未验证 提交 f90c7865 编写于 作者: W Wu Yi 提交者: GitHub

Benchmark tool for imgnet (#12305)

* support test using executor without reader

* run imgnet

* update fluid benchmark

* wip

* update

* update all models

* support pyreader

* update

* clean up

* make profile batches contollable

* update API.spec

* update scripts

* clean dockerfile

* update

* clean comments

* add scope argument docstring

* use num_trainers to determine nccl init comms
上级 8a6b4640
......@@ -11,6 +11,7 @@ RUN ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so.7 /usr/lib/libcudnn.so && ln -s
# Add "ENV http_proxy=http://ip:port" if your download is slow, and don't forget to unset it at runtime.
# exmaple: unset http_proxy && unset https_proxy && python fluid_benchmark.py ...
RUN pip install -U pip
RUN pip install -U kubernetes paddlepaddle
......@@ -27,5 +28,6 @@ ADD *.whl /
RUN pip install /*.whl && rm -f /*.whl
ENV LD_LIBRARY_PATH=/usr/local/lib
ADD fluid_benchmark.py recordio_converter.py args.py recordio_converter.py run.sh run_fluid_benchmark.sh /workspace/
ADD fluid_benchmark.py recordio_converter.py args.py recordio_converter.py run.sh run_fluid_benchmark.sh imagenet_reader.py /workspace/
ADD models/ /workspace/models/
......@@ -17,7 +17,8 @@ import argparse
__all__ = ['parse_args', ]
BENCHMARK_MODELS = [
"machine_translation", "resnet", "vgg", "mnist", "stacked_dynamic_lstm"
"machine_translation", "resnet", "se_resnext", "vgg", "mnist",
"stacked_dynamic_lstm", "resnet_with_preprocess"
]
......@@ -67,12 +68,12 @@ def parse_args():
'--cpus',
type=int,
default=1,
help='If cpus > 1, will use ParallelDo to run, else use Executor.')
help='If cpus > 1, will set ParallelExecutor to use multiple threads.')
parser.add_argument(
'--data_set',
type=str,
default='flowers',
choices=['cifar10', 'flowers'],
choices=['cifar10', 'flowers', 'imagenet'],
help='Optional dataset for benchmark.')
parser.add_argument(
'--infer_only', action='store_true', help='If set, run forward only.')
......@@ -122,6 +123,11 @@ def parse_args():
type=str,
default="",
help='Directory that contains all the training recordio files.')
parser.add_argument(
'--test_data_path',
type=str,
default="",
help='Directory that contains all the test data (NOT recordio).')
parser.add_argument(
'--use_inference_transpiler',
action='store_true',
......@@ -130,5 +136,9 @@ def parse_args():
'--no_random',
action='store_true',
help='If set, keep the random seed and do not shuffle the data.')
parser.add_argument(
'--use_lars',
action='store_true',
help='If set, use lars for optimizers, ONLY support resnet module.')
args = parser.parse_args()
return args
......@@ -16,6 +16,7 @@ import argparse
import cProfile
import time
import os
import traceback
import numpy as np
......@@ -27,7 +28,7 @@ import paddle.fluid.transpiler.distribute_transpiler as distribute_transpiler
from args import *
def append_nccl2_prepare(trainer_id):
def append_nccl2_prepare(trainer_id, startup_prog):
if trainer_id >= 0:
# append gen_nccl_id at the end of startup program
trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
......@@ -40,11 +41,11 @@ def append_nccl2_prepare(trainer_id):
current_endpoint = os.getenv("PADDLE_CURRENT_IP") + ":" + port
worker_endpoints.remove(current_endpoint)
nccl_id_var = fluid.default_startup_program().global_block().create_var(
nccl_id_var = startup_prog.global_block().create_var(
name="NCCLID",
persistable=True,
type=fluid.core.VarDesc.VarType.RAW)
fluid.default_startup_program().global_block().append_op(
startup_prog.global_block().append_op(
type="gen_nccl_id",
inputs={},
outputs={"NCCLID": nccl_id_var},
......@@ -59,7 +60,7 @@ def append_nccl2_prepare(trainer_id):
"nccl-based dist train.")
def dist_transpile(trainer_id, args):
def dist_transpile(trainer_id, args, train_prog, startup_prog):
if trainer_id < 0:
return None, None
......@@ -80,133 +81,69 @@ def dist_transpile(trainer_id, args):
# the role, should be either PSERVER or TRAINER
training_role = os.getenv("PADDLE_TRAINING_ROLE")
t = distribute_transpiler.DistributeTranspiler()
config = distribute_transpiler.DistributeTranspilerConfig()
config.slice_var_up = not args.no_split_var
t = distribute_transpiler.DistributeTranspiler(config=config)
t.transpile(
trainer_id,
# NOTE: *MUST* use train_prog, for we are using with guard to
# generate different program for train and test.
program=train_prog,
pservers=pserver_endpoints,
trainers=trainers,
sync_mode=not args.async_mode)
if training_role == "PSERVER":
pserver_program = t.get_pserver_program(current_endpoint)
pserver_startup_program = t.get_startup_program(current_endpoint,
pserver_program)
pserver_startup_program = t.get_startup_program(
current_endpoint, pserver_program, startup_program=startup_prog)
return pserver_program, pserver_startup_program
elif training_role == "TRAINER":
train_program = t.get_trainer_program()
return train_program, fluid.default_startup_program()
return train_program, startup_prog
else:
raise ValueError(
'PADDLE_TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
)
def test(exe, inference_program, test_reader, feeder, batch_acc):
accuracy_evaluator = fluid.metrics.Accuracy()
for batch_id, data in enumerate(test_reader()):
acc = exe.run(inference_program,
feed=feeder.feed(data),
fetch_list=[batch_acc])
accuracy_evaluator.update(value=np.array(acc), weight=len(data))
return accuracy_evaluator.eval()
# TODO(wuyi): replace train, train_parallel, test functions with new trainer
# API once it is ready.
def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
args, train_prog, startup_prog):
if os.getenv("PADDLE_TRAINING_ROLE") == "PSERVER":
place = core.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
exe.run(train_prog)
return
if args.use_fake_data:
raise Exception(
"fake data is not supported in single GPU test for now.")
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup_prog)
# Use inference_transpiler to speedup
if not args.use_reader_op:
feed_var_list = [
var for var in train_prog.global_block().vars.itervalues()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
iters, num_samples, start_time = 0, 0, time.time()
for pass_id in range(args.pass_num):
train_losses = []
if not args.use_reader_op:
reader_generator = train_reader()
batch_id = 0
data = None
while True:
if not args.use_reader_op:
data = next(reader_generator, None)
if data == None:
break
if iters == args.iterations:
reader_generator.close()
break
if iters == args.skip_batch_num:
start_time = time.time()
num_samples = 0
def test_parallel(exe, test_args, args, test_prog, feeder):
acc_evaluators = []
for i in xrange(len(test_args[2])):
acc_evaluators.append(fluid.metrics.Accuracy())
to_fetch = [v.name for v in test_args[2]]
if args.use_reader_op:
test_args[4].start()
while True:
try:
loss = exe.run(train_prog, fetch_list=[avg_loss])
except fluid.core.EnforceNotMet as ex:
acc_rets = exe.run(fetch_list=to_fetch)
for i, e in enumerate(acc_evaluators):
e.update(
