Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f8e83196
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
f8e83196
编写于
7月 12, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into fix_is_taged
上级
9130a884
da3f7668
变更
33
显示空白变更内容
内联
并排
Showing
33 changed file
with
1568 addition
and
65 deletion
+1568
-65
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
...id/framework/details/scope_buffered_ssa_graph_executor.cc
+13
-2
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+11
-4
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
+3
-0
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+3
-0
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+167
-0
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+135
-0
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+1
-0
paddle/fluid/operators/math/math_function_impl.h
paddle/fluid/operators/math/math_function_impl.h
+1
-1
paddle/fluid/operators/math/matrix_bit_code.cc
paddle/fluid/operators/math/matrix_bit_code.cc
+176
-0
paddle/fluid/operators/math/matrix_bit_code.h
paddle/fluid/operators/math/matrix_bit_code.h
+143
-0
paddle/fluid/operators/reader/create_batch_reader_op.cc
paddle/fluid/operators/reader/create_batch_reader_op.cc
+5
-5
paddle/fluid/operators/squeeze_op.cc
paddle/fluid/operators/squeeze_op.cc
+202
-0
paddle/fluid/operators/unsqueeze_op.cc
paddle/fluid/operators/unsqueeze_op.cc
+191
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+9
-0
python/CMakeLists.txt
python/CMakeLists.txt
+12
-5
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+3
-0
python/paddle/fluid/annotations.py
python/paddle/fluid/annotations.py
+38
-0
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+1
-4
python/paddle/fluid/layers/device.py
python/paddle/fluid/layers/device.py
+3
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+69
-0
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+12
-12
python/paddle/fluid/tests/book/notest_understand_sentiment.py
...on/paddle/fluid/tests/book/notest_understand_sentiment.py
+2
-2
python/paddle/fluid/tests/book/test_recognize_digits.py
python/paddle/fluid/tests/book/test_recognize_digits.py
+10
-8
python/paddle/fluid/tests/book/test_word2vec.py
python/paddle/fluid/tests/book/test_word2vec.py
+2
-1
python/paddle/fluid/tests/book_memory_optimization/test_memopt_fit_a_line.py
.../tests/book_memory_optimization/test_memopt_fit_a_line.py
+5
-4
python/paddle/fluid/tests/unittests/test_calc_gradient.py
python/paddle/fluid/tests/unittests/test_calc_gradient.py
+0
-2
python/paddle/fluid/tests/unittests/test_get_places_op.py
python/paddle/fluid/tests/unittests/test_get_places_op.py
+2
-1
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
+99
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+12
-1
python/paddle/fluid/tests/unittests/test_optimizer.py
python/paddle/fluid/tests/unittests/test_optimizer.py
+11
-11
python/paddle/fluid/tests/unittests/test_parallel_op.py
python/paddle/fluid/tests/unittests/test_parallel_op.py
+2
-1
python/paddle/fluid/tests/unittests/test_squeeze_op.py
python/paddle/fluid/tests/unittests/test_squeeze_op.py
+114
-0
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
+111
-0
未找到文件。
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
浏览文件 @
f8e83196
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include <stdexcept>
#include <string>
#include <vector>
#include "paddle/fluid/framework/executor.h"
...
...
@@ -53,8 +54,14 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
}
}
}
std
::
vector
<
framework
::
LoDTensor
>
fetch_data
;
std
::
exception_ptr
eptr
;
try
{
fetch_data
=
underlying_executor_
->
Run
(
fetch_tensors
);
}
catch
(...)
{
eptr
=
std
::
current_exception
();
}
auto
fetch_data
=
underlying_executor_
->
Run
(
fetch_tensors
);
drop_scope_counter_
+=
1
;
if
(
!
fetch_tensors
.
empty
()
||
drop_scope_counter_
==
strategy_
.
num_iteration_per_drop_scope_
)
{
...
...
@@ -69,7 +76,11 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
scope
->
DeleteScope
(
local_scope
);
}
}
if
(
eptr
)
{
std
::
rethrow_exception
(
eptr
);
}
else
{
return
fetch_data
;
}
}
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
f8e83196
...
...
@@ -78,6 +78,10 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
set
.
clear
();
};
// Clean run context
run_op_futures_
.
clear
();
exception_
.
reset
();
// Step 3. Execution
while
(
!
pending_vars
.
empty
())
{
// 1. Run All Ready ops
...
