diff --git a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc b/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc deleted file mode 100644 index 9ff5f1f96f389b92325edd681bd4e00e7e4614d8..0000000000000000000000000000000000000000 --- a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc +++ /dev/null @@ -1,96 +0,0 @@ -// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include "paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h" - -namespace paddle { -namespace operators { - -class SequenceEnumerateOp : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - void InferShape(framework::InferShapeContext* ctx) const override { - OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceEnumerate"); - OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SequenceEnumerate"); - - const auto x_dims = ctx->GetInputDim("X"); - const auto win_size = ctx->Attrs().Get("win_size"); - ctx->SetOutputDim("Out", {x_dims[0], win_size}); - ctx->ShareLoD("X", "Out"); - } -}; - -class SequenceEnumerateOpMaker : public framework::OpProtoAndCheckerMaker { - public: - void Make() override { - AddInput("X", - "(2-D phi::DenseTensor with the 2nd dimension equal to 1) " - "Input phi::DenseTensor of SequenceEnumerate operator."); - AddOutput("Out", - "(2-D phi::DenseTensor with the 2nd dimension equal to win_size) " - "Output phi::DenseTensor of SequenceEnumerate operator."); - AddAttr("win_size", "(int) The enumerate sequence window size.") - .AddCustomChecker([](const int& win_size) { - PADDLE_ENFORCE_GE(win_size, - 2, - platform::errors::InvalidArgument( - "The window size should be not less than 2." - "Received window size is %d", - win_size)); - }); - AddAttr("pad_value", "(int) The enumerate sequence padding value.") - .SetDefault(0); - AddAttr(framework::kAllKernelsMustComputeRuntimeShape, - "Skip calling InferShape() function in the runtime.") - .SetDefault(true); - AddComment(R"DOC( -Sequence Enumerate Operator. - -Generate a new sequence for the input index sequence, which enumerates all the -sub-sequences with length `win_size` of the input. -The enumerated sequence has the same 1st dimension with variable `input`, and -the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation. - -Examples: -Case 1: - Input: - X.lod = [[0, 3, 5]] - X.data = [[1], [2], [3], [4], [5]] - X.dims = [5, 1] - Attrs: - win_size = 2 - pad_value = 0 - Output: - Out.lod = [[0, 3, 5]] - Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]] - Out.dims = [5, 2] - -)DOC"); - } -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; -REGISTER_OP_WITHOUT_GRADIENT(sequence_enumerate, - ops::SequenceEnumerateOp, - ops::SequenceEnumerateOpMaker); -PD_REGISTER_STRUCT_KERNEL(sequence_enumerate, - CPU, - ALL_LAYOUT, - ops::SequenceEnumerateKernel, - int32_t, - int64_t) {} diff --git a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cu b/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cu deleted file mode 100644 index 7884232e5b10f38c29c2c0a9d389fbf4f95318e2..0000000000000000000000000000000000000000 --- a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cu +++ /dev/null @@ -1,100 +0,0 @@ -// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include -#include - -#include "paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h" -#include "paddle/phi/backends/gpu/gpu_primitives.h" - -namespace paddle { -namespace operators { -using phi::PADDLE_CUDA_NUM_THREADS; - -template -__global__ void CalcOutPut(const T* in_data, - const size_t* in_lod, - const