Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fb1e0c93
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fb1e0c93
编写于
10月 30, 2020
作者:
L
LielinJiang
提交者:
GitHub
10月 30, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make vision datasets return PIL.Image as default (#28264)
* return pil image as default according backend
上级
26ede6e0
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
291 addition
and
44 deletion
+291
-44
python/paddle/hapi/callbacks.py
python/paddle/hapi/callbacks.py
+19
-4
python/paddle/hapi/model.py
python/paddle/hapi/model.py
+36
-9
python/paddle/tests/test_callbacks.py
python/paddle/tests/test_callbacks.py
+6
-2
python/paddle/tests/test_dataset_cifar.py
python/paddle/tests/test_dataset_cifar.py
+46
-8
python/paddle/tests/test_dataset_voc.py
python/paddle/tests/test_dataset_voc.py
+24
-0
python/paddle/tests/test_datasets.py
python/paddle/tests/test_datasets.py
+40
-2
python/paddle/vision/datasets/cifar.py
python/paddle/vision/datasets/cifar.py
+37
-7
python/paddle/vision/datasets/flowers.py
python/paddle/vision/datasets/flowers.py
+24
-3
python/paddle/vision/datasets/mnist.py
python/paddle/vision/datasets/mnist.py
+27
-4
python/paddle/vision/datasets/voc2012.py
python/paddle/vision/datasets/voc2012.py
+30
-5
python/paddle/vision/transforms/transforms.py
python/paddle/vision/transforms/transforms.py
+2
-0
未找到文件。
python/paddle/hapi/callbacks.py
浏览文件 @
fb1e0c93
...
...
@@ -296,12 +296,17 @@ class ProgBarLogger(Callback):
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.static import InputSpec
inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
labels = [InputSpec([None, 1], 'int64', 'label')]
train_dataset = paddle.vision.datasets.MNIST(mode='train')
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
lenet = paddle.vision.LeNet()
model = paddle.Model(lenet,
...
...
@@ -432,12 +437,17 @@ class ModelCheckpoint(Callback):
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.static import InputSpec
inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
labels = [InputSpec([None, 1], 'int64', 'label')]
train_dataset = paddle.vision.datasets.MNIST(mode='train')
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
lenet = paddle.vision.LeNet()
model = paddle.Model(lenet,
...
...
@@ -484,13 +494,18 @@ class VisualDL(Callback):
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.static import InputSpec
inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
labels = [InputSpec([None, 1], 'int64', 'label')]
train_dataset = paddle.vision.datasets.MNIST(mode='train')
eval_dataset = paddle.vision.datasets.MNIST(mode='test')
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
eval_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
net = paddle.vision.LeNet()
model = paddle.Model(net, inputs, labels)
...
...
python/paddle/hapi/model.py
浏览文件 @
fb1e0c93
...
...
@@ -837,6 +837,7 @@ class Model(object):
import paddle
import paddle.nn as nn
import paddle.vision.transforms as T
from paddle.static import InputSpec
device = paddle.set_device('cpu') # or 'gpu'
...
...
@@ -858,7 +859,11 @@ class Model(object):
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy())
data = paddle.vision.datasets.MNIST(mode='train')
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
model.fit(data, epochs=2, batch_size=32, verbose=1)
"""
...
...
@@ -1067,6 +1072,7 @@ class Model(object):
import paddle
import paddle.nn as nn
import paddle.vision.transforms as T
from paddle.static import InputSpec
class Mnist(nn.Layer):
...
...
@@ -1093,7 +1099,13 @@ class Model(object):
optim = paddle.optimizer.SGD(learning_rate=1e-3,
parameters=model.parameters())
model.prepare(optim, paddle.nn.CrossEntropyLoss())
data = paddle.vision.datasets.MNIST(mode='train')
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
model.fit(data, epochs=1, batch_size=32, verbose=0)
model.save('checkpoint/test') # save for training
model.save('inference_model', False) # save for inference
...
...
@@ -1353,14 +1365,19 @@ class Model(object):
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.static import InputSpec
dynamic = True
device = paddle.set_device('cpu') # or 'gpu'
paddle.disable_static(device) if dynamic else None
train_dataset = paddle.vision.datasets.MNIST(mode='train')
val_dataset = paddle.vision.datasets.MNIST(mode='test')
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
input = InputSpec([None, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label')
...