...
@@ -96,16 +100,19 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto
cur_ready_vars
=
ready_vars
.
PopAll
(
1
,
&
timeout
);
if
(
timeout
)
{
std
::
lock_guard
<
std
::
mutex
>
l
(
exception_mu_
);
std
::
unique_lock
<
std
::
mutex
>
l
(
exception_mu_
);
if
(
exception_
)
{
l
.
unlock
();
for
(
auto
&
run_op_future
:
run_op_futures_
)
{
run_op_future
.
wait
();
}
l
.
lock
();
std
::
exception
*
exp
=
exception_
.
get
();
if
(
dynamic_cast
<
platform
::
EOFException
*>
(
exp
))
{
auto
e
=
*
static_cast
<
platform
::
EOFException
*>
(
exp
);
exception_
.
reset
();
throw
e
;
}
else
if
(
dynamic_cast
<
platform
::
EnforceNotMet
*>
(
exp
))
{
auto
e
=
*
static_cast
<
platform
::
EnforceNotMet
*>
(
exp
);
exception_
.
reset
();
throw
e
;
}
else
{
LOG
(
FATAL
)
<<
"Unknown exception."
;
...
...
@@ -222,7 +229,7 @@ void ThreadedSSAGraphExecutor::RunOp(
}
};
if
(
pool_
)
{
pool_
->
enqueue
(
op_run
);
run_op_futures_
.
emplace_back
(
pool_
->
enqueue
(
op_run
)
);
}
else
{
op_run
();
}
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
浏览文件 @
f8e83196
...
...
@@ -15,6 +15,7 @@
#pragma once
#include <deque>
#include <list>
#include <string>
#include <unordered_set>
#include <utility>
...
...
@@ -77,6 +78,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
private:
ExecutionStrategy
strategy_
;
// use std::list because clear(), push_back, and for_each are O(1)
std
::
list
<
std
::
future
<
void
>>
run_op_futures_
;
};
}
// namespace details
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
f8e83196
...
...
@@ -259,12 +259,15 @@ op_library(max_sequence_len_op DEPS lod_rank_table)
op_library
(
sequence_conv_op DEPS context_project
)
op_library
(
sequence_pool_op DEPS sequence_pooling
)
op_library
(
lstm_op DEPS sequence2batch lstm_compute
)
op_library
(
hierarchical_sigmoid_op DEPS matrix_bit_code
)
op_library
(
lstmp_op DEPS sequence2batch lstm_compute
)
op_library
(
gru_op DEPS sequence2batch gru_compute
)
op_library
(
recurrent_op DEPS executor
)
op_library
(
warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale
)
op_library
(
cos_sim_op DEPS cos_sim_functor
)
op_library
(
parallel_do_op DEPS executor
)
op_library
(
unsqueeze_op DEPS reshape_op
)
op_library
(
squeeze_op DEPS reshape_op
)
if
(
WITH_GPU
)
op_library
(
conv_op DEPS vol2col depthwise_conv im2col
)
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.cc
0 → 100644
浏览文件 @
f8e83196
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/hierarchical_sigmoid_op.h"
#include <vector>
namespace
paddle
{
namespace
operators
{
/**
* Organize the classes into a binary tree. At each node, a sigmoid function
* is used to calculate the probability of belonging to the right branch.
* This idea is from "F. Morin, Y. Bengio (AISTATS 05):
* Hierarchical Probabilistic Neural Network Language Model."
*
* Here we uses a simple way of making the binary tree.
* Assuming the number of classes C = 6,
* The classes are organized as a binary tree in the following way:
*
* @code{.py}
* *-*-*- 2
* | | |- 3
* | |
* | |-*- 4
* | |- 5
* |
* |-*- 0
* |- 1
* @endcode
*
* where * indicates an internal node, and each leaf node represents a class.
* - Node 0 ... C-2 are internal nodes.
* - Node C-1 ... 2C-2 are leaf nodes.
* - Class c is represented by leaf node \f$c+C-1\f$.
*
* We assign an id for each node:
* - the id of root be 0.
* - the left child of a node i is 2*i+1.
* - the right child of a node i is 2*i+2.
*
* It's easy to see that:
* - the parent of node i is \f$\left\lfloor(i-1)/2\right\rfloor\f$.