size_t lod_len, - const int64_t win_size, - const int64_t pad_value, - T* out_data) { - int index = blockIdx.x * blockDim.x + threadIdx.x; - if (index < in_lod[lod_len - 1]) { - int end_idx = 0; - // Get LoD interval of index - for (int i = 1; i < lod_len; ++i) { - if (index < in_lod[i]) { - end_idx = in_lod[i]; - break; - } - } - for (size_t i = 0; i < win_size; ++i) { - int word_pos = index + i; - out_data[index * win_size + i] = - word_pos < end_idx ? in_data[word_pos] : pad_value; - } - } -} - -template -class SequenceEnumerateOpCUDAKernel : public framework::OpKernel { - public: - void Compute(const framework::ExecutionContext& context) const override { - auto* in = context.Input("X"); - auto* out = context.Output("Out"); - int win_size = context.Attr("win_size"); - int pad_value = context.Attr("pad_value"); - - auto in_dims = in->dims(); - auto in_lod = in->lod(); - - PADDLE_ENFORCE_EQ( - static_cast(in_dims[0]), - in_lod[0].back(), - platform::errors::InvalidArgument( - "The actual input data's size mismatched with LoD information." - "Received input data size is %d (actual) vs %d (loD information).", - static_cast(in_dims[0]), - in_lod[0].back())); - - /* Generate enumerate sequence set */ - auto stream = context.cuda_device_context().stream(); - auto lod0 = in_lod[0]; - auto in_len = in->numel(); - auto in_data = in->data(); - out->Resize({in_dims[0], win_size}); - auto out_data = out->mutable_data(context.GetPlace()); - // Copy LoD to GPU - phi::MixVector mixv_lod0(&lod0); - const size_t* dev_in_lod_ptr = mixv_lod0.CUDAData(context.GetPlace()); - // Calc output tensor - CalcOutPut<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1, - PADDLE_CUDA_NUM_THREADS, - 0, - stream>>>( - in_data, dev_in_lod_ptr, lod0.size(), win_size, pad_value, out_data); - out->set_lod(in->lod()); - } -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; -PD_REGISTER_STRUCT_KERNEL(sequence_enumerate, - GPU, - ALL_LAYOUT, - ops::SequenceEnumerateOpCUDAKernel, - int32_t, - int64_t) {} diff --git a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h b/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h deleted file mode 100644 index 3eb7e51cfe0c6e83fc68278b468ec64631752066..0000000000000000000000000000000000000000 --- a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h +++ /dev/null @@ -1,95 +0,0 @@ -// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#pragma once - -#include "paddle/fluid/framework/op_registry.h" - -namespace paddle { -namespace operators { - -template -class SequenceEnumerateKernel : public framework::OpKernel { - public: - void Compute(const framework::ExecutionContext& context) const override { - auto* in = context.Input("X"); - auto* out = context.Output("Out"); - int win_size = context.Attr("win_size"); - auto pad_value = static_cast(context.Attr("pad_value")); - - PADDLE_ENFORCE_EQ( - in->lod().empty(), - false, - platform::errors::InvalidArgument( - "Input(X) phi::DenseTensor of SequenceEnumerateOp does not contain " - "LoD information.")); - - auto in_dims = phi::vectorize(in->dims()); - auto lod0 = in->lod()[0]; - PADDLE_ENFORCE_EQ( - static_cast(in_dims[0]), - lod0.back(), - platform::errors::InvalidArgument( - "The actual input data's size mismatched with LoD information." - "Received input data size is %d (actual) vs %d (loD information).", - static_cast(in_dims[0]), - lod0.back())); - PADDLE_ENFORCE_EQ( - in_dims.size(), - 2UL, - platform::errors::InvalidArgument( - "Input(X) of SequenceEnumerate