...
@@ -1386,16 +1403,21 @@ class Model(object):
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.static import InputSpec
dynamic = True
device = paddle.set_device('cpu') # or 'gpu'
paddle.disable_static(device) if dynamic else None
train_dataset = paddle.vision.datasets.MNIST(mode='train')
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
train_loader = paddle.io.DataLoader(train_dataset,
places=device, batch_size=64)
val_dataset = paddle.vision.datasets.MNIST(mode='test')
val_dataset = paddle.vision.datasets.MNIST(mode='test'
, transform=transform
)
val_loader = paddle.io.DataLoader(val_dataset,
places=device, batch_size=64)
...
...
@@ -1522,10 +1544,15 @@ class Model(object):
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.static import InputSpec
# declarative mode
val_dataset = paddle.vision.datasets.MNIST(mode='test')
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label')
...
...
python/paddle/tests/test_callbacks.py
浏览文件 @
fb1e0c93
...
...
@@ -24,6 +24,7 @@ from paddle import Model
from
paddle.static
import
InputSpec
from
paddle.vision.models
import
LeNet
from
paddle.hapi.callbacks
import
config_callbacks
import
paddle.vision.transforms
as
T
class
TestCallbacks
(
unittest
.
TestCase
):
...
...
@@ -112,8 +113,11 @@ class TestCallbacks(unittest.TestCase):
inputs
=
[
InputSpec
([
-
1
,
1
,
28
,
28
],
'float32'
,
'image'
)]
labels
=
[
InputSpec
([
None
,
1
],
'int64'
,
'label'
)]
train_dataset
=
paddle
.
vision
.
datasets
.
MNIST
(
mode
=
'train'
)
eval_dataset
=
paddle
.
vision
.
datasets
.
MNIST
(
mode
=
'test'
)
transform
=
T
.
Compose
([
T
.
Transpose
(),
T
.
Normalize
([
127.5
],
[
127.5
])])
train_dataset
=
paddle
.
vision
.
datasets
.
MNIST
(
mode
=
'train'
,
transform
=
transform
)
eval_dataset
=
paddle
.
vision
.
datasets
.
MNIST
(
mode
=
'test'
,
transform
=
transform
)
net
=
paddle
.
vision
.
LeNet
()
model
=
paddle
.
Model
(
net
,
inputs
,
labels
)
...
...
python/paddle/tests/test_dataset_cifar.py
浏览文件 @
fb1e0c93
...
...
@@ -27,10 +27,11 @@ class TestCifar10Train(unittest.TestCase):
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
50000
)
data
,
label
=
cifar
[
idx
]
data
=
np
.
array
(
data
)
self
.
assertTrue
(
len
(
data
.
shape
)
==
3
)
self
.
assertTrue
(
data
.
shape
[
0
]
==
3
)
self
.
assertTrue
(
data
.
shape
[
2
]
==
3
)
self
.
assertTrue
(
data
.
shape
[
1
]
==
32
)
self
.
assertTrue
(
data
.
shape
[
2
]
==
32
)
self
.
assertTrue
(
data
.
shape
[
0
]
==
32
)
self
.
assertTrue
(
0
<=
int
(
label
)
<=
9
)
...
...
@@ -43,12 +44,30 @@ class TestCifar10Test(unittest.TestCase):
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
10000
)
data
,
label
=
cifar
[
idx
]
data
=
np
.
array
(
data
)
self
.
assertTrue
(
len
(
data
.
shape
)
==
3
)
self
.
assertTrue
(
data
.
shape
[
0
]
==
3
)
self
.
assertTrue
(
data
.
shape
[
2
]
==
3
)
self
.
assertTrue
(
data
.
shape
[
1
]
==
32
)
self
.
assertTrue
(
data
.
shape
[
2
]
==
32
)
self
.
assertTrue
(
data
.
shape
[
0
]
==
32
)
self
.
assertTrue
(
0
<=
int
(
label
)
<=
9
)
# test cv2 backend
cifar
=
Cifar10
(
mode
=
'test'
,
backend
=
'cv2'
)
self
.
assertTrue
(
len
(
cifar
)
==
10000
)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
10000
)
data
,
label
=
cifar
[
idx
]
self
.
assertTrue
(
len
(
data
.
shape
)
==
3
)
self
.
assertTrue
(
data
.
shape
[
2
]
==
3
)
self
.
assertTrue
(
data
.
shape
[
1
]
==
32
)
self
.
assertTrue
(
data
.
shape
[
0
]
==
32
)
self
.
assertTrue
(
0
<=
int
(
label
)
<=
99
)
with
self
.
assertRaises
(
ValueError
):
cifar
=
Cifar10
(
mode
=
'test'
,
backend
=
1
)
class
TestCifar100Train
(
unittest
.