value=np.array(acc_rets[i]), weight=args.batch_size)
except fluid.core.EOFException as eof:
test_args[4].reset()
break
else:
loss = exe.run(train_prog,
feed=feeder.feed(data),
fetch_list=[avg_loss])
iters += 1
batch_id += 1
# FIXME(wuyi): For use_reader_op, if the current
# pass is not the last, the last batch of this pass
# is also equal to args.batch_size.
if args.use_reader_op:
num_samples += args.batch_size * args.gpus
else:
num_samples += len(data)
train_losses.append(loss)
print("Pass: %d, Iter: %d, Loss: %f\n" %
(pass_id, iters, np.mean(train_losses)))
print_train_time(start_time, time.time(), num_samples)
print("Pass: %d, Loss: %f" % (pass_id, np.mean(train_losses))),
# evaluation
if not args.no_test and batch_acc and not args.use_reader_op:
if args.use_inference_transpiler:
t = fluid.InferenceTranspiler()
t.transpile(infer_prog, place)
pass_test_acc = test(exe, infer_prog, test_reader, feeder,
batch_acc)
print(", Test Accuracy: %f" % pass_test_acc)
print("\n")
# TODO(wuyi): add warmup passes to get better perf data.
exit(0)
for batch_id, data in enumerate(test_args[3]()):
acc_rets = exe.run(feed=feeder.feed(data), fetch_list=to_fetch)
for i, e in enumerate(acc_evaluators):
e.update(value=np.array(acc_rets[i]), weight=len(data))
return [e.eval() for e in acc_evaluators]
# TODO(wuyi): replace train, train_parallel, test functions with new trainer
# API once it is ready.
def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
batch_acc, args, train_prog, startup_prog, nccl_id_var,
num_trainers, trainer_id):
# NOTE: only need to benchmark using parallelexe
def train_parallel(train_args, test_args, args, train_prog, test_prog,
startup_prog, nccl_id_var, num_trainers, trainer_id):
over_all_start = time.time()
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
feeder = None
if not args.use_reader_op:
feed_var_list = [
var for var in train_prog.global_block().vars.itervalues()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
# generate fake:
if args.use_fake_data:
for var in feed_var_list:
......@@ -230,63 +167,110 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
startup_exe = fluid.Executor(place)
startup_exe.run(startup_prog)
strategy = fluid.ExecutionStrategy()
strategy.num_threads = 1
strategy.num_threads = args.cpus
strategy.allow_op_delay = False
avg_loss = train_args[0]
if args.update_method == "pserver":
# parameter server mode distributed training, merge
# gradients on local server, do not initialize
# ParallelExecutor with multi server all-reduce mode.
num_trainers = 1
trainer_id = 0
exe = fluid.ParallelExecutor(
True,
avg_loss.name,
main_program=train_prog,
exec_strategy=strategy,
num_trainers=num_trainers,
trainer_id=trainer_id)
if not args.no_test:
if args.update_method == "pserver":
test_scope = None
else:
# NOTE: use an empty scope to avoid test exe using NCCLID
test_scope = fluid.Scope()
test_exe = fluid.ParallelExecutor(
True, main_program=test_prog, share_vars_from=exe)
for pass_id in range(args.pass_num):
num_samples = 0
iters = 0
start_time = time.time()
if not args.use_reader_op:
reader_generator = train_reader()
reader_generator = train_args[3]() #train_reader
batch_id = 0
data = None
if args.use_reader_op:
train_args[4].start()
while True:
if not args.use_reader_op:
data = next(reader_generator, None)
if data == None:
break
if args.profile and batch_id == 5:
profiler.start_profiler("All")
profiler.reset_profiler()
elif args.profile and batch_id == 10:
print("profiling total time: ", time.time() - start_time)
profiler.stop_profiler("total", "/tmp/profile_%d_pass%d" %
(trainer_id, pass_id))
if iters == args.iterations:
reader_generator.close()
break
if args.profile and pass_id == 0 and batch_id == 5:
profiler.start_profiler("All")
elif args.profile and pass_id == 0 and batch_id == 10:
profiler.stop_profiler("total", "/tmp/profile_%d" % trainer_id)
if iters == args.skip_batch_num:
start_time = time.time()
num_samples = 0
fetch_list = [avg_loss.name]
acc_name_list = [v.name for v in train_args[2]]
fetch_list.extend(acc_name_list)
if args.use_fake_data or args.use_reader_op:
try:
loss, = exe.run([avg_loss.name])
fetch_ret = exe.run(fetch_list)
except fluid.core.EOFException as eof:
break
except fluid.core.EnforceNotMet as ex:
traceback.print_exc()
break
else:
loss, = exe.run([avg_loss.name], feed=feeder.feed(data))
fetch_ret = exe.run(fetch_list, feed=feeder.feed(data))
if args.use_reader_op:
num_samples += args.batch_size * args.gpus
else:
num_samples += len(data)
iters += 1
if batch_id % 1 == 0:
print("Pass %d, batch %d, loss %s" %
(pass_id, batch_id, np.array(loss)))
fetched_data = [np.mean(np.array(d)) for d in fetch_ret]
print("Pass %d, batch %d, loss %s, accucacys: %s" %
(pass_id, batch_id, fetched_data[0], fetched_data[1:]))
batch_id += 1
print_train_time(start_time, time.time(), num_samples)
if not args.no_test and batch_acc and not args.use_reader_op:
# we have not implement record io for test
# skip test when use args.use_reader_op
test_acc = test(startup_exe, infer_prog, test_reader, feeder,
batch_acc)
print("Pass: %d, Test Accuracy: %f\n" % (pass_id, test_acc))
if args.use_reader_op:
train_args[4].reset() # reset reader handle
else:
del reader_generator
if not args.no_test and test_args[2]:
test_feeder = None
if not args.use_reader_op:
test_feed_var_list = [
var for var in test_prog.global_block().vars.itervalues()
if var.is_data
]
test_feeder = fluid.DataFeeder(test_feed_var_list, place)
test_ret = test_parallel(test_exe, test_args, args, test_prog,
test_feeder)
print("Pass: %d, Test Accuracy: %s\n" %
(pass_id, [np.mean(np.array(v)) for v in test_ret]))
print("total train time: ", time.time() - over_all_start)
def print_arguments(args):
......@@ -328,44 +312,46 @@ def main():
if args.use_cprof:
pr = cProfile.Profile()
pr.enable()
model_def = __import__("models.%s" % args.model, fromlist=["models"])
train_args = list(model_def.get_model(args))
train_args.append(args)
# Run optimizer.minimize(avg_loss)
train_args[2].minimize(train_args[0])
if args.memory_optimize:
fluid.memory_optimize(fluid.default_main_program())
train_prog = fluid.Program()
test_prog = fluid.Program()
startup_prog = fluid.Program()
train_args = list(model_def.get_model(args, True, train_prog, startup_prog))
test_args = list(model_def.get_model(args, False, test_prog, startup_prog))
all_args = [train_args, test_args, args]
if args.update_method == "pserver":
train_prog, startup_prog = dist_transpile(trainer_id, args)
train_prog, startup_prog = dist_transpile(trainer_id, args, train_prog,
startup_prog)
if not train_prog:
raise Exception(
"Must configure correct environments to run dist train.")
train_args.extend([train_prog, startup_prog])
all_args.extend([train_prog, test_prog, startup_prog])
if args.gpus > 1 and os.getenv("PADDLE_TRAINING_ROLE") == "TRAINER":
train_args.extend([nccl_id_var, num_trainers, trainer_id])
train_parallel(*train_args)
train(*train_args)
all_args.extend([nccl_id_var, num_trainers, trainer_id])