operator's rank should be 2." - "Received %d instead.", - in_dims.size())); - PADDLE_ENFORCE_EQ(in_dims[1], - 1, - platform::errors::InvalidArgument( - "Input(X) of SequenceEnumerate operator's 2nd " - "dimension should be 1. Received %d instead.", - in_dims[1])); - - // Generate enumerate sequence set - auto in_data = in->data(); - out->Resize({in_dims[0], win_size}); - out->set_lod(in->lod()); - auto out_data = out->mutable_data(context.GetPlace()); - for (size_t i = 0; i < lod0.size() - 1; ++i) { - if (lod0[i] == lod0[i + 1]) continue; - int start = lod0[i]; - int end = lod0[i + 1]; - - int copy_size = win_size < end - start + 1 ? win_size : end - start + 1; - int mid = end + 1 - copy_size; - int pad_num = win_size - copy_size; - copy_size *= sizeof(T); - for (int idx = start; idx < mid; ++idx) { - std::memcpy(out_data, in_data + idx, copy_size); - out_data += win_size; - } - for (int idx = mid; idx < end; ++idx) { - copy_size -= sizeof(T); - pad_num++; - std::memcpy(out_data, in_data + idx, copy_size); - T* pdata = out_data + copy_size / sizeof(T); - for (int i = 0; i < pad_num; ++i) { - pdata[i] = pad_value; - } - out_data += win_size; - } - } - } -}; - -} // namespace operators -} // namespace paddle diff --git a/paddle/fluid/operators/sequence_ops/unity_build_rule.cmake b/paddle/fluid/operators/sequence_ops/unity_build_rule.cmake index a22e6865cf1033e199117621db21cb8ab9839c1d..c3903d68dd7bb8da772cbace78fe4db8bd0ba8ab 100644 --- a/paddle/fluid/operators/sequence_ops/unity_build_rule.cmake +++ b/paddle/fluid/operators/sequence_ops/unity_build_rule.cmake @@ -8,7 +8,6 @@ register_unity_group( cc sequence_concat_op.cc sequence_conv_op.cc - sequence_enumerate_op.cc sequence_erase_op.cc sequence_expand_op.cc sequence_mask_op.cc @@ -25,7 +24,6 @@ register_unity_group( sequence_conv_op.cu.cc) register_unity_group( cu - sequence_enumerate_op.cu sequence_erase_op.cu sequence_expand_op.cu sequence_pad_op.cu diff --git a/test/cpp/inference/api/CMakeLists.txt b/test/cpp/inference/api/CMakeLists.txt index 02d869e2a3caaa2d92744d76cb768a9a9b600873..e2facc779b190881ee9f9b5b29e36ce587b1dc9f 100644 --- a/test/cpp/inference/api/CMakeLists.txt +++ b/test/cpp/inference/api/CMakeLists.txt @@ -427,15 +427,6 @@ if(WITH_TESTING AND WITH_INFERENCE_API_TEST) inference_analysis_api_test(test_analyzer_lac ${LAC_INSTALL_DIR} analyzer_lac_tester.cc) - # Pyramid DNN - set(PYRAMID_DNN_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/pyramid_dnn") - download_model_and_data_without_verify( - ${PYRAMID_DNN_INSTALL_DIR} "PyramidDNN_model.tar.gz" - "PyramidDNN_data.txt.tar.gz") - inference_analysis_api_test( - test_analyzer_pyramid_dnn ${PYRAMID_DNN_INSTALL_DIR} - analyzer_pyramid_dnn_tester.cc) - # Ernie set(ERNIE_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/Ernie") download_model_and_data( diff --git a/test/cpp/inference/api/analyzer_pyramid_dnn_tester.cc b/test/cpp/inference/api/analyzer_pyramid_dnn_tester.cc deleted file mode 100644 index e7c606c0f73880184bc0cf1b8d814c3e7c35bce5..0000000000000000000000000000000000000000 --- a/test/cpp/inference/api/analyzer_pyramid_dnn_tester.cc +++ /dev/null @@ -1,219 +0,0 @@ -// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include "test/cpp/inference/api/tester_helper.h" - -namespace paddle { -namespace inference { - -struct DataRecord { - std::vector> query_basic, query_phrase, title_basic, - title_phrase; - std::vector lod1, lod2, lod3, lod4; - size_t batch_iter{0}, batch_size{1}, num_samples; // total