TestCase
):
def
test_main
(
self
):
...
...
@@ -59,10 +78,11 @@ class TestCifar100Train(unittest.TestCase):
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
50000
)
data
,
label
=
cifar
[
idx
]
data
=
np
.
array
(
data
)
self
.
assertTrue
(
len
(
data
.
shape
)
==
3
)
self
.
assertTrue
(
data
.
shape
[
0
]
==
3
)
self
.
assertTrue
(
data
.
shape
[
2
]
==
3
)
self
.
assertTrue
(
data
.
shape
[
1
]
==
32
)
self
.
assertTrue
(
data
.
shape
[
2
]
==
32
)
self
.
assertTrue
(
data
.
shape
[
0
]
==
32
)
self
.
assertTrue
(
0
<=
int
(
label
)
<=
99
)
...
...
@@ -75,12 +95,30 @@ class TestCifar100Test(unittest.TestCase):
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
10000
)
data
,
label
=
cifar
[
idx
]
data
=
np
.
array
(
data
)
self
.
assertTrue
(
len
(
data
.
shape
)
==
3
)
self
.
assertTrue
(
data
.
shape
[
0
]
==
3
)
self
.
assertTrue
(
data
.
shape
[
2
]
==
3
)
self
.
assertTrue
(
data
.
shape
[
1
]
==
32
)
self
.
assertTrue
(
data
.
shape
[
2
]
==
32
)
self
.
assertTrue
(
data
.
shape
[
0
]
==
32
)
self
.
assertTrue
(
0
<=
int
(
label
)
<=
99
)
# test cv2 backend
cifar
=
Cifar100
(
mode
=
'test'
,
backend
=
'cv2'
)
self
.
assertTrue
(
len
(
cifar
)
==
10000
)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
10000
)
data
,
label
=
cifar
[
idx
]
self
.
assertTrue
(
len
(
data
.
shape
)
==
3
)
self
.
assertTrue
(
data
.
shape
[
2
]
==
3
)
self
.
assertTrue
(
data
.
shape
[
1
]
==
32
)
self
.
assertTrue
(
data
.
shape
[
0
]
==
32
)
self
.
assertTrue
(
0
<=
int
(
label
)
<=
99
)
with
self
.
assertRaises
(
ValueError
):
cifar
=
Cifar100
(
mode
=
'test'
,
backend
=
1
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tests/test_dataset_voc.py
浏览文件 @
fb1e0c93
...
...
@@ -32,6 +32,9 @@ class TestVOC2012Train(unittest.TestCase):
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
3
)
image
,
label
=
voc2012
[
idx
]
image
=
np
.
array
(
image
)
label
=
np
.
array
(
label
)
self
.
assertTrue
(
len
(
image
.
shape
)
==
3
)
self
.
assertTrue
(
len
(
label
.
shape
)
==
2
)
...
...
@@ -45,6 +48,9 @@ class TestVOC2012Valid(unittest.TestCase):
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
1
)
image
,
label
=
voc2012
[
idx
]
image
=
np
.
array
(
image
)
label
=
np
.
array
(
label
)
self
.
assertTrue
(
len
(
image
.
shape
)
==
3
)
self
.
assertTrue
(
len
(
label
.
shape
)
==
2
)
...
...
@@ -58,9 +64,27 @@ class TestVOC2012Test(unittest.TestCase):
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
1
)
image
,
label
=
voc2012
[
idx
]
image
=
np
.
array
(
image
)
label
=
np
.
array
(
label
)
self
.
assertTrue
(
len
(
image
.
shape
)
==
3
)
self
.
assertTrue
(
len
(
label
.
shape
)
==
2
)
# test cv2 backend
voc2012
=
VOC2012
(
mode
=
'test'
,
backend
=
'cv2'
)
self
.
assertTrue
(
len
(
voc2012
)
==
2
)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
1
)
image
,
label
=
voc2012
[
idx
]
self
.
assertTrue
(
len
(
image
.
shape
)
==
3
)
self
.
assertTrue
(
len
(
label
.
shape
)
==
2
)
with
self
.
assertRaises
(
ValueError
):
voc2012
=
VOC2012
(
mode
=
'test'
,
backend
=
1
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tests/test_datasets.py
浏览文件 @
fb1e0c93
...
