_steps"
,
&
TaskNode
::
SetRunPerSteps
)
.
def
(
"set_run_at_offset"
,
&
TaskNode
::
SetRunAtOffset
)
.
def
(
"set_type"
,
&
TaskNode
::
SetType
)
.
def
(
"role"
,
&
TaskNode
::
role
);
}
}
// namespace pybind
}
// namespace paddle
python/paddle/distributed/fleet/fleet_executor_utils.py
0 → 100644
浏览文件 @
fc701369
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.distributed.fleet.meta_optimizers.common
import
OpRole
,
OP_ROLE_KEY
from
paddle.fluid
import
core
class
CoordSys
:
"""
This class is used to mapping rank to (mp rank, sharding rank, pp rank, dp rank).
"""
def
__init__
(
self
,
dist_opt
):
self
.
dp_degree
=
dist_opt
.
get
(
'dp_degree'
,
1
)
self
.
pp_degree
=
dist_opt
.
get
(
'pp_degree'
,
1
)
self
.
sharding_degree
=
dist_opt
.
get
(
'sharding_degree'
,
1
)
self
.
mp_degree
=
dist_opt
.
get
(
'mp_degree'
,
1
)
def
_invalide_coord
(
self
,
coord
):
"""
Test the input coord is valid or not.
:param coord: The coord to be tested
:return: False if valid, True if invalid.
"""
return
coord
[
'mp_idx'
]
<
0
or
coord
[
'mp_idx'
]
>=
self
.
mp_degree
or
\
coord
[
'sharding_idx'
]
<
0
or
coord
[
'sharding_idx'
]
>=
self
.
sharding_degree
or
\
coord
[
'pp_idx'
]
<
0
or
coord
[
'pp_idx'
]
>=
self
.
pp_degree
or
\
coord
[
'dp_idx'
]
<
0
or
coord
[
'dp_idx'
]
>=
self
.
dp_degree
def
coord_to_rank
(
self
,
coord
):
"""
Map the input coord to it's corresponding rank.
:param coord: The coord to be converted
:return: The rank corresponding with the coord
"""
if
self
.
_invalide_coord
(
coord
):
return
-
1
return
int
(
coord
[
'dp_idx'
]
*
self
.
pp_degree
*
self
.
sharding_degree
*
self
.
mp_degree
+
\
coord
[
'pp_idx'
]
*
self
.
sharding_degree
*
self
.
mp_degree
+
\
coord
[
'sharding_idx'
]
*
self
.
mp_degree
+
coord
[
'mp_idx'
])
def
rank_to_coord
(
self
,
rank
):
"""
Map the input rank to it's corresponding coord
:param rank: The rank to be converted
:return: The coord corresponding with the rank
"""
mp_idx
=
rank
%
self
.
mp_degree
rank
//=
self
.
mp_degree
sharding_idx
=
rank
%
self
.
sharding_degree
rank
//=
self
.
sharding_degree
pp_idx
=
rank
%
self
.
pp_degree
rank
//=
self
.
pp_degree
dp_idx
=
rank
%
self
.
dp_degree
return
{
'mp_idx'
:
int
(
mp_idx
),
'sharding_idx'
:
int
(
sharding_idx
),
'pp_idx'
:
int
(
pp_idx
),
'dp_idx'
:
int
(
dp_idx
)
}
def
is_optimizer_op
(
op_role
):
return
op_role
==
int
(
OpRole
.
Optimize
)
def
is_lr_sched_op
(
op_role
):
return
op_role
==
int
(
OpRole
.
Optimize
.
LRSched
)
def
is_forward_op
(
op_role
):
return
(
op_role
==
int
(
OpRole
.
Forward
))
or
\
(
op_role
==
(
int
(
OpRole
.
Forward
)
^
int
(
OpRole
.
Loss
)))
def
is_backward_op
(
op_role
):
return
(
op_role
==
int
(
OpRole
.
Backward
))
or
\
(
op_role
==
(
int
(
OpRole
.
Backward
)
^
int
(
OpRole
.
Loss
)))
def
one_f_one_b
(
program
,
cur_rank
,
max_run_times
,
dist_opt
,
nrank
):
"""
Split the program to support 1f1b pipeline scheduler.
This funct will split the program based on the op_role.
The program will be split into four parts: lr_sched, fwd, bwd, opt.
And will create task nodes based on the four parts of the program.
:param program: The origin program.
:param cur_rank: Current rank (can be got from fleet.worker_index()).
:param max_run_times: Max run times for a micro batch. AKA number of micro steps.