number of samples - DataRecord() = default; - explicit DataRecord(const std::string &path, int batch_size = 1) - : batch_size(batch_size) { - Load(path); - } - DataRecord NextBatch() { - DataRecord data; - size_t batch_end = batch_iter + batch_size; - // NOTE skip the final batch, if no enough data is provided. - if (batch_end <= query_basic.size()) { - GetInputPerBatch( - query_basic, &data.query_basic, &data.lod1, batch_iter, batch_end); - GetInputPerBatch( - query_phrase, &data.query_phrase, &data.lod2, batch_iter, batch_end); - GetInputPerBatch( - title_basic, &data.title_basic, &data.lod3, batch_iter, batch_end); - GetInputPerBatch( - title_phrase, &data.title_phrase, &data.lod4, batch_iter, batch_end); - } - batch_iter += batch_size; - return data; - } - void Load(const std::string &path) { - std::ifstream file(path); - std::string line; - int num_lines = 0; - while (std::getline(file, line)) { - std::vector data; - split(line, ';', &data); - // load query data - std::vector query_basic_data; - split_to_int64(data[1], ' ', &query_basic_data); - std::vector query_phrase_data; - split_to_int64(data[2], ' ', &query_phrase_data); - // load title data - std::vector title_basic_data; - split_to_int64(data[3], ' ', &title_basic_data); - std::vector title_phrase_data; - split_to_int64(data[4], ' ', &title_phrase_data); - // filter the empty data - bool flag = - data[1].size() && data[2].size() && data[3].size() && data[4].size(); - if (flag) { - query_basic.push_back(std::move(query_basic_data)); - query_phrase.push_back(std::move(query_phrase_data)); - title_basic.push_back(std::move(title_basic_data)); - title_phrase.push_back(std::move(title_phrase_data)); - num_lines++; - } - } - num_samples = num_lines; - } -}; - -void PrepareInputs(std::vector *input_slots, - DataRecord *data, - int batch_size) { - PaddleTensor query_basic_tensor, query_phrase_tensor, title_basic_tensor, - title_phrase_tensor; - query_basic_tensor.name = "query_basic"; - query_phrase_tensor.name = "query_phrase"; - title_basic_tensor.name = "pos_title_basic"; - title_phrase_tensor.name = "pos_title_phrase"; - auto one_batch = data->NextBatch(); - // assign data - TensorAssignData( - &query_basic_tensor, one_batch.query_basic, one_batch.lod1); - TensorAssignData( - &query_phrase_tensor, one_batch.query_phrase, one_batch.lod2); - TensorAssignData( - &title_basic_tensor, one_batch.title_basic, one_batch.lod3); - TensorAssignData( - &title_phrase_tensor, one_batch.title_phrase, one_batch.lod4); - // Set inputs. - input_slots->assign({query_basic_tensor, - query_phrase_tensor, - title_basic_tensor, - title_phrase_tensor}); - for (auto &tensor : *input_slots) { - tensor.dtype = PaddleDType::INT64; - } -} - -void SetConfig(AnalysisConfig *cfg) { - cfg->SetModel(FLAGS_infer_model); - cfg->DisableGpu(); - cfg->SwitchSpecifyInputNames(); - cfg->SwitchIrOptim(); - cfg->SetCpuMathLibraryNumThreads(FLAGS_cpu_num_threads); - if (FLAGS_zero_copy) { - cfg->SwitchUseFeedFetchOps(false); - } -} - -void SetInput(std::vector> *inputs) { - DataRecord data(FLAGS_infer_data, FLAGS_batch_size); - std::vector input_slots; - int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1; - LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size; - for (int bid = 0; bid < epoch; ++bid) { - PrepareInputs(&input_slots, &data, FLAGS_batch_size); - (*inputs).emplace_back(input_slots); - } -} - -// Easy for profiling independently. -TEST(Analyzer_Pyramid_DNN, profile) { - AnalysisConfig