...
@@ -19,6 +19,7 @@ import tempfile
import
shutil
import
cv2
import
paddle.vision.transforms
as
T
from
paddle.vision.datasets
import
*
from
paddle.dataset.common
import
_check_exists_and_download
...
...
@@ -89,7 +90,8 @@ class TestFolderDatasets(unittest.TestCase):
class
TestMNISTTest
(
unittest
.
TestCase
):
def
test_main
(
self
):
mnist
=
MNIST
(
mode
=
'test'
)
transform
=
T
.
Transpose
()
mnist
=
MNIST
(
mode
=
'test'
,
transform
=
transform
)
self
.
assertTrue
(
len
(
mnist
)
==
10000
)
for
i
in
range
(
len
(
mnist
)):
...
...
@@ -103,7 +105,8 @@ class TestMNISTTest(unittest.TestCase):
class
TestMNISTTrain
(
unittest
.
TestCase
):
def
test_main
(
self
):
mnist
=
MNIST
(
mode
=
'train'
)
transform
=
T
.
Transpose
()
mnist
=
MNIST
(
mode
=
'train'
,
transform
=
transform
)
self
.
assertTrue
(
len
(
mnist
)
==
60000
)
for
i
in
range
(
len
(
mnist
)):
...
...
@@ -114,6 +117,22 @@ class TestMNISTTrain(unittest.TestCase):
self
.
assertTrue
(
label
.
shape
[
0
]
==
1
)
self
.
assertTrue
(
0
<=
int
(
label
)
<=
9
)
# test cv2 backend
mnist
=
MNIST
(
mode
=
'train'
,
transform
=
transform
,
backend
=
'cv2'
)
self
.
assertTrue
(
len
(
mnist
)
==
60000
)
for
i
in
range
(
len
(
mnist
)):
image
,
label
=
mnist
[
i
]
self
.
assertTrue
(
image
.
shape
[
0
]
==
1
)
self
.
assertTrue
(
image
.
shape
[
1
]
==
28
)
self
.
assertTrue
(
image
.
shape
[
2
]
==
28
)
self
.
assertTrue
(
label
.
shape
[
0
]
==
1
)
self
.
assertTrue
(
0
<=
int
(
label
)
<=
9
)
break
with
self
.
assertRaises
(
ValueError
):
mnist
=
MNIST
(
mode
=
'train'
,
transform
=
transform
,
backend
=
1
)
class
TestFlowersTrain
(
unittest
.
TestCase
):
def
test_main
(
self
):
...
...
@@ -124,6 +143,7 @@ class TestFlowersTrain(unittest.TestCase):
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
6149
)
image
,
label
=
flowers
[
idx
]
image
=
np
.
array
(
image
)
self
.
assertTrue
(
len
(
image
.
shape
)
==
3
)
self
.
assertTrue
(
image
.
shape
[
2
]
==
3
)
self
.
assertTrue
(
label
.
shape
[
0
]
==
1
)
...
...
@@ -138,6 +158,7 @@ class TestFlowersValid(unittest.TestCase):
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
1020
)
image
,
label
=
flowers
[
idx
]
image
=
np
.
array
(
image
)
self
.
assertTrue
(
len
(
image
.
shape
)
==
3
)
self
.
assertTrue
(
image
.
shape
[
2
]
==
3
)
self
.
assertTrue
(
label
.
shape
[
0
]
==
1
)
...
...