* - the j-th level ancestor of node i is
* \f$\left\lfloor(i+1)/2^{j+1}\right\rfloor - 1\f$.
* - A node i is a left child of its parent if \f$(i-1)\%2==0\f$.
*
*/
class
HierarchicalSigmoidOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"Input(W) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"PreOut"
),
"Output(PreOut) should not be null."
);
const
int64_t
batch_size
=
ctx
->
GetInputDim
(
"X"
)[
0
];
std
::
vector
<
int64_t
>
output_shape
({
batch_size
,
1
});
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
}
};
template
<
typename
AttrType
>
class
HierarchicalSigmoidOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor, required) The input tensor with shape [N, D], "
"where N is the size of mini-batch, and D is the feature size."
);
AddInput
(
"W"
,
"(Tensor, required), The parameters of hierarchical "
"sigmoid operator, each of them is a 2-D tensor, the shape is"
"[num_classes - 1, D]."
);
AddInput
(
"Label"
,
"(Tensor, required), The labels of training data. It's a"
"tensor with shape [N, 1]."
);
AddInput
(
"Bias"
,
"(Tensor, optional), The bias is a tensor with shape"
"[1, num_classes - 1]."
);
AddOutput
(
"Out"
,
"(Tensor, required) The output of hierarchical sigmoid operator."
"The shape is [N, 1]."
);
AddOutput
(
"PreOut"
,
"(Tensor, required) A intermedia 2-D tensor with shape "
"[batch_size, code_length], where code_length represents the "
"maximum path length from root to leaf nodes."
)
.
AsIntermediate
();
AddAttr
<
AttrType
>
(
"num_classes"
,
"(int, required), The number of classes"
)
.
SetDefault
(
2
);
AddComment
(
R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
At each node, a sigmoid function is used to calculate the probability of
belonging to the right branch. This idea is from
"F. Morin, Y. Bengio (AISTATS 05):
Hierarchical Probabilistic Neural Network Language Model."
)DOC"
);
}
};
class
HierarchicalSigmoidGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"Input(W) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PreOut"
),
"Input(Preout) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"W"
)),
"Output(W@Grad should not be null.)"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)));
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
ctx
->
GetInputDim
(
"W"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
hierarchical_sigmoid
,
ops
::
HierarchicalSigmoidOp
,
ops
::
HierarchicalSigmoidOpMaker
<
int
>
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
hierarchical_sigmoid_grad
,
ops
::
HierarchicalSigmoidGradOp
);
REGISTER_OP_CPU_KERNEL
(
hierarchical_sigmoid
,
ops
::
HierarchicalSigmoidOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
HierarchicalSigmoidOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
hierarchical_sigmoid_grad
,
ops
::
HierarchicalSigmoidGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
HierarchicalSigmoidGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/hierarchical_sigmoid_op.h
0 → 100644
浏览文件 @
f8e83196
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <iostream>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/matrix_bit_code.h"
#include "paddle/fluid/platform/transform.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
using
platform
::
Transform
;
template
<
typename
DeviceContext
,
typename
T
>
class
HierarchicalSigmoidOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
w
=
ctx
.
Input
<
framework
::
Tensor
>
(
"W"
);
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
pre_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"PreOut"
);
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
int64_t
code_length
=
math
::
FindLastSet
(
num_classes
-
1
);
int64_t
batch_size
=
in
->
dims
()[
0
];
framework
::
Tensor
sum
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
*
pre_out_data
=
pre_out
->
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
code_length
}),
ctx
.
GetPlace
());
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
*
pre_out
);
// Not all class(leaf) nodes' path lengths equal code_length, thus init as
// 0s can avoid out of path's loss.
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
zero
(
dev_ctx
,
pre_out
,
static_cast
<
T
>
(
0.0
));
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
math
::
RowwiseSum
<
DeviceContext
,
T
>
row_sum
;
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
(
num_classes
,
label
->
data
<
int64_t
>
());
std
::
vector
<
int64_t
>
sum_dims
({
batch_size
,
1UL
});
sum
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
sum_dims
),
ctx
.
GetPlace
());
auto
sum_mat
=
EigenMatrix
<
T
>::
From
(
sum
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_mat
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
if
(
bias
)
{
bit_code
.
Add
(
pre_out
,
*
bias
);
}
bit_code
.