cfg; - SetConfig(&cfg); - std::vector> outputs; - - std::vector> input_slots_all; - SetInput(&input_slots_all); - TestPrediction(reinterpret_cast(&cfg), - input_slots_all, - &outputs, - FLAGS_num_threads); - - if (FLAGS_num_threads == 1 && !FLAGS_test_all_data && !FLAGS_zero_copy) { - PADDLE_ENFORCE_GT(outputs.size(), - 0, - paddle::platform::errors::Fatal( - "The size of output should be greater than 0.")); - auto output = outputs.back(); - PADDLE_ENFORCE_EQ(output.size(), - 1UL, - paddle::platform::errors::Fatal( - "The size of output should be equal to 1.")); - size_t size = GetSize(output[0]); - PADDLE_ENFORCE_GT(size, - 0, - paddle::platform::errors::Fatal( - "The size of output should be greater than 0.")); - float *result = static_cast(output[0].data.data()); - // output is probability, which is in (0, 1). - for (size_t i = 0; i < size; i++) { - EXPECT_GT(result[i], 0); - EXPECT_LT(result[i], 1); - } - } -} - -// Check the fuse status -TEST(Analyzer_Pyramid_DNN, fuse_statis) { - AnalysisConfig cfg; - SetConfig(&cfg); - - int num_ops; - auto predictor = CreatePaddlePredictor(cfg); - auto fuse_statis = GetFuseStatis( - static_cast(predictor.get()), &num_ops); -} - -// Compare result of NativeConfig and AnalysisConfig -TEST(Analyzer_Pyramid_DNN, compare) { - AnalysisConfig cfg; - SetConfig(&cfg); - - std::vector> input_slots_all; - SetInput(&input_slots_all); - CompareNativeAndAnalysis( - reinterpret_cast(&cfg), input_slots_all); -} - -// Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy -TEST(Analyzer_Pyramid_DNN, compare_zero_copy) { - AnalysisConfig cfg; - SetConfig(&cfg); - - AnalysisConfig cfg1; - SetConfig(&cfg1); - - std::vector> input_slots_all; - SetInput(&input_slots_all); - std::vector outputs_name; - outputs_name.emplace_back("cos_sim_2.tmp_0"); - CompareAnalysisAndZeroCopy(reinterpret_cast(&cfg), - reinterpret_cast(&cfg1), - input_slots_all, - outputs_name); -} - -// Compare Deterministic result -TEST(Analyzer_Pyramid_DNN, compare_determine) { - AnalysisConfig cfg; - SetConfig(&cfg); - - std::vector> input_slots_all; - SetInput(&input_slots_all); - CompareDeterministic(reinterpret_cast(&cfg), - input_slots_all); -} - -} // namespace inference -} // namespace paddle diff --git a/test/sequence/test_sequence_enumerate_op.py b/test/sequence/test_sequence_enumerate_op.py deleted file mode 100644 index b17a14f47e191fad45534ae8d6ef642f96cc830c..0000000000000000000000000000000000000000 --- a/test/sequence/test_sequence_enumerate_op.py +++ /dev/null @@ -1,125 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -import unittest - -import numpy as np - -sys.path.append("../../python/paddle/fluid/tests/unittests") -from eager_op_test import OpTest - - -def sequence_enumerate(input_seq, in_lod, win_size, pad_value): - lod0 = [0] - for i in range(0, len(in_lod[0])): - lod0.append(lod0[i] + in_lod[0][i]) - out_seq = [] - for i in range(0, len(lod0) - 1): - for idx in range(lod0[i], lod0[i + 1]): - single_seq = [] - for word_idx in range(win_size): - word_pos = idx + word_idx - dat = ( - input_seq[word_pos] if word_pos < lod0[i + 1] else pad_value - ) - single_seq.append(dat) - out_seq.append(single_seq) - return out_seq - - -class TestSequenceEnumerateOp(OpTest): - def setUp(self): - self.op_type = "sequence_enumerate" - self.init_test_case() - self.inputs = {'X': (self.in_seq, self.lod)} - self.attrs = {'win_size': self.win_size, 'pad_value': self.pad_value} - self.outputs = {'Out': (self.out_seq, self.lod)} - - def