:param dist_opt: The fleet_opt configured by user.
:param nrank: Number of workers (can be got from fleet.worker_num()).
:return:
task_nodes (list): four task nodes for current rank
task_id_to_rank (dict): task nodes' ids to it's corresponding rank
"""
print
(
"fleet executor will use python side 1f1b scheduler."
)
coord_sys
=
CoordSys
(
dist_opt
)
coord
=
coord_sys
.
rank_to_coord
(
cur_rank
)
max_slot_times
=
int
(
max_run_times
-
coord
[
'pp_idx'
])
num_of_functionality
=
4
def
create_task_node
(
role
,
ops
,
offset
,
node_type
):
task_id
=
int
(
cur_rank
*
num_of_functionality
+
offset
)
print
(
"Creating task node with role:"
,
role
,
"and with id:"
,
task_id
)
node
=
core
.
TaskNode
(
role
,
ops
,
cur_rank
,
task_id
,
max_run_times
,
max_slot_times
)
node
.
set_type
(
node_type
)
return
node
lr_ops
,
fwd_ops
,
bwd_ops
,
opt_ops
=
[],
[],
[],
[]
for
op
in
program
.
block
(
0
).
ops
:
# split the program based on the op_role
op_role
=
int
(
op
.
all_attrs
()[
OP_ROLE_KEY
])
if
is_lr_sched_op
(
op_role
):
lr_ops
.
append
(
op
.
desc
)
elif
is_optimizer_op
(
op_role
):
opt_ops
.
append
(
op
.
desc
)
elif
is_forward_op
(
op_role
):
fwd_ops
.
append
(
op
.
desc
)
elif
is_backward_op
(
op_role
):
bwd_ops
.
append
(
op
.
desc
)
else
:
raise
"The op role: "
+
str
(
op_role
)
+
" isn't one of LRSched, Forward, Backward or Optimizer."
# Create task nodes.
# The lr_sched and opt should be 'amplifier interceptor.
# The fwd and bwd should be 'compute interceptor'.
lr_task_node
=
create_task_node
(
int
(
OpRole
.
Optimize
.
LRSched
),
lr_ops
,
0
,
"Amplifier"
)
lr_task_node
.
set_run_pre_steps
(
max_run_times
)
fwd_task_node
=
create_task_node
(
int
(
OpRole
.
Forward
),
fwd_ops
,
1
,
"Compute"
)
bwd_task_node
=
create_task_node
(
int
(
OpRole
.
Backward
),
bwd_ops
,
2
,
"Compute"
)
opt_task_node
=
create_task_node
(
int
(
OpRole
.
Optimize
),
opt_ops
,
3
,
"Amplifier"
)
opt_task_node
.
set_run_pre_steps
(
max_run_times
)
opt_task_node
.
set_run_at_offset
(
max_run_times
-
1
)
task_nodes
=
[
lr_task_node
,
fwd_task_node
,
bwd_task_node
,
opt_task_node
]
# Generated the dependency based on this graph:
# lr(1:m) -> forward -> backward -> (m:1)optimize
# ↑ ↓
# lr(1:m) -> forward -> backward -> (m:1)optimize
# ↑ ↓
# lr(1:m) -> forward -> backward -> (m:1)optimize
upstream_coord
,
downstream_coord
=
coord
.
copy
(),
coord
.
copy
()
upstream_coord
[
'pp_idx'
]
=
upstream_coord
[
'pp_idx'
]
-
1
downstream_coord
[
'pp_idx'
]
=
downstream_coord
[
'pp_idx'
]
+
1
pp_upstream
=
coord_sys
.
coord_to_rank
(
upstream_coord
)
pp_downstream
=
coord_sys
.
coord_to_rank
(
downstream_coord
)
first_stage
=
(
pp_upstream
==
-
1
)
last_stage
=
(
pp_downstream
==
-
1
)
for
i
in
range
(
num_of_functionality
):
task_node
=
task_nodes
[
i
]
task_role
=
task_node
.
role
()
cur_id
=
int
(
cur_rank
*
num_of_functionality
+
i
)
prev_id
=
cur_id
-
1
next_id
=
cur_id
+
1
upstream_id
=
int
(
pp_upstream
*
num_of_functionality
+
i
)
downstream_id
=
int
(
pp_downstream
*
num_of_functionality
+
i
)
pp_buff_size
=
int
(
dist_opt
[
'pp_degree'
]
-
coord
[
'pp_idx'
])
ups
=
[]
downs
=
[]
if
not
is_lr_sched_op
(
task_role
):
buf_size
=
pp_buff_size
if
is_backward_op
(
task_role
)
else
2
ups
.