train_parallel(*all_args)
elif os.getenv("PADDLE_TRAINING_ROLE") == "PSERVER":
# start pserver with Executor
server_exe = fluid.Executor(fluid.CPUPlace())
server_exe.run(startup_prog)
server_exe.run(train_prog)
exit(0)
# for other update methods, use default programs
train_args.append(fluid.default_main_program())
train_args.append(fluid.default_startup_program())
all_args.extend([train_prog, test_prog, startup_prog])
if args.update_method == "nccl2":
nccl_id_var, num_trainers, trainer_id = append_nccl2_prepare(trainer_id)
if args.gpus == 1:
# NOTE: parallel executor use profiler interanlly
if args.use_nvprof and args.device == 'GPU':
with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
train(*train_args)
else:
train(*train_args)
else:
nccl_id_var, num_trainers, trainer_id = append_nccl2_prepare(
trainer_id, startup_prog)
if args.device == "CPU":
raise Exception("Only support GPU perf with parallel exe")
train_args.extend([nccl_id_var, num_trainers, trainer_id])
train_parallel(*train_args)
all_args.extend([nccl_id_var, num_trainers, trainer_id])
train_parallel(*all_args)
if __name__ == "__main__":
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math
import random
import functools
import numpy as np
from threading import Thread
import subprocess
import time
from Queue import Queue
import paddle
from PIL import Image, ImageEnhance
random.seed(0)
DATA_DIM = 224
THREAD = int(os.getenv("PREPROCESS_THREADS", "10"))
BUF_SIZE = 5120
DATA_DIR = '/mnt/ImageNet'
TRAIN_LIST = '/mnt/ImageNet/train.txt'
TEST_LIST = '/mnt/ImageNet/val.txt'
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
def resize_short(img, target_size):
percent = float(target_size) / min(img.size[0], img.size[1])
resized_width = int(round(img.size[0] * percent))
resized_height = int(round(img.size[1] * percent))
img = img.resize((resized_width, resized_height), Image.LANCZOS)
return img
def crop_image(img, target_size, center):
width, height = img.size
size = target_size
if center == True:
w_start = (width - size) / 2
h_start = (height - size) / 2
else:
w_start = random.randint(0, width - size)
h_start = random.randint(0, height - size)
w_end = w_start + size
h_end = h_start + size
img = img.crop((w_start, h_start, w_end, h_end))
return img
def random_crop(img, size, scale=[0.08, 1.0], ratio=[3. / 4., 4. / 3.]):
aspect_ratio = math.sqrt(random.uniform(*ratio))
w = 1. * aspect_ratio
h = 1. / aspect_ratio
bound = min((float(img.size[0]) / img.size[1]) / (w**2),
(float(img.size[1]) / img.size[0]) / (h**2))
scale_max = min(scale[1], bound)
scale_min = min(scale[0], bound)
target_area = img.size[0] * img.size[1] * random.uniform(scale_min,
scale_max)
target_size = math.sqrt(target_area)
w = int(target_size * w)
h = int(target_size * h)
i = random.randint(0, img.size[0] - w)
j = random.randint(0, img.size[1] - h)
img = img.crop((i, j, i + w, j + h))
img = img.resize((size, size), Image.LANCZOS)
return img
def rotate_image(img):
angle = random.randint(-10, 10)
img = img.rotate(angle)
return img
def distort_color(img):
def random_brightness(img, lower=0.5, upper=1.5):
e = random.uniform(lower, upper)
return ImageEnhance.Brightness(img).enhance(e)
def random_contrast(img, lower=0.5, upper=1.5):
e = random.uniform(lower, upper)
return ImageEnhance.Contrast(img).enhance(e)
def random_color(img, lower=0.5, upper=1.5):
e = random.uniform(lower, upper)
return ImageEnhance.Color(img).enhance(e)
ops = [random_brightness, random_contrast, random_color]
random.shuffle(ops)
img = ops[0](img)
img = ops[1](img)
img = ops[2](img)
return img
def process_image(sample, mode, color_jitter, rotate):
img_path = sample[0]
img = Image.open(img_path)
if mode == 'train':
if rotate: img = rotate_image(img)
img = random_crop(img, DATA_DIM)
else:
img = resize_short(img, target_size=256)
img = crop_image(img, target_size=DATA_DIM, center=True)
if mode == 'train':
if color_jitter:
img = distort_color(img)
if random.randint(0, 1) == 1:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
if img.mode != 'RGB':
img = img.convert('RGB')
img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
img -= img_mean
img /= img_std
if mode == 'train' or mode == 'val':
return img, sample[1]
elif mode == 'test':
return [img]
class XmapEndSignal():
pass
def xmap_readers(mapper,
reader,
process_num,
buffer_size,
order=False,
print_queue_state=True):
end = XmapEndSignal()
# define a worker to read samples from reader to in_queue
def read_worker(reader, in_queue):
for i in reader():
in_queue.put(i)
in_queue.put(end)
# define a worker to read samples from reader to in_queue with order flag
def order_read_worker(reader, in_queue, file_queue):
in_order = 0
for i in reader():
in_queue.put((in_order, i))
in_order += 1
in_queue.put(end)
# define a worker to handle samples from in_queue by mapper
# and put mapped samples into out_queue
def handle_worker(in_queue, out_queue, mapper):
sample = in_queue.get()
while not isinstance(sample, XmapEndSignal):
r = mapper(sample)
out_queue.put(r)
sample = in_queue.get()
in_queue.put(end)
out_queue.put(end)
# define a worker to handle samples from in_queue by mapper
# and put mapped samples into out_queue by order
def order_handle_worker(in_queue, out_queue, mapper, out_order):
ins = in_queue.get()
while not isinstance(ins, XmapEndSignal):
order, sample = ins
r = mapper(sample)
while order != out_order[0]:
pass
out_queue.put(r)
out_order[0] += 1
ins = in_queue.get()
in_queue.put(end)
out_queue.put(end)
def xreader():
file_queue = Queue()
in_queue = Queue(buffer_size)
out_queue = Queue(buffer_size)
out_order = [0]
# start a read worker in a thread
target = order_read_worker if order else read_worker
t = Thread(target=target, args=(reader, in_queue))
t.daemon = True
t.start()
# start several handle_workers
target = order_handle_worker if order else handle_worker
args = (in_queue, out_queue, mapper, out_order) if order else (
in_queue, out_queue, mapper)
workers = []
for i in xrange(process_num):
worker = Thread(target=target, args=args)
worker.daemon = True
workers.append(worker)
for w in workers:
w.start()
sample = out_queue.get()
start_t = time.time()
while not isinstance(sample, XmapEndSignal):
yield sample
sample = out_queue.get()
if time.time() - start_t > 3:
if print_queue_state:
print("queue sizes: ", in_queue.qsize(), out_queue.qsize())
start_t = time.time()
finish = 1
while finish < process_num:
sample = out_queue.get()
if isinstance(sample, XmapEndSignal):
finish += 1
else:
yield sample
return xreader
def _reader_creator(file_list,
mode,
shuffle=False,
color_jitter=False,
rotate=False,
xmap=True):
def reader():
with open(file_list) as flist:
full_lines = [line.strip() for line in flist]
if shuffle:
random.shuffle(full_lines)
if mode == 'train':
trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
trainer_count = int(os.getenv("PADDLE_TRAINERS"))
per_node_lines = len(full_lines) / trainer_count
lines = full_lines[trainer_id * per_node_lines:(trainer_id + 1)
* per_node_lines]