Mul
(
pre_out
,
*
w
,
*
in
);
// clip to [-40, 40]
Transform
<
DeviceContext
>
trans
;
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
pre_out_data
+
pre_out
->
numel
(),
pre_out_data
,
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)));
bit_code
.
Sum
(
*
pre_out
,
out
,
static_cast
<
T
>
(
-
1
));
// use softrelu to calculate cross entropy
pre_out_mat
.
device
(
place
)
=
(
static_cast
<
T
>
(
1.0
)
+
pre_out_mat
.
exp
()).
log
();
row_sum
(
dev_ctx
,
*
pre_out
,
&
sum
);
// TODO(guosheng): Subtract the out of path's loss, since not all
// class(leaf) nodes' path lengths equal code_length. But it won't break the
// gradient check since both have the out of path's loss and will cancel out
// each other.
out_mat
.
device
(
place
)
=
sum_mat
+
out_mat
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
HierarchicalSigmoidGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
w
=
ctx
.
Input
<
framework
::
Tensor
>
(
"W"
);
auto
*
in_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
w_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"W"
));
auto
*
bias_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
pre_out
=
ctx
.
Input
<
framework
::
Tensor
>
(
"PreOut"
);
auto
*
out_grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
framework
::
Tensor
pre_out_grad
;
pre_out_grad
.
mutable_data
<
T
>
(
pre_out
->
dims
(),
ctx
.
GetPlace
());
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
w_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
zero
(
dev_ctx
,
in_grad
,
static_cast
<
T
>
(
0.0
));
zero
(
dev_ctx
,
w_grad
,
static_cast
<
T
>
(
0.0
));
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
(
num_classes
,
label
->
data
<
int64_t
>
());
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
*
pre_out
);
auto
pre_out_grad_mat
=
EigenMatrix
<
T
>::
From
(
pre_out_grad
);
auto
out_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
out_grad
);
Eigen
::
array
<
int
,
2
>
bcast
({{
1
,
static_cast
<
int
>
(
pre_out_grad
.
dims
()[
1
])}});
// softrelu derivative
pre_out_grad_mat
.
device
(
place
)
=
static_cast
<
T
>
(
1.0
)
-
static_cast
<
T
>
(
1.0
)
/
pre_out_mat
.
exp
();
bit_code
.
Sub
(
&
pre_out_grad
);
// the gradient of clip(w * x + b)
pre_out_grad_mat
.
device
(
place
)
=
pre_out_grad_mat
*
out_grad_mat
.
broadcast
(
bcast
);
// TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
// be consistent with the clipping in forward.
if
(
bias_grad
)
{
bias_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad
,
static_cast
<
T
>
(
0.0
));
bit_code
.
AddGrad
(
pre_out_grad
,
bias_grad
);
}
bit_code
.
MulGradWeight
(
pre_out_grad
,
w_grad
,
*
in
);
bit_code
.
MulGradError
(
pre_out_grad
,
*
w
,
in_grad
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
f8e83196
...
...
@@ -51,6 +51,7 @@ math_library(sequence_padding)
math_library
(
sequence_pooling DEPS math_function
)
math_library
(
sequence_scale
)
math_library
(
softmax DEPS math_function
)
math_library
(
matrix_bit_code
)
math_library
(
unpooling
)
math_library
(
vol2col
)
...
...
paddle/fluid/operators/math/math_function_impl.h
浏览文件 @
f8e83196
...
...
@@ -155,7 +155,7 @@ class RowwiseSum<platform::CPUDeviceContext, T> {
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2U
);
auto
height
=
in_dims
[
0
];
auto
size
=
in_dims
[
1
];
PADDLE_ENFORCE_EQ
(
out
->
numel
(),
size
);
PADDLE_ENFORCE_EQ
(
out
->
numel
(),
height
);
T
*
out_buf
=
out
->
mutable_data
<
T
>
(
out
->
place
());
const
T
*
in_buf
=
input
.
data
<
T
>
();
...