@@ -152,10 +173,27 @@ class TestFlowersTest(unittest.TestCase):
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
1020
)
image
,
label
=
flowers
[
idx
]
image
=
np
.
array
(
image
)
self
.
assertTrue
(
len
(
image
.
shape
)
==
3
)
self
.
assertTrue
(
image
.
shape
[
2
]
==
3
)
self
.
assertTrue
(
label
.
shape
[
0
]
==
1
)
# test cv2 backend
flowers
=
Flowers
(
mode
=
'test'
,
backend
=
'cv2'
)
self
.
assertTrue
(
len
(
flowers
)
==
1020
)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx
=
np
.
random
.
randint
(
0
,
1020
)
image
,
label
=
flowers
[
idx
]
self
.
assertTrue
(
len
(
image
.
shape
)
==
3
)
self
.
assertTrue
(
image
.
shape
[
2
]
==
3
)
self
.
assertTrue
(
label
.
shape
[
0
]
==
1
)
with
self
.
assertRaises
(
ValueError
):
flowers
=
Flowers
(
mode
=
'test'
,
backend
=
1
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/vision/datasets/cifar.py
浏览文件 @
fb1e0c93
...
...
@@ -17,6 +17,7 @@ from __future__ import print_function
import
tarfile
import
numpy
as
np
import
six
from
PIL
import
Image
from
six.moves
import
cPickle
as
pickle
import
paddle
...
...
@@ -51,6 +52,10 @@ class Cifar10(Dataset):
transform(callable): transform to perform on image, None for on transform.
download(bool): whether to download dataset automatically if
:attr:`data_file` is not set. Default True
backend(str, optional): Specifies which type of image to be returned:
PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` ,
default backend is 'pil'. Default: None.
Returns:
Dataset: instance of cifar-10 dataset
...
...
@@ -72,13 +77,14 @@ class Cifar10(Dataset):
nn.Softmax())
def forward(self, image, label):
image = paddle.reshape(image, (
3
, -1))
image = paddle.reshape(image, (
1
, -1))
return self.fc(image), label
paddle.disable_static()
normalize = Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
std=[0.5, 0.5, 0.5],
data_format='HWC')
cifar10 = Cifar10(mode='train', transform=normalize)
for i in range(10):
...
...
@@ -96,11 +102,20 @@ class Cifar10(Dataset):
data_file
=
None
,
mode
=
'train'
,
transform
=
None
,
download
=
True
):
download
=
True
,
backend
=
None
):
assert
mode
.
lower
()
in
[
'train'
,
'test'
,
'train'
,
'test'
],
\
"mode should be 'train10', 'test10', 'train100' or 'test100', but got {}"
.
format
(
mode
)
self
.
mode
=
mode
.
lower
()
if
backend
is
None
:
backend
=
paddle
.
vision
.
get_image_backend
()
if
backend
not
in
[
'pil'
,
'cv2'
]:
raise
ValueError
(
"Expected backend are one of ['pil', 'cv2'], but got {}"
.
format
(
backend
))
self
.
backend
=
backend
self
.
_init_url_md5_flag
()
self
.
data_file
=
data_file
...
...
@@ -143,8 +158,16 @@ class Cifar10(Dataset):
def
__getitem__
(
self
,
idx
):
image
,
label
=
self
.
data
[
idx
]
image
=
np
.
reshape
(
image
,
[
3
,
32
,
32
])
image
=
image
.
transpose
([
1
,
2
,
0
])
if
self
.
backend
==
'pil'
:
image
=
Image
.
fromarray
(
image
)
if
self
.
transform
is
not
None
:
image
=
self
.
transform
(
image
)
if
self
.
backend
==
'pil'
:
return
image
,
np
.
array
(
label
).
astype
(
'int64'
)
return
image
.
astype
(
self
.
dtype
),
np
.
array
(
label
).
astype
(
'int64'
)
def
__len__
(
self
):
...
...
@@ -163,6 +186,10 @@ class Cifar100(Cifar10):
transform(callable): transform to perform on image, None for on transform.
download(bool): whether to download dataset automatically if
:attr:`data_file` is not set. Default True
backend(str, optional): Specifies which type of image to be returned:
PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` ,
default backend is 'pil'. Default: None.
Returns:
Dataset: instance of cifar-100 dataset
...
...
@@ -184,13 +211,14 @@ class Cifar100(Cifar10):
nn.Softmax())
def forward(self, image, label):
image = paddle.reshape(image, (
3
, -1))
image = paddle.reshape(image, (
1
, -1))
return self.fc(image), label
paddle.disable_static()
normalize = Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
std=[0.5, 0.5, 0.5],
data_format='HWC')
cifar100 = Cifar100(mode='train', transform=normalize)
for i in range(10):
...
...
