提交 fabfe17a 编写于 作者: Z zchen0211

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into develop

...@@ -1399,8 +1399,8 @@ void RecurrentGradientMachine::createDataOutlinkCopySizeInfo( ...@@ -1399,8 +1399,8 @@ void RecurrentGradientMachine::createDataOutlinkCopySizeInfo(
getBeamSize() > 1 ? finalPaths_.size() : finalPaths_[0].size()); getBeamSize() > 1 ? finalPaths_.size() : finalPaths_[0].size());
int* starts = inputSeqStartPos->getMutableData(false); int* starts = inputSeqStartPos->getMutableData(false);
int seqId = 0; int seqId = 0;
for (int i = 0; i < finalPaths_.size(); ++i) { for (size_t i = 0; i < finalPaths_.size(); ++i) {
for (int j = 0; j < finalPaths_[i].size(); ++j) { for (size_t j = 0; j < finalPaths_[i].size(); ++j) {
copySize[seqId] = getBeamSize() > 1 ? starts[i + 1] - starts[i] copySize[seqId] = getBeamSize() > 1 ? starts[i + 1] - starts[i]
: starts[j + 1] - starts[j]; : starts[j + 1] - starts[j];
batchMachineStartPos_[seqId + 1] = batchMachineStartPos_[seqId + 1] =
......
...@@ -200,8 +200,9 @@ void SequenceSliceLayer::forward(PassType passType) { ...@@ -200,8 +200,9 @@ void SequenceSliceLayer::forward(PassType passType) {
startIdsOnCpu_ = getInputValue(1); startIdsOnCpu_ = getInputValue(1);
endIdsOnCpu_ = getInputValue(2); endIdsOnCpu_ = getInputValue(2);
} }
} else } else {
copySliceIdsToCpu(); copySliceIdsToCpu();
}
// calculate the selected row indices in a batch, // calculate the selected row indices in a batch,
// and build the output sequence information. // and build the output sequence information.
......
...@@ -70,3 +70,4 @@ op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc ...@@ -70,3 +70,4 @@ op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
op_library(uniform_random_op op_library(uniform_random_op
SRCS uniform_random_op.cc uniform_random_op.cu) SRCS uniform_random_op.cc uniform_random_op.cu)
op_library(scale_op SRCS scale_op.cc scale_op.cu DEPS net_op) op_library(scale_op SRCS scale_op.cc scale_op.cu DEPS net_op)
op_library(minus_op SRCS minus_op.cc minus_op.cu DEPS scale_op)
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/minus_op.h"
#include "paddle/operators/net_op.h"
namespace paddle {
namespace operators {
class MinusOp : public framework::OperatorWithKernel {
public:
MinusOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto *left_tensor = ctx.Input<framework::Tensor>("X");
auto *right_tensor = ctx.Input<framework::Tensor>("Y");
PADDLE_ENFORCE_EQ(
framework::product(left_tensor->dims()),
framework::product(right_tensor->dims()),
"Minus operator must take two tensor with same num of elements");
ctx.Output<framework::Tensor>("Out")->Resize(left_tensor->dims());
}
};
class MinusOpMaker : public framework::OpProtoAndCheckerMaker {
public:
MinusOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The left tensor of minus operator.").NotInGradient();
AddInput("Y", "The right tensor of minus operator.").NotInGradient();
AddOutput("Out", "The output tensor of minus operator.").NotInGradient();
AddComment(R"DOC(Minus Operator
Equation: Out = X - Y
)DOC");
}
};
template <typename AttrType>
class MinusGradOp : public NetOp {
public:
MinusGradOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
auto out_grad = Input(framework::GradVarName("Out"));
auto x_grad = Output(framework::GradVarName("X"));