...
paddle/fluid/operators/math/matrix_bit_code.cc
0 → 100644
浏览文件 @
f8e83196
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/matrix_bit_code.h"
#include <iostream>
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Add
(
framework
::
Tensor
*
tmat
,
const
framework
::
Tensor
&
vec
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
batch_size
=
tmat
->
dims
()[
0
];
size_t
width
=
tmat
->
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
tmat
->
data
<
T
>
()[
i
*
width
+
j
]
+=
vec
.
data
<
T
>
()[
index
];
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
vec
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
batch_size
=
tmat
.
dims
()[
0
];
size_t
width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
vec
->
data
<
T
>
()[
index
]
+=
tmat
.
data
<
T
>
()[
i
*
width
+
j
];
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sum
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
sum
,
T
scale_sum
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
o_width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
T
sm
=
static_cast
<
T
>
(
0.0
);
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
// calc_bit starts from right most bit, while data in tmat[i] is in the
// reverse order.
sm
+=
tmat
.
data
<
T
>
()[
i
*
o_width
+
j
];
}
}
sum
->
data
<
T
>
()[
i
]
=
scale_sum
*
sm
;
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Mul
(
framework
::
Tensor
*
tmat
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
->
dims
()[
0
];
size_t
tmat_width
=
tmat
->
dims
()[
1
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
weight_width
=
weight
.
dims
()[
1
];
auto
tmat_value
=
tmat
->
data
<
T
>
();
auto
weight_value
=
weight
.
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
T
sum
=
static_cast
<
T
>
(
0.0
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
sum
+=
weight_value
[
weight_width
*
index
+
k
]
*
input_value
[
input_width
*
i
+
k
];
}
tmat_value
[
i
*
tmat_width
+
j
]
+=
sum
;
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
weight
,
const
framework
::
Tensor
&
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
size_t
weight_width
=
weight
->
dims
()[
1
];
auto
tmat_value
=
tmat
.
data
<
T
>
();
auto
weight_value
=
weight
->
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
weight_value
[
weight_width
*
index
+
k
]
+=
tmat_value
[
i
*
tmat_width
+
j
]
*
input_value
[
input_width
*
i
+
k
];
}
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
MulGradError
(
const
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
size_t
input_width
=
input
->
dims
()[
1
];
size_t
weight_width
=
weight
.
dims
()[
1
];
auto
tmat_value
=
tmat
.
data
<
T
>
();
auto
weight_value
=
weight
.
data
<
T
>
();
auto
input_value
=
input
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
input_value
[
input_width
*
i
+
k
]
+=
tmat_value
[
i
*
tmat_width
+
j
]
*
weight_value
[
weight_width
*
index
+
k
];
}
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sub
(
framework
::
Tensor
*
tmat
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
->
dims
()[
0
];
size_t
o_width
=
tmat
->
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
tmat
->
data
<
T
>
()[
i
*
o_width
+
j
]
-=
1
;
}
}
}
}
template
class
MatrixBitCodeFunctor
<
float
>;
template
class
MatrixBitCodeFunctor
<
double
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/matrix_bit_code.h
0 → 100644
浏览文件 @
f8e83196
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
/**
* SimpleCodeTable class should support 3 functions:
*
* size_t size()
* return the number of ids
*
* int get_max_code_length()
* return the maximal code length
*
* SimpleCode operator()(size_t i)
* return the i-th code. Code class is descriebed below.
*
* SimpleCode class should support 3 functions:
*
* int get_length()
* return the length of the code
*
* size_t cal_index(int bit)
* bit ranges from 0 to get_length() - 1
* return the index for the (1+bit) level parent
*
* bool calc_bit(int bit)
* return true if the bit level parent is the right child of (1+bit) level
* parent
*
*/
/**
* return the 1-based index of the highest bit set
*
* for x > 0:
* \f[
* FindLastSet(x) = 1 + \floor*{\log_{2}x}
* \f]
*/
inline
constexpr
size_t
FindLastSet
(
size_t
x
)
{
return
std
::
is_same
<
size_t
,
unsigned
int
>::
value
?
(
x
?
8
*
sizeof
(
x
)
-
__builtin_clz
(
x
)
:
0
)
:
(
std
::
is_same
<
size_t
,
unsigned
long
>::
value
// NOLINT
?
(
x
?
8
*
sizeof
(
x
)
-
__builtin_clzl
(
x
)
:
0
)
:
(
x
?