print(
"read images from %d, length: %d, lines length: %d, total: %d"
% (trainer_id * per_node_lines, per_node_lines, len(lines),
len(full_lines)))
else:
lines = full_lines
for line in lines:
if mode == 'train':
img_path, label = line.split()
img_path = img_path.replace("JPEG", "jpeg")
img_path = os.path.join(DATA_DIR, "train", img_path)
yield (img_path, int(label))
elif mode == 'val':
img_path, label = line.split()
img_path = img_path.replace("JPEG", "jpeg")
img_path = os.path.join(DATA_DIR, "val", img_path)
yield (img_path, int(label))
elif mode == 'test':
img_path = os.path.join(DATA_DIR, line)
yield [img_path]
mapper = functools.partial(
process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)
return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)
def load_raw_image_uint8(sample):
img_arr = np.array(Image.open(sample[0])).astype('int64')
return img_arr, int(sample[1])
def train_raw(file_list=TRAIN_LIST, shuffle=True):
def reader():
with open(file_list) as flist:
full_lines = [line.strip() for line in flist]
if shuffle:
random.shuffle(full_lines)
trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
trainer_count = int(os.getenv("PADDLE_TRAINERS"))
per_node_lines = len(full_lines) / trainer_count
lines = full_lines[trainer_id * per_node_lines:(trainer_id + 1) *
per_node_lines]
print("read images from %d, length: %d, lines length: %d, total: %d"
% (trainer_id * per_node_lines, per_node_lines, len(lines),
len(full_lines)))
for line in lines:
img_path, label = line.split()
img_path = img_path.replace("JPEG", "jpeg")
img_path = os.path.join(DATA_DIR, "train", img_path)
yield (img_path, int(label))
return paddle.reader.xmap_readers(load_raw_image_uint8, reader, THREAD,
BUF_SIZE)
def train(file_list=TRAIN_LIST, xmap=True):
return _reader_creator(
file_list,
'train',
shuffle=True,
color_jitter=False,
rotate=False,
xmap=xmap)
def val(file_list=TEST_LIST, xmap=True):
return _reader_creator(file_list, 'val', shuffle=False, xmap=xmap)
def test(file_list=TEST_LIST):
return _reader_creator(file_list, 'test', shuffle=False)
if __name__ == "__main__":
c = 0
start_t = time.time()
for d in train()():
c += 1
if c >= 10000:
break
spent = time.time() - start_t
print("read 10000 speed: ", 10000 / spent, spent)
......@@ -163,6 +163,19 @@ def gen_job():
volumes.append({"name": "dshm", "emptyDir": {"medium": "Memory"}})
volumeMounts.append({"mountPath": "/dev/shm", "name": "dshm"})
# add ceph volumes
volumes.append({
"name": "ceph-data",
"cephfs": {
"monitors": ["192.168.16.23:6789"],
"secretRef": {
"name": "ceph-secret"
},
"user": "admin",
}
})
volumeMounts.append({"mountPath": "/mnt/data", "name": "ceph-data"})
tn["spec"]["template"]["spec"]["volumes"] = volumes
tn_container["volumeMounts"] = volumeMounts
......
......@@ -13,5 +13,6 @@
# limitations under the License.
__all__ = [
"machine_translation", "resnet", "vgg", "mnist", "stacked_dynamic_lstm"
"machine_translation", "resnet", "vgg", "mnist", "stacked_dynamic_lstm",
"resnet_with_preprocess"
]
......@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""seq2seq model for fluid."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
......@@ -181,7 +182,7 @@ def lodtensor_to_ndarray(lod_tensor):
return ndarray
def get_model(args):
def get_model(args, is_train, main_prog, startup_prog):
if args.use_reader_op:
raise Exception("machine_translation do not support reader op for now.")
embedding_dim = 512
......@@ -190,6 +191,9 @@ def get_model(args):
dict_size = 30000
beam_size = 3
max_length = 250
with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard():
avg_cost, feeding_list = seq_to_seq_net(
embedding_dim,
encoder_size,
......@@ -199,21 +203,15 @@ def get_model(args):
False,
beam_size=beam_size,
max_length=max_length)
# clone from default main program
inference_program = fluid.default_main_program().clone()
if is_train:
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
optimizer.minimize(avg_cost)
train_batch_generator = paddle.batch(
batch_generator = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size), buf_size=1000),
paddle.dataset.wmt14.train(dict_size)
if is_train else paddle.dataset.wmt14.test(dict_size),
buf_size=1000),
batch_size=args.batch_size * args.gpus)
test_batch_generator = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.test(dict_size), buf_size=1000),
batch_size=args.batch_size)
return avg_cost, inference_program, optimizer, train_batch_generator, \
test_batch_generator, None
return avg_cost, optimizer, [], batch_generator, None
......@@ -65,61 +65,50 @@ def cnn_model(data):
return predict
def get_model(args):
if args.use_reader_op:
def get_model(args, is_train, main_prog, startup_prog):
# NOTE: mnist is small, we don't implement data sharding yet.
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
with fluid.program_guard(main_prog, startup_prog):
if args.use_reader_op:
data_file_handle = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1, 1, 28, 28], (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
thread_num=1,
pass_num=1)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
images, label = fluid.layers.read_file(data_file)
data_file_handle, batch_size=args.batch_size))
with fluid.unique_name.guard():
if args.use_reader_op:
input, label = fluid.layers.read_file(data_file)
else:
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
if args.device == 'CPU' and args.cpus > 1:
places = fluid.layers.get_places(args.cpus)
pd = fluid.layers.ParallelDo(places)
with pd.do():
predict = cnn_model(pd.read_input(images))
label = pd.read_input(label)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
batch_acc = fluid.layers.accuracy(input=predict, label=label)
images = fluid.layers.data(
name='pixel', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(
name='label', shape=[1], dtype='int64')
pd.write_output(avg_cost)
pd.write_output(batch_acc)
avg_cost, batch_acc = pd()
avg_cost = fluid.layers.mean(avg_cost)
batch_acc = fluid.layers.mean(batch_acc)
else:
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
# Evaluator
batch_acc = fluid.layers.accuracy(input=predict, label=label)
# inference program
inference_program = fluid.default_main_program().clone()
# Optimization
if is_train:
opt = fluid.optimizer.AdamOptimizer(
learning_rate=0.001, beta1=0.9, beta2=0.999)
opt.minimize()
if args.memory_optimize:
fluid.memory_optimize(main_prog)
# Reader
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=args.batch_size * args.gpus)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=args.batch_size)
return avg_cost, inference_program, opt, train_reader, test_reader, batch_acc
if is_train:
reader = paddle.dataset.mnist.train()
else:
reader = paddle.dataset.mnist.test()
batched_reader = paddle.batch(
reader, batch_size=args.batch_size * args.gpus)
return avg_cost, opt, [batch_acc], batched_reader, data_file_handle
......@@ -27,10 +27,17 @@ import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
from recordio_converter import imagenet_train, imagenet_test