@@ -208,8 +236,10 @@ class Cifar100(Cifar10):
data_file
=
None
,
mode
=
'train'
,
transform
=
None
,
download
=
True
):
super
(
Cifar100
,
self
).
__init__
(
data_file
,
mode
,
transform
,
download
)
download
=
True
,
backend
=
None
):
super
(
Cifar100
,
self
).
__init__
(
data_file
,
mode
,
transform
,
download
,
backend
)
def
_init_url_md5_flag
(
self
):
self
.
data_url
=
CIFAR100_URL
...
...
python/paddle/vision/datasets/flowers.py
浏览文件 @
fb1e0c93
...
...
@@ -56,6 +56,10 @@ class Flowers(Dataset):
transform(callable): transform to perform on image, None for on transform.
download(bool): whether to download dataset automatically if
:attr:`data_file` is not set. Default True
backend(str, optional): Specifies which type of image to be returned:
PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` ,
default backend is 'pil'. Default: None.
Examples:
...
...
@@ -67,7 +71,7 @@ class Flowers(Dataset):
for i in range(len(flowers)):
sample = flowers[i]
print(sample[0].s
hap
e, sample[1])
print(sample[0].s
iz
e, sample[1])
"""
...
...
@@ -77,9 +81,19 @@ class Flowers(Dataset):
setid_file
=
None
,
mode
=
'train'
,
transform
=
None
,
download
=
True
):
download
=
True
,
backend
=
None
):
assert
mode
.
lower
()
in
[
'train'
,
'valid'
,
'test'
],
\
"mode should be 'train', 'valid' or 'test', but got {}"
.
format
(
mode
)
if
backend
is
None
:
backend
=
paddle
.
vision
.
get_image_backend
()
if
backend
not
in
[
'pil'
,
'cv2'
]:
raise
ValueError
(
"Expected backend are one of ['pil', 'cv2'], but got {}"
.
format
(
backend
))
self
.
backend
=
backend
self
.
flag
=
MODE_FLAG_MAP
[
mode
.
lower
()]
self
.
data_file
=
data_file
...
...
@@ -122,11 +136,18 @@ class Flowers(Dataset):
img_name
=
"jpg/image_%05d.jpg"
%
index
img_ele
=
self
.
name2mem
[
img_name
]
image
=
self
.
data_tar
.
extractfile
(
img_ele
).
read
()
if
self
.
backend
==
'pil'
:
image
=
Image
.
open
(
io
.
BytesIO
(
image
))
elif
self
.
backend
==
'cv2'
:
image
=
np
.
array
(
Image
.
open
(
io
.
BytesIO
(
image
)))
if
self
.
transform
is
not
None
:
image
=
self
.
transform
(
image
)
if
self
.
backend
==
'pil'
:
return
image
,
label
.
astype
(
'int64'
)
return
image
.
astype
(
self
.
dtype
),
label
.
astype
(
'int64'
)
def
__len__
(
self
):
...
...
python/paddle/vision/datasets/mnist.py
浏览文件 @
fb1e0c93
...
...
@@ -18,6 +18,7 @@ import os
import
gzip
import
struct
import
numpy
as
np
from
PIL
import
Image
import
paddle
from
paddle.io
import
Dataset
...
...
@@ -48,6 +49,10 @@ class MNIST(Dataset):
mode(str): 'train' or 'test' mode. Default 'train'.
download(bool): whether to download dataset automatically if
:attr:`image_path` :attr:`label_path` is not set. Default True
backend(str, optional): Specifies which type of image to be returned:
PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` ,
default backend is 'pil'. Default: None.
Returns:
Dataset: MNIST Dataset.
...
...
@@ -62,7 +67,7 @@ class MNIST(Dataset):
for i in range(len(mnist)):
sample = mnist[i]
print(sample[0].s
hap
e, sample[1])
print(sample[0].s
iz
e, sample[1])
"""
...
...
@@ -71,9 +76,19 @@ class MNIST(Dataset):
label_path
=
None
,
mode
=
'train'
,
transform
=
None
,
download
=
True
):
download
=
True
,
backend
=
None
):
assert
mode
.
lower
()
in
[
'train'
,
'test'
],
\
"mode should be 'train' or 'test', but got {}"
.
format
(
mode
)
if
backend
is
None
:
backend
=
paddle
.
vision
.
get_image_backend
()
if
backend
not
in
[
'pil'
,
'cv2'
]:
raise
ValueError
(
"Expected backend are one of ['pil', 'cv2'], but got {}"
.
format
(
backend
))
self
.
backend
=
backend
self
.
mode
=
mode
.
lower
()
self
.
image_path
=
image_path
if
self
.
image_path
is
None
:
...