8
*
sizeof
(
x
)
-
__builtin_clzll
(
x
)
:
0
));
}
struct
SimpleCode
{
SimpleCode
(
size_t
code
,
size_t
num_classes
)
:
c_
(
code
+
num_classes
)
{}
/**
* Here the id of root shoud be 1 rather than 0, thus the encoding of class c
* is `c + num_classes` and all siblings can get the same weight indice using
* prefixes.
* Weight index is the prefixes of encoding, thus leave out the right most
* bit in calc_index.
* Binary classification path is the suffixes of encoding, thus leave out the
* left most bit in calc_bit.
*/
inline
size_t
calc_index
(
int
bit
)
const
{
return
(
c_
>>
(
bit
+
1
))
-
1
;
}
inline
bool
calc_bit
(
int
bit
)
const
{
return
c_
&
(
1
<<
bit
);
}
inline
int
get_length
()
const
{
return
FindLastSet
(
c_
)
-
1
;
}
private:
size_t
c_
;
};
struct
SimpleCodeTable
{
explicit
SimpleCodeTable
(
size_t
num_classes
)
:
num_classes_
(
num_classes
)
{}
SimpleCode
operator
()(
size_t
code
)
const
{
return
SimpleCode
(
code
,
num_classes_
);
}
size_t
size
()
const
{
return
num_classes_
;
}
int
get_max_code_length
()
const
{
return
FindLastSet
(
num_classes_
-
1
);
}
private:
size_t
num_classes_
;
};
template
<
typename
T
>
class
MatrixBitCodeFunctor
{
public:
explicit
MatrixBitCodeFunctor
(
size_t
num_classes
,
const
int64_t
*
ids
)
:
num_classes_
(
num_classes
),
ids_
(
ids
)
{}
/* For j < code_length
tmat(i, j) += vec(0, index(i, j))
*/
void
Add
(
framework
::
Tensor
*
tmat
,
const
framework
::
Tensor
&
vec
);
/* For j < code_length
vec(0, index(i, j)) += tmat(i, j)
*/
void
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
vec
);
/* For j < code_length
sum(i, 0) = \sum_j bit(i, j) * tmat(i, j)
*/
void
Sum
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
sum
,
T
scale_sum
);
/* For j < code_length
tmat(i, j) -= bit(i, j)
*/
void
Sub
(
framework
::
Tensor
*
tmat
);
/* For j < code_length
input.row(i) += tmat(i, j) * weight.row(index(i, j))
*/
void
Mul
(
framework
::
Tensor
*
tmat
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
);
/* For index(i, j) >= 0:
weight.row(index(i, j)) += tmat(i, j) * input.row(i)
*/
void
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
weight
,
const
framework
::
Tensor
&
input
);
/* For j < code_length
input.row(i) += tmat(i, j) * weight.row(index(i, j))
*/
void
MulGradError
(
const
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
input
);
size_t
num_classes_
;
const
int64_t
*
ids_
;
};
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reader/create_batch_reader_op.cc
浏览文件 @
f8e83196
...
...
@@ -23,7 +23,7 @@ class BatchReader : public framework::DecoratedReader {
BatchReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
reader
,
int
batch_size
,
bool
discard_leftover
)
:
DecoratedReader
(
reader
),
batch_size_
(
batch_size
),
batch_size_
(
static_cast
<
size_t
>
(
batch_size
)
),
discard_leftover_
(
discard_leftover
)
{
buffer_
.
reserve
(
batch_size_
);
}
...
...
@@ -31,7 +31,7 @@ class BatchReader : public framework::DecoratedReader {
void
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
;
private:
in
t
batch_size_
;
size_
t
batch_size_
;
bool
discard_leftover_
;
std
::
vector
<
std
::
vector
<
framework
::
LoDTensor
>>
buffer_
;
};
...
...
@@ -78,7 +78,7 @@ class CreateBatchReaderOpMaker : public DecoratedReaderMakerBase {
void
BatchReader
::
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
{
buffer_
.
clear
();
buffer_
.
reserve
(
batch_size_
);
for
(
in
t
i
=
0
;
i
<
batch_size_
;
++
i
)
{
for
(
size_
t
i
=
0
;
i
<
batch_size_
;
++
i
)
{
buffer_
.
push_back
(
std
::
vector
<
framework
::
LoDTensor
>
());
reader_
->
ReadNext
(
&
buffer_
.
back
());
if
(
buffer_
.
back
().
empty
())
{
...
...