# from recordio_converter import imagenet_train, imagenet_test
from imagenet_reader import train, val
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
def conv_bn_layer(input,
ch_out,
filter_size,
stride,
padding,
act='relu',
is_train=True):
conv1 = fluid.layers.conv2d(
input=input,
filter_size=filter_size,
......@@ -39,29 +46,31 @@ def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
padding=padding,
act=None,
bias_attr=False)
return fluid.layers.batch_norm(input=conv1, act=act)
return fluid.layers.batch_norm(input=conv1, act=act, is_test=not is_train)
def shortcut(input, ch_out, stride):
def shortcut(input, ch_out, stride, is_train=True):
ch_in = input.shape[1] # if args.data_format == 'NCHW' else input.shape[-1]
if ch_in != ch_out:
return conv_bn_layer(input, ch_out, 1, stride, 0, None)
return conv_bn_layer(
input, ch_out, 1, stride, 0, None, is_train=is_train)
else:
return input
def basicblock(input, ch_out, stride):
short = shortcut(input, ch_out, stride)
conv1 = conv_bn_layer(input, ch_out, 3, stride, 1)
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None)
def basicblock(input, ch_out, stride, is_train=True):
short = shortcut(input, ch_out, stride, is_train=is_train)
conv1 = conv_bn_layer(input, ch_out, 3, stride, 1, is_train=is_train)
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None, is_train=is_train)
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def bottleneck(input, ch_out, stride):
short = shortcut(input, ch_out * 4, stride)
conv1 = conv_bn_layer(input, ch_out, 1, stride, 0)
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1)
conv3 = conv_bn_layer(conv2, ch_out * 4, 1, 1, 0, act=None)
def bottleneck(input, ch_out, stride, is_train=True):
short = shortcut(input, ch_out * 4, stride, is_train=is_train)
conv1 = conv_bn_layer(input, ch_out, 1, stride, 0, is_train=is_train)
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, is_train=is_train)
conv3 = conv_bn_layer(
conv2, ch_out * 4, 1, 1, 0, act=None, is_train=is_train)
return fluid.layers.elementwise_add(x=short, y=conv3, act='relu')
......@@ -72,7 +81,11 @@ def layer_warp(block_func, input, ch_out, count, stride):
return res_out
def resnet_imagenet(input, class_dim, depth=50, data_format='NCHW'):
def resnet_imagenet(input,
class_dim,
depth=50,
data_format='NCHW',
is_train=True):
cfg = {
18: ([2, 2, 2, 1], basicblock),
......@@ -115,8 +128,9 @@ def resnet_cifar10(input, class_dim, depth=32, data_format='NCHW'):
return out
def get_model(args):
def _model_reader_dshape_classdim(args, is_train):
model = resnet_cifar10
reader = None
if args.data_set == "cifar10":
class_dim = 10
if args.data_format == 'NCHW':
......@@ -124,8 +138,10 @@ def get_model(args):
else:
dshape = [32, 32, 3]
model = resnet_cifar10
train_reader = paddle.dataset.cifar.train10()
test_reader = paddle.dataset.cifar.test10()
if is_train:
reader = paddle.dataset.cifar.train10()
else:
reader = paddle.dataset.cifar.test10()
elif args.data_set == "flowers":
class_dim = 102
if args.data_format == 'NCHW':
......@@ -133,8 +149,10 @@ def get_model(args):
else:
dshape = [224, 224, 3]
model = resnet_imagenet
train_reader = paddle.dataset.flowers.train()
test_reader = paddle.dataset.flowers.test()
if is_train:
reader = paddle.dataset.flowers.train()
else:
reader = paddle.dataset.flowers.test()
elif args.data_set == "imagenet":
class_dim = 1000
if args.data_format == 'NCHW':
......@@ -145,64 +163,89 @@ def get_model(args):
if not args.data_path:
raise Exception(
"Must specify --data_path when training with imagenet")
train_reader = imagenet_train(args.data_path)
test_reader = imagenet_test(args.data_path)
if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1] + dshape, (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
input, label = fluid.layers.read_file(data_file)
if not args.use_reader_op:
if is_train:
reader = train()
else:
input = fluid.layers.data(name='data', shape=dshape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
if args.device == 'CPU' and args.cpus > 1:
places = fluid.layers.get_places(args.cpus)
pd = fluid.layers.ParallelDo(places)
with pd.do():
predict = model(pd.read_input(input), class_dim)
label = pd.read_input(label)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
batch_acc = fluid.layers.accuracy(input=predict, label=label)
reader = val()
else:
if is_train:
reader = train(xmap=False)
else:
reader = val(xmap=False)
return model, reader, dshape, class_dim
pd.write_output(avg_cost)
pd.write_output(batch_acc)
avg_cost, batch_acc = pd()
avg_cost = fluid.layers.mean(avg_cost)
batch_acc = fluid.layers.mean(batch_acc)
def get_model(args, is_train, main_prog, startup_prog):
model, reader, dshape, class_dim = _model_reader_dshape_classdim(args,
is_train)
pyreader = None
trainer_count = int(os.getenv("PADDLE_TRAINERS"))
with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard():
if args.use_reader_op:
pyreader = fluid.layers.py_reader(
capacity=args.batch_size * args.gpus,
shapes=([-1] + dshape, (-1, 1)),
dtypes=('float32', 'int64'),
name="train_reader" if is_train else "test_reader",
use_double_buffer=True)
input, label = fluid.layers.read_file(pyreader)
else:
predict = model(input, class_dim)
input = fluid.layers.data(
name='data', shape=dshape, dtype='float32')
label = fluid.layers.data(
name='label', shape=[1], dtype='int64')
predict = model(input, class_dim, is_train=is_train)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
batch_acc = fluid.layers.accuracy(input=predict, label=label)
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
inference_program = fluid.io.get_inference_program(
target_vars=[batch_acc])
optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
batch_acc1 = fluid.layers.accuracy(input=predict, label=label, k=1)
batch_acc5 = fluid.layers.accuracy(input=predict, label=label, k=5)
batched_train_reader = paddle.batch(
train_reader if args.no_random else paddle.reader.shuffle(
train_reader, buf_size=5120),
# configure optimize
optimizer = None
if is_train:
if args.use_lars:
lars_decay = 1.0
else:
lars_decay = 0.0
total_images = 1281167 / trainer_count
step = int(total_images / args.batch_size + 1)
epochs = [30, 60, 80, 90]
bd = [step * e for e in epochs]
base_lr = args.learning_rate
lr = []
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
optimizer = fluid.optimizer.Momentum(
learning_rate=base_lr,
#learning_rate=fluid.layers.piecewise_decay(
# boundaries=bd, values=lr),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
optimizer.minimize(avg_cost)
if args.memory_optimize:
fluid.memory_optimize(main_prog)
# config readers
if not args.use_reader_op:
batched_reader = paddle.batch(
reader if args.no_random else paddle.reader.shuffle(
reader, buf_size=5120),
batch_size=args.batch_size * args.gpus,
drop_last=True)
batched_test_reader = paddle.batch(
test_reader, batch_size=args.batch_size, drop_last=True)
return avg_cost, inference_program, optimizer, batched_train_reader,\