auto y_grad = Output(framework::GradVarName("Y"));
// x_grad = out_grad
AppendOp(framework::OpRegistry::CreateOp("identity", {{"X", {out_grad}}},
{{"Out", {x_grad}}}, {}));
framework::AttributeMap scale_attr;
scale_attr["scale"] = static_cast<AttrType>(-1);
AppendOp(framework::OpRegistry::CreateOp("scale", {{"X", {out_grad}}},
{{"Out", {y_grad}}}, scale_attr));
CompleteAddOp(false);
}
};
} // namespace operators
} // namespace paddle
USE_OP(scale);
USE_OP_ITSELF(identity);
namespace ops = paddle::operators;
REGISTER_OP(minus, ops::MinusOp, ops::MinusOpMaker, minus_grad,
ops::MinusGradOp<float>);
REGISTER_OP_CPU_KERNEL(minus,
ops::MinusKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/minus_op.h"
REGISTER_OP_GPU_KERNEL(
minus, paddle::operators::MinusKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class MinusKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* left_tensor = context.Input<framework::Tensor>("X");
auto* right_tensor = context.Input<framework::Tensor>("Y");
auto* out_tensor = context.Output<framework::Tensor>("Out");
out_tensor->mutable_data<T>(context.GetPlace());
auto& dev = context.GetEigenDevice<Place>();
framework::EigenVector<T>::Flatten(*out_tensor).device(dev) =
framework::EigenVector<T>::Flatten(*left_tensor) -
framework::EigenVector<T>::Flatten(*right_tensor);
}
};
} // namespace operators
} // namespace paddle
...@@ -79,7 +79,7 @@ TEST(NetOp, Clone) { ...@@ -79,7 +79,7 @@ TEST(NetOp, Clone) {
ASSERT_NE(new_net_op, nullptr); ASSERT_NE(new_net_op, nullptr);
ASSERT_TRUE(new_net_op->IsNetOp()); ASSERT_TRUE(new_net_op->IsNetOp());
auto* new_net = static_cast<NetOp*>(new_net_op.get()); auto* new_net = static_cast<NetOp*>(new_net_op.get());
ASSERT_EQ(2, new_net->ops_.size()); ASSERT_EQ(2UL, new_net->ops_.size());
ASSERT_EQ(new_net->ops_[0]->Type(), "empty"); ASSERT_EQ(new_net->ops_[0]->Type(), "empty");
ASSERT_EQ(new_net->ops_[1]->Type(), "empty2"); ASSERT_EQ(new_net->ops_[1]->Type(), "empty2");
} }
......
...@@ -15,5 +15,6 @@ cc_library(paddle_pybind SHARED ...@@ -15,5 +15,6 @@ cc_library(paddle_pybind SHARED
uniform_random_op uniform_random_op
gaussian_random_op gaussian_random_op
fill_zeros_like_op fill_zeros_like_op
scale_op) scale_op
minus_op)
endif(WITH_PYTHON) endif(WITH_PYTHON)
...@@ -44,6 +44,7 @@ USE_OP(gaussian_random); ...@@ -44,6 +44,7 @@ USE_OP(gaussian_random);
USE_OP(uniform_random); USE_OP(uniform_random);
USE_OP(scale); USE_OP(scale);
USE_OP_ITSELF(identity); USE_OP_ITSELF(identity);
USE_OP(minus);
USE_CPU_ONLY_OP(gather); USE_CPU_ONLY_OP(gather);
namespace paddle { namespace paddle {
......
import unittest
import numpy as np
from gradient_checker import GradientChecker, create_op
from op_test_util import OpTestMeta
class MinusOpTest(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "minus"
self.inputs = {
'X': np.random.random((32, 84)).astype("float32"),
'Y': np.random.random((32, 84)).astype("float32")
}
self.outputs = {'Out': (self.inputs['X'] - self.inputs['Y'])}
class MinusGradTest(GradientChecker):
def test_left(self):
op = create_op("minus")
inputs = {
"X": np.random.random((10, 10)).astype("float32"),
"Y": np.random.random((10, 10)).astype("float32")
}
self.check_grad(op, inputs, ["X", 'Y'], "Out")
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册