test_check_output(self): - self.check_output() - - def init_test_case(self): - self.in_seq = np.random.randint(0, 10, (30, 1)).astype("int32") - self.lod = [[9, 4, 11, 6]] - self.win_size = 2 - self.pad_value = 0 - out_seq = sequence_enumerate( - self.in_seq, self.lod, self.win_size, self.pad_value - ) - self.out_seq = np.array(out_seq).astype("int32") - - -class TesSequenceEnumerateOpInt64(TestSequenceEnumerateOp): - def init_test_case(self): - self.in_seq = np.random.randint(0, 10, (30, 1)).astype("int64") - self.lod = [[9, 4, 11, 6]] - self.win_size = 2 - self.pad_value = 0 - out_seq = sequence_enumerate( - self.in_seq, self.lod, self.win_size, self.pad_value - ) - self.out_seq = np.array(out_seq).astype("int64") - - -class TestSequenceEnumerateOpLargeWinSize(TestSequenceEnumerateOp): - def init_test_case(self): - self.in_seq = np.random.randint(0, 10, (30, 1)).astype("int32") - self.lod = [[9, 4, 11, 6]] - self.win_size = 5 - self.pad_value = 0 - out_seq = sequence_enumerate( - self.in_seq, self.lod, self.win_size, self.pad_value - ) - self.out_seq = np.array(out_seq).astype("int32") - - -class TestSequenceEnumerateOpMaxWinSize(TestSequenceEnumerateOp): - def init_test_case(self): - self.in_seq = np.random.randint(0, 10, (30, 1)).astype("int32") - self.lod = [[9, 4, 11, 6]] - self.win_size = 30 - self.pad_value = 0 - out_seq = sequence_enumerate( - self.in_seq, self.lod, self.win_size, self.pad_value - ) - self.out_seq = np.array(out_seq).astype("int32") - - -class TestSequenceEnumerateOpLargePadValue(TestSequenceEnumerateOp): - def init_test_case(self): - self.in_seq = np.random.randint(0, 10, (30, 1)).astype("int32") - self.lod = [[9, 4, 11, 6]] - self.win_size = 5 - self.pad_value = 5 - out_seq = sequence_enumerate( - self.in_seq, self.lod, self.win_size, self.pad_value - ) - self.out_seq = np.array(out_seq).astype("int32") - - -class TestSequenceEnumerateOpLargePadValueSeqLen0(TestSequenceEnumerateOp): - def init_test_case(self): - self.in_seq = np.random.randint(0, 10, (30, 1)).astype("int32") - self.lod = [[0, 14, 0, 16, 0]] - self.win_size = 5 - self.pad_value = 5 - out_seq = sequence_enumerate( - self.in_seq, self.lod, self.win_size, self.pad_value - ) - self.out_seq = np.array(out_seq).astype("int32") - - -if __name__ == "__main__": - unittest.main() diff --git a/tools/parallel_UT_rule.py b/tools/parallel_UT_rule.py index 71f63175c45ae8ec70a17fc8a493bd3f51db245c..b2082c3e7eb088c89b3768065f7625e081f41b71 100755 --- a/tools/parallel_UT_rule.py +++ b/tools/parallel_UT_rule.py @@ -1293,7 +1293,6 @@ FOURTH_HIGH_PARALLEL_JOB_NEW = [ 'test_adaptive_avg_pool3d', 'test_paddle_save_load_binary', 'test_fused_fc_elementwise_layernorm_op', - 'test_sequence_enumerate_op', 'test_lgamma_op', 'test_modified_huber_loss_op', 'trt_quant_int8_test', @@ -2722,7 +2721,6 @@ TWO_PARALLEL_JOB = [ 'test_conv_shift_op', 'test_sequence_expand_as', 'test_cos_sim_op', - 'test_sequence_enumerate_op', 'test_sequence_concat', 'test_data_norm_op', 'test_decoupled_py_reader_data_check', diff --git a/tools/static_mode_white_list.py b/tools/static_mode_white_list.py index 79432c456e1c7cddefcde93c3522540b560f1dd5..a7e7ad08e3ab1df02ed9b84043e8a655925e8708 100755 --- a/tools/static_mode_white_list.py +++ b/tools/static_mode_white_list.py @@ -539,7 +539,6 @@ STATIC_MODE_TESTING_LIST = [ 'test_layers', 'test_sequence_concat', 'test_sequence_conv', - 'test_sequence_enumerate_op', 'test_sequence_erase_op', 'test_sequence_expand', 'test_sequence_expand_as',