append
((
prev_id
,
buf_size
))
if
not
is_optimizer_op
(
task_role
):
buf_size
=
pp_buff_size
if
is_forward_op
(
task_role
)
else
2
downs
.
append
((
next_id
,
buf_size
))
if
is_forward_op
(
task_role
):
if
not
first_stage
:
ups
.
append
((
upstream_id
,
2
))
if
not
last_stage
:
downs
.
append
((
downstream_id
,
2
))
elif
is_backward_op
(
task_role
):
if
not
last_stage
:
ups
.
append
((
downstream_id
,
2
))
if
not
first_stage
:
downs
.
append
((
upstream_id
,
2
))
for
up
in
ups
:
print
(
"Task:"
,
cur_id
,
"'s upstream includes:"
,
up
[
0
])
task_node
.
add_upstream_task
(
up
[
0
],
up
[
1
])
for
down
in
downs
:
print
(
"Task:"
,
cur_id
,
"'s downstream includes:"
,
down
[
0
])
task_node
.
add_downstream_task
(
down
[
0
],
down
[
1
])
task_id_to_rank
=
{}
for
i
in
range
(
nrank
):
for
j
in
range
(
num_of_functionality
):
task_id_to_rank
[
int
(
i
*
num_of_functionality
+
j
)]
=
i
return
task_nodes
,
task_id_to_rank
python/paddle/fluid/executor.py
浏览文件 @
fc701369
...
...
@@ -1964,7 +1964,8 @@ class Executor(object):
trainer_endpoints_str
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
,
""
)
trainer_endpoints
=
trainer_endpoints_str
.
split
(
','
)
fleet_exe_desc
=
fleet_executor_desc_pb2
.
FleetExecutorDesc
()
fleet_exe_desc
.
cur_rank
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
0
))
cur_rank
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
0
))
fleet_exe_desc
.
cur_rank
=
cur_rank
nrank
=
len
(
trainer_endpoints
)
for
rank
,
endpoint
in
enumerate
(
trainer_endpoints
):
rank_info
=
fleet_executor_desc_pb2
.
RankInfo
()
...
...
@@ -1979,6 +1980,21 @@ class Executor(object):
fleet_exe_desc
.
num_micro_batches
=
fleet_opt
[
"num_micro_batches"
]
num_of_gpu
=
fleet_exe_desc
.
dp_degree
*
fleet_exe_desc
.
mp_degree
*
fleet_exe_desc
.
pp_degree
assert
nrank
==
num_of_gpu
,
"The number of rank is not equal to the number of gpu."
if
'python_side'
in
fleet_opt
:
strategy
=
fleet_opt
[
'python_side'
]
if
strategy
==
'1F1B'
:
from
paddle.distributed.fleet.fleet_executor_utils
import
one_f_one_b
tasks
,
task_id_to_rank
=
one_f_one_b
(
program
,
cur_rank
,
fleet_opt
.
get
(
'num_micro_batches'
,
1
),
fleet_opt
.
get
(
'dist_strategy'
,
{}),
nrank
)
# NOTE: have to hold these vars, otherwise will be destructed
fleet_opt
[
'tasks'
]
=
tasks
fleet_opt
[
'task_id_to_rank'
]
=
task_id_to_rank
else
:
raise
"Fleet_executor only supports 1F1B scheduler if you choose python side split, "
\
"but received "
+
str
(
strategy
)
+
"."
else
:
task_id_to_rank
=
fleet_opt
.
get
(
"task_id_to_rank"
,
{})
tasks
=
fleet_opt
.
get
(
"tasks"
,
[])
fleet_exe
=
core
.
FleetExecutor
(
fleet_exe_desc
.
SerializeToString
())
...
...
python/paddle/fluid/tests/unittests/test_fleet_executor.py
浏览文件 @
fc701369
...
...
@@ -33,7 +33,8 @@ class TestFleetExecutor(unittest.TestCase):
strategy
.
pipeline_configs
=
{
"accumulate_steps"
:
1
}
fleet_opt
=
{
"dist_strategy"
:
strategy
.
sharding_configs
,
"num_micro_batches"
:
strategy
.
pipeline_configs
[
"accumulate_steps"
]
"num_micro_batches"
:
strategy
.
pipeline_configs
[
"accumulate_steps"
],
"python_side"
:
"1F1B"
}
return
fleet_opt
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录