...
@@ -145,9 +160,17 @@ class MNIST(Dataset):
def
__getitem__
(
self
,
idx
):
image
,
label
=
self
.
images
[
idx
],
self
.
labels
[
idx
]
image
=
np
.
reshape
(
image
,
[
1
,
28
,
28
])
image
=
np
.
reshape
(
image
,
[
28
,
28
])
if
self
.
backend
==
'pil'
:
image
=
Image
.
fromarray
(
image
,
mode
=
'L'
)
if
self
.
transform
is
not
None
:
image
=
self
.
transform
(
image
)
if
self
.
backend
==
'pil'
:
return
image
,
label
.
astype
(
'int64'
)
return
image
.
astype
(
self
.
dtype
),
label
.
astype
(
'int64'
)
def
__len__
(
self
):
...
...
python/paddle/vision/datasets/voc2012.py
浏览文件 @
fb1e0c93
...
...
@@ -48,6 +48,10 @@ class VOC2012(Dataset):
mode(str): 'train', 'valid' or 'test' mode. Default 'train'.
download(bool): whether to download dataset automatically if
:attr:`data_file` is not set. Default True
backend(str, optional): Specifies which type of image to be returned:
PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` ,
default backend is 'pil'. Default: None.
Examples:
...
...
@@ -55,6 +59,7 @@ class VOC2012(Dataset):
import paddle
from paddle.vision.datasets import VOC2012
from paddle.vision.transforms import Normalize
class SimpleNet(paddle.nn.Layer):
def __init__(self):
...
...
@@ -65,7 +70,10 @@ class VOC2012(Dataset):
paddle.disable_static()
voc2012 = VOC2012(mode='train')
normalize = Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
data_format='HWC')
voc2012 = VOC2012(mode='train', transform=normalize, backend='cv2')
for i in range(10):
image, label= voc2012[i]
...
...
@@ -82,9 +90,19 @@ class VOC2012(Dataset):
data_file
=
None
,
mode
=
'train'
,
transform
=
None
,
download
=
True
):
download
=
True
,
backend
=
None
):
assert
mode
.
lower
()
in
[
'train'
,
'valid'
,
'test'
],
\
"mode should be 'train', 'valid' or 'test', but got {}"
.
format
(
mode
)
if
backend
is
None
:
backend
=
paddle
.
vision
.
get_image_backend
()
if
backend
not
in
[
'pil'
,
'cv2'
]:
raise
ValueError
(
"Expected backend are one of ['pil', 'cv2'], but got {}"
.
format
(
backend
))
self
.
backend
=
backend
self
.
flag
=
MODE_FLAG_MAP
[
mode
.
lower
()]
self
.
data_file
=
data_file
...
...
@@ -126,12 +144,19 @@ class VOC2012(Dataset):
label
=
self
.
data_tar
.
extractfile
(
self
.
name2mem
[
label_file
]).
read
()
data
=
Image
.
open
(
io
.
BytesIO
(
data
))
label
=
Image
.
open
(
io
.
BytesIO
(
label
))
if
self
.
backend
==
'cv2'
:
data
=
np
.
array
(
data
)
label
=
np
.
array
(
label
)
if
self
.
transform
is
not
None
:
data
=
self
.
transform
(
data
)
if
self
.
backend
==
'cv2'
:
return
data
.
astype
(
self
.
dtype
),
label
.
astype
(
self
.
dtype
)
return
data
,
label
def
__len__
(
self
):
return
len
(
self
.
data
)
...
...
python/paddle/vision/transforms/transforms.py
浏览文件 @
fb1e0c93
...
...
@@ -686,6 +686,8 @@ class Transpose(BaseTransform):
if
F
.
_is_pil_image
(
img
):
img
=
np
.
asarray
(
img
)
if
len
(
img
.
shape
)
==
2
:
img
=
img
[...,
np
.
newaxis
]
return
img
.
transpose
(
self
.
order
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录