batched_test_reader, batch_acc
else:
batched_reader = None
pyreader.decorate_paddle_reader(
paddle.batch(
reader if args.no_random else paddle.reader.shuffle(
reader, buf_size=5120),
batch_size=args.batch_size))
return avg_cost, optimizer, [batch_acc1,
batch_acc5], batched_reader, pyreader
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import numpy as np
import time
import os
import cProfile, pstats, StringIO
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
# from recordio_converter import imagenet_train, imagenet_test
from imagenet_reader import train_raw, val
def conv_bn_layer(input,
ch_out,
filter_size,
stride,
padding,
act='relu',
is_train=True):
conv1 = fluid.layers.conv2d(
input=input,
filter_size=filter_size,
num_filters=ch_out,
stride=stride,
padding=padding,
act=None,
bias_attr=False)
return fluid.layers.batch_norm(input=conv1, act=act, is_test=not is_train)
def shortcut(input, ch_out, stride, is_train=True):
ch_in = input.shape[1] # if args.data_format == 'NCHW' else input.shape[-1]
if ch_in != ch_out:
return conv_bn_layer(
input, ch_out, 1, stride, 0, None, is_train=is_train)
else:
return input
def basicblock(input, ch_out, stride, is_train=True):
short = shortcut(input, ch_out, stride, is_train=is_train)
conv1 = conv_bn_layer(input, ch_out, 3, stride, 1, is_train=is_train)
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None, is_train=is_train)
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def bottleneck(input, ch_out, stride, is_train=True):
short = shortcut(input, ch_out * 4, stride, is_train=is_train)
conv1 = conv_bn_layer(input, ch_out, 1, stride, 0, is_train=is_train)
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, is_train=is_train)
conv3 = conv_bn_layer(
conv2, ch_out * 4, 1, 1, 0, act=None, is_train=is_train)
return fluid.layers.elementwise_add(x=short, y=conv3, act='relu')
def layer_warp(block_func, input, ch_out, count, stride):
res_out = block_func(input, ch_out, stride)
for i in range(1, count):
res_out = block_func(res_out, ch_out, 1)
return res_out
def resnet_imagenet(input,
class_dim,
depth=50,
data_format='NCHW',
is_train=True):
cfg = {
18: ([2, 2, 2, 1], basicblock),
34: ([3, 4, 6, 3], basicblock),
50: ([3, 4, 6, 3], bottleneck),
101: ([3, 4, 23, 3], bottleneck),
152: ([3, 8, 36, 3], bottleneck)
}
stages, block_func = cfg[depth]
conv1 = conv_bn_layer(input, ch_out=64, filter_size=7, stride=2, padding=3)
pool1 = fluid.layers.pool2d(
input=conv1, pool_type='avg', pool_size=3, pool_stride=2)
res1 = layer_warp(block_func, pool1, 64, stages[0], 1)
res2 = layer_warp(block_func, res1, 128, stages[1], 2)
res3 = layer_warp(block_func, res2, 256, stages[2], 2)
res4 = layer_warp(block_func, res3, 512, stages[3], 2)
pool2 = fluid.layers.pool2d(
input=res4,
pool_size=7,
pool_type='avg',
pool_stride=1,
global_pooling=True)
out = fluid.layers.fc(input=pool2, size=class_dim, act='softmax')
return out
def resnet_cifar10(input, class_dim, depth=32, data_format='NCHW'):
assert (depth - 2) % 6 == 0
n = (depth - 2) // 6
conv1 = conv_bn_layer(
input=input, ch_out=16, filter_size=3, stride=1, padding=1)
res1 = layer_warp(basicblock, conv1, 16, n, 1)
res2 = layer_warp(basicblock, res1, 32, n, 2)
res3 = layer_warp(basicblock, res2, 64, n, 2)
pool = fluid.layers.pool2d(
input=res3, pool_size=8, pool_type='avg', pool_stride=1)
out = fluid.layers.fc(input=pool, size=class_dim, act='softmax')
return out
def _model_reader_dshape_classdim(args, is_train):
model = resnet_cifar10
reader = None
if args.data_set == "cifar10":
class_dim = 10
if args.data_format == 'NCHW':
dshape = [3, 32, 32]
else:
dshape = [32, 32, 3]
model = resnet_cifar10
if is_train:
reader = paddle.dataset.cifar.train10()
else:
reader = paddle.dataset.cifar.test10()
elif args.data_set == "flowers":
class_dim = 102
if args.data_format == 'NCHW':
dshape = [3, 224, 224]
else:
dshape = [224, 224, 3]
model = resnet_imagenet
if is_train:
reader = paddle.dataset.flowers.train()
else:
reader = paddle.dataset.flowers.test()
elif args.data_set == "imagenet":
class_dim = 1000
if args.data_format == 'NCHW':
dshape = [3, 224, 224]
else:
dshape = [224, 224, 3]
model = resnet_imagenet
if not args.data_path:
raise Exception(
"Must specify --data_path when training with imagenet")
if not args.use_reader_op:
if is_train:
reader = train_raw()
else:
reader = val()
else:
if is_train:
reader = train_raw()
else:
reader = val(xmap=False)
return model, reader, dshape, class_dim
def get_model(args, is_train, main_prog, startup_prog):
model, reader, dshape, class_dim = _model_reader_dshape_classdim(args,
is_train)
pyreader = None
trainer_count = int(os.getenv("PADDLE_TRAINERS"))
with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard():
if args.use_reader_op:
pyreader = fluid.layers.py_reader(
capacity=args.batch_size * args.gpus,
shapes=([-1] + dshape, (-1, 1)),
dtypes=('uint8', 'int64'),
name="train_reader" if is_train else "test_reader",
use_double_buffer=True)
input, label = fluid.layers.read_file(pyreader)
else:
input = fluid.layers.data(
name='data', shape=dshape, dtype='uint8')
label = fluid.layers.data(
name='label', shape=[1], dtype='int64')
# add imagenet preprocessors
random_crop = fluid.layers.random_crop(input, dshape)
casted = fluid.layers.cast(random_crop, 'float32')
# input is HWC
trans = fluid.layers.transpose(casted, [0, 3, 1, 2]) / 255.0
img_mean = fluid.layers.tensor.assign(
np.array([0.485, 0.456, 0.406]).astype('float32').reshape((3, 1,
1)))
img_std = fluid.layers.tensor.assign(
np.array([0.229, 0.224, 0.225]).astype('float32').reshape((3, 1,
1)))
h1 = fluid.layers.elementwise_sub(trans, img_mean, axis=1)
h2 = fluid.layers.elementwise_div(h1, img_std, axis=1)
# pre_out = (trans - img_mean) / img_std
predict = model(h2, class_dim, is_train=is_train)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
batch_acc1 = fluid.layers.accuracy(input=predict, label=label, k=1)
batch_acc5 = fluid.layers.accuracy(input=predict, label=label, k=5)
# configure optimize
optimizer = None
if is_train:
if args.use_lars:
lars_decay = 1.0
else:
lars_decay = 0.0
total_images = 1281167 / trainer_count
step = int(total_images / args.batch_size + 1)
epochs = [30, 60, 80, 90]
bd = [step * e for e in epochs]
base_lr = args.learning_rate
lr = []
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
optimizer = fluid.optimizer.Momentum(
learning_rate=base_lr,
#learning_rate=fluid.layers.piecewise_decay(
# boundaries=bd, values=lr),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
optimizer.minimize(avg_cost)
if args.memory_optimize:
fluid.memory_optimize(main_prog)
# config readers
if not args.use_reader_op:
batched_reader = paddle.batch(
reader if args.no_random else paddle.reader.shuffle(
reader, buf_size=5120),
batch_size=args.batch_size * args.gpus,
drop_last=True)
else:
batched_reader = None
pyreader.decorate_paddle_reader(
paddle.batch(
# reader if args.no_random else paddle.reader.shuffle(
# reader, buf_size=5120),
reader,
batch_size=args.batch_size))
return avg_cost, optimizer, [batch_acc1,
batch_acc5], batched_reader, pyreader
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.fluid as fluid
import math
import os
from imagenet_reader import train, val
__all__ = [
"SE_ResNeXt", "SE_ResNeXt50_32x4d", "SE_ResNeXt101_32x4d",
"SE_ResNeXt152_32x4d", "get_model"
]
train_parameters = {
"input_size": [3, 224, 224],
"input_mean": [0.485, 0.456, 0.406],
"input_std": [0.229, 0.224, 0.225],
"learning_strategy": {
"name": "piecewise_decay",
"batch_size": 256,
"epochs": [30, 60, 90],
"steps": [0.1, 0.01, 0.001, 0.0001]
}
}
class SE_ResNeXt():
def __init__(self, layers=50, is_train=True):
self.params = train_parameters
self.layers = layers
self.is_train = is_train
def net(self, input, class_dim=1000):
layers = self.layers
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
cardinality = 32
reduction_ratio = 16
depth = [3, 4, 6, 3]
num_filters = [128, 256, 512, 1024]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
elif layers == 101:
cardinality = 32
reduction_ratio = 16
depth = [3, 4, 23, 3]
num_filters = [128, 256, 512, 1024]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
elif layers == 152:
cardinality = 64
reduction_ratio = 16
depth = [3, 8, 36, 3]
num_filters = [128, 256, 512, 1024]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=3,
stride=2,
act='relu')
conv = self.conv_bn_layer(
input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
conv = self.conv_bn_layer(
input=conv,
num_filters=128,
filter_size=3,
stride=1,
act='relu')
conv = fluid.layers.pool2d(
input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
pool_type='max')
for block in range(len(depth)):
for i in range(depth[block]):
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
reduction_ratio=reduction_ratio)
pool = fluid.layers.pool2d(
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
drop = fluid.layers.dropout(x=pool, dropout_prob=0.5)
stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
out = fluid.layers.fc(input=drop,
size=class_dim,
act='softmax',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv,
stdv)))
return out
def shortcut(self, input, ch_out, stride):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
filter_size = 1
return self.conv_bn_layer(input, ch_out, filter_size, stride)
else:
return input
def bottleneck_block(self, input, num_filters, stride, cardinality,
reduction_ratio):
conv0 = self.conv_bn_layer(
input=input, num_filters=num_filters, filter_size=1, act='relu')
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
groups=cardinality,
act='relu')
conv2 = self.conv_bn_layer(
input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
scale = self.squeeze_excitation(
input=conv2,
num_channels=num_filters * 2,
reduction_ratio=reduction_ratio)
short = self.shortcut(input, num_filters * 2, stride)
return fluid.layers.elementwise_add(x=short, y=scale, act='relu')
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) / 2,
groups=groups,
act=None,
bias_attr=False)
return fluid.layers.batch_norm(
input=conv, act=act, is_test=not self.is_train)
def squeeze_excitation(self, input, num_channels, reduction_ratio):
pool = fluid.layers.pool2d(
input=input, pool_size=0, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
squeeze = fluid.layers.fc(input=pool,
size=num_channels / reduction_ratio,
act='relu',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(
-stdv, stdv)))
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
excitation = fluid.layers.fc(input=squeeze,
size=num_channels,
act='sigmoid',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(
-stdv, stdv)))
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
return scale
def SE_ResNeXt50_32x4d():
model = SE_ResNeXt(layers=50)
return model
def SE_ResNeXt101_32x4d():
model = SE_ResNeXt(layers=101)
return model
def SE_ResNeXt152_32x4d():
model = SE_ResNeXt(layers=152)
return model
def get_model(args, is_train, main_prog, startup_prog):
model = SE_ResNeXt(layers=50)
batched_reader = None
pyreader = None
trainer_count = int(os.getenv("PADDLE_TRAINERS"))
dshape = train_parameters["input_size"]
with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard():
if args.use_reader_op:
pyreader = fluid.layers.py_reader(
capacity=10,
shapes=([-1] + dshape, (-1, 1)),
dtypes=('float32', 'int64'),
name="train_reader" if is_train else "test_reader",
use_double_buffer=True)
input, label = fluid.layers.read_file(pyreader)
else:
input = fluid.layers.data(
name='data', shape=dshape, dtype='float32')
label = fluid.layers.data(
name='label', shape=[1], dtype='int64')
out = model.net(input=input)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
optimizer = None
if is_train:
if args.use_lars:
lars_decay = 1.0
else:
lars_decay = 0.0
total_images = 1281167 / trainer_count
step = int(total_images / args.batch_size + 1)
epochs = [40, 80, 100]
bd = [step * e for e in epochs]
base_lr = args.learning_rate
lr = []
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
optimizer = fluid.optimizer.Momentum(
# learning_rate=base_lr,
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4),
LARS_weight_decay=lars_decay)
optimizer.minimize(avg_cost)
if args.memory_optimize:
fluid.memory_optimize(main_prog)
# config readers
if is_train:
reader = train()
else:
reader = val()
if not args.use_reader_op:
batched_reader = paddle.batch(
reader, batch_size=args.batch_size * args.gpus, drop_last=True)
else:
pyreader.decorate_paddle_reader(
paddle.batch(
reader, batch_size=args.batch_size))
return avg_cost, optimizer, [acc_top1, acc_top5], batched_reader, pyreader
......@@ -26,7 +26,6 @@ import numpy
import paddle
import paddle.dataset.imdb as imdb
import paddle.fluid as fluid
import paddle.batch as batch
import paddle.fluid.profiler as profiler
word_dict = imdb.word_dict()
......@@ -43,19 +42,7 @@ def crop_sentence(reader, crop_size):
return __impl__
def get_model(args):
if args.use_reader_op:
raise Exception(
"stacked_dynamic_lstm do not support reader op for now.")
lstm_size = 512
emb_dim = 512
crop_size = 1500
data = fluid.layers.data(
name="words", shape=[1], lod_level=1, dtype='int64')
sentence = fluid.layers.embedding(
input=data, size=[len(word_dict), emb_dim])
def lstm_net(sentence, lstm_size):
sentence = fluid.layers.fc(input=sentence, size=lstm_size, act='tanh')
rnn = fluid.layers.DynamicRNN()
......@@ -97,6 +84,24 @@ def get_model(args):
last = fluid.layers.sequence_pool(rnn(), 'last')
logit = fluid.layers.fc(input=last, size=2, act='softmax')
return logit
def get_model(args, is_train, main_prog, startup_prog):
if args.use_reader_op:
raise Exception(
"stacked_dynamic_lstm do not support reader op for now.")
lstm_size = 512
emb_dim = 512
crop_size = 1500
with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard():
data = fluid.layers.data(
name="words", shape=[1], lod_level=1, dtype='int64')
sentence = fluid.layers.embedding(
input=data, size=[len(word_dict), emb_dim])
logit = lstm_net(sentence, lstm_size)
loss = fluid.layers.cross_entropy(
input=logit,
label=fluid.layers.data(
......@@ -108,20 +113,18 @@ def get_model(args):
batch_acc = fluid.layers.accuracy(input=logit, label=fluid.layers.data(name='label', \
shape=[1], dtype='int64'), total=batch_size_tensor)
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
inference_program = fluid.io.get_inference_program(
target_vars=[batch_acc, batch_size_tensor])
if is_train:
adam = fluid.optimizer.Adam()
adam.minimize(loss)
if is_train:
reader = crop_sentence(imdb.train(word_dict), crop_size)
else:
reader = crop_sentence(imdb.test(word_dict), crop_size)
train_reader = batch(
batched_reader = paddle.batch(
paddle.reader.shuffle(
crop_sentence(imdb.train(word_dict), crop_size), buf_size=25000),
reader, buf_size=25000),
batch_size=args.batch_size * args.gpus)
test_reader = batch(
paddle.reader.shuffle(
crop_sentence(imdb.test(word_dict), crop_size), buf_size=25000),
batch_size=args.batch_size)
return loss, inference_program, adam, train_reader, test_reader, batch_acc
return loss, adam, [batch_acc], batched_reader, None
......@@ -25,7 +25,7 @@ import functools
import os
def vgg16_bn_drop(input):
def vgg16_bn_drop(input, is_train=True):
def conv_block(input, num_filter, groups, dropouts):
return fluid.nets.img_conv_group(
input=input,
......@@ -46,13 +46,13 @@ def vgg16_bn_drop(input):
drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
fc1 = fluid.layers.fc(input=drop, size=512, act=None)
bn = fluid.layers.batch_norm(input=fc1, act='relu')
bn = fluid.layers.batch_norm(input=fc1, act='relu', is_test=not is_train)
drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
return fc2
def get_model(args):
def get_model(args, is_train, main_prog, startup_prog):
if args.data_set == "cifar10":
classdim = 10
if args.data_format == 'NCHW':
......@@ -65,29 +65,31 @@ def get_model(args):
data_shape = [3, 224, 224]
else:
data_shape = [224, 224, 3]
if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
with fluid.program_guard(main_prog, startup_prog):
if args.use_reader_op:
data_file_handle = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1] + data_shape, (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
thread_num=1,
pass_num=1)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
data_file_handle, batch_size=args.batch_size))
with fluid.unique_name.guard():
if args.use_reader_op:
images, label = fluid.layers.read_file(data_file)
else:
images = fluid.layers.data(
name='data', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
label = fluid.layers.data(
name='label', shape=[1], dtype='int64')
# Train program
net = vgg16_bn_drop(images)
net = vgg16_bn_drop(images, is_train=is_train)
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
......@@ -96,26 +98,23 @@ def get_model(args):
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)
# inference program
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
inference_program = fluid.io.get_inference_program(
target_vars=[batch_acc, batch_size_tensor])
# Optimization
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
if is_train:
optimizer = fluid.optimizer.Adam(
learning_rate=args.learning_rate)
optimizer.minimize(avg_cost)
# data reader
train_reader = paddle.batch(
if is_train:
reader = paddle.dataset.cifar.train10() \
if args.data_set == 'cifar10' else paddle.dataset.flowers.train()
else:
reader = paddle.dataset.cifar.test10() \
if args.data_set == 'cifar10' else paddle.dataset.flowers.test()
batched_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120),
reader, buf_size=5120),
batch_size=args.batch_size * args.gpus)
test_reader = paddle.batch(
paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
batch_size=args.batch_size)
return avg_cost, inference_program, optimizer, train_reader, test_reader, batch_acc
return avg_cost, optimizer, [batch_acc], batched_reader, data_file_handle
......@@ -66,7 +66,7 @@ paddle.fluid.InferenceTranspiler.transpile ArgSpec(args=['self', 'program', 'pla
paddle.fluid.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0))
paddle.fluid.release_memory ArgSpec(args=['input_program', 'skip_opt_set'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspilerConfig.__init__
paddle.fluid.ParallelExecutor.__init__ ArgSpec(args=['self', 'use_cuda', 'loss_name', 'main_program', 'share_vars_from', 'exec_strategy', 'build_strategy', 'num_trainers', 'trainer_id'], varargs=None, keywords='kwargs', defaults=(None, None, None, None, None, 1, 0))
paddle.fluid.ParallelExecutor.__init__ ArgSpec(args=['self', 'use_cuda', 'loss_name', 'main_program', 'share_vars_from', 'exec_strategy', 'build_strategy', 'num_trainers', 'trainer_id', 'scope'], varargs=None, keywords='kwargs', defaults=(None, None, None, None, None, 1, 0, None))
paddle.fluid.ParallelExecutor.run ArgSpec(args=['self', 'fetch_list', 'feed', 'feed_dict', 'return_numpy'], varargs=None, keywords=None, defaults=(None, None, True))
paddle.fluid.ExecutionStrategy.__init__ __init__(self: paddle.fluid.core.ExecutionStrategy) -> None
paddle.fluid.BuildStrategy.GradientScaleStrategy.__init__ __init__(self: paddle.fluid.core.GradientScaleStrategy, arg0: int) -> None
......
......@@ -100,14 +100,13 @@ struct NCCLContextMap {
return;
}
std::unique_ptr<ncclComm_t[]> comms(new ncclComm_t[order_.size()]);
// if pass nccl_id here, can assume we are doing multi node training
if (nccl_id == nullptr) {
// if num_trainers == 1, should create a new nccl id for local comms.
if (num_trainers == 1) {
std::lock_guard<std::mutex> guard(NCCLGroupGuard::NCCLMutex());
PADDLE_ENFORCE(platform::dynload::ncclCommInitAll(
comms.get(), static_cast<int>(order_.size()), order_.data()));
} else {
PADDLE_ENFORCE_GT(num_trainers, 1);
// TODO(wuyi): need to ensure each node have same number of GPUs
PADDLE_ENFORCE_NOT_NULL(nccl_id);
{
int nranks = num_trainers * order_.size();
NCCLGroupGuard gurad;
......
......@@ -43,8 +43,9 @@ class ParallelExecutor(object):
num_trainers(int): If greater than 1, NCCL will be initialized with
multiple rank of nodes, each node should have same number of GPUs.
Distributed training will be enabled then. Default 1.
trainer_id(int: Must use together with num_trainers. trainer_id is the
trainer_id(int): Must use together with num_trainers. trainer_id is the
"rank" of current node starts from 0. Default 0.
scope(Scope): scope to run with, default use fluid.global_scope().
Returns:
ParallelExecutor: The initialized ParallelExecutor object.
......@@ -73,6 +74,7 @@ class ParallelExecutor(object):
build_strategy=None,
num_trainers=1,
trainer_id=0,
scope=None,
**kwargs):
if len(kwargs) != 0:
err_msg = ""
......@@ -131,6 +133,7 @@ class ParallelExecutor(object):
main = main_program
main = main if main else framework.default_main_program()
if scope == None:
scope = executor.global_scope()
# FIXME(Yancey1989): it's a temporary approach to determinate the distribute
# train program, call self.bcast_param() at the end of each mini-batch.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册