@@ -95,9 +95,9 @@ void BatchReader::ReadNextImpl(std::vector<framework::LoDTensor>* out) {
// if buffer_ is empty, the 'out' will return as an empty vector.
return
;
}
in
t
out_num
=
buffer_
[
0
].
size
();
size_
t
out_num
=
buffer_
[
0
].
size
();
out
->
reserve
(
out_num
);
for
(
in
t
j
=
0
;
j
<
out_num
;
++
j
)
{
for
(
size_
t
j
=
0
;
j
<
out_num
;
++
j
)
{
// Merge shape and check date type
std
::
type_index
batch_type
=
buffer_
[
0
][
j
].
type
();
framework
::
DDim
batch_shape
=
buffer_
[
0
][
j
].
dims
();
...
...
paddle/fluid/operators/squeeze_op.cc
0 → 100644
浏览文件 @
f8e83196
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
class
SqueezeOpInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SqueezeOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of SqueezeOp should not be null."
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
// Check input tensor dims (<6) Eigen limit.
PADDLE_ENFORCE
(
x_dims
.
size
()
<=
6
,
"Invalid dimnesions, the rank of Input(X) "
"should be in the range of [1, 6] (Eigen limit)."
);
const
auto
&
axes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"axes"
);
for
(
int
a
:
axes
)
{
PADDLE_ENFORCE_LT
(
a
,
x_dims
.
size
(),
"The squeeze axis should be less than input "
"tensor's rank."
);
}
auto
out_dims
=
GetOutputShape
(
axes
,
x_dims
);
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
if
(
x_dims
[
0
]
==
out_dims
[
0
])
{
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
ctx
->
ShareLoD
(
"X"
,
"Out"
);
}
}
static
framework
::
DDim
GetOutputShape
(
const
std
::
vector
<
int
>
squeeze_dims
,
const
framework
::
DDim
&
in_dims
)
{
size_t
num_squeeze_dims
=
squeeze_dims
.
size
();
int
cnt_squeezed_dims
=
0
;
bool
should_squeeze
[
9
]
=
{
false
};
// Determines number of dimensions of output tensor after squeeze.
// Mark and count the dimensions need to be squeezed
if
(
num_squeeze_dims
==
0
)
{
for
(
int
idx
=
0
;
idx
<
in_dims
.
size
();
++
idx
)
{
if
(
in_dims
[
idx
]
==
1
)
{
should_squeeze
[
idx
]
=
true
;
++
cnt_squeezed_dims
;
}
}
}
else
{
for
(
size_t
idx
=
0
;
idx
<
num_squeeze_dims
;
++
idx
)
{
int
current
=
squeeze_dims
[
idx
]
<
0
?
squeeze_dims
[
idx
]
+
in_dims
.
size
()
:
squeeze_dims
[
idx
];
// Check current index, the upper limit has beed checked in line 36.
PADDLE_ENFORCE
(
current
>=
0
,
"Invalid axis, the negative axis is out of range."
);
PADDLE_ENFORCE
(
in_dims
[
current
]
==
1
,
"Invalid axis index, the axis that will be squeezed "
"should be equal to 1."
);
if
(
!
(
should_squeeze
[
current
]))
{
++
cnt_squeezed_dims
;
}
should_squeeze
[
current
]
=
true
;
}
}
// Make output dimensions
std
::
vector
<
int64_t
>
output_shape
(
in_dims
.
size
()
-
cnt_squeezed_dims
,
0
);
for
(
int
in_idx
=
0
,
out_idx
=
0
;
in_idx
<
in_dims
.
size
();
++
in_idx
)
{
if
(
!
should_squeeze
[
in_idx
])
{
output_shape
[
out_idx
++
]
=
in_dims
[
in_idx
];
}
}
return
framework
::
make_ddim
(
output_shape
);
}
};
class
SqueezeOp
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
&
axes
=
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
auto
out_dims
=
SqueezeOpInferShape
::
GetOutputShape
(
axes
,
x_dims
);
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
out_dims
);
attrs
[
"inplace"
]
=
Attr
<
bool
>
(
"inplace"
);
// Invoke Reshape Op
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
Output
(
"Out"
)}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
}
};
class
SqueezeOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor). The input tensor of squeeze operator."
);
AddOutput
(
"Out"
,
"(Tensor). The output tensor of squeeze operator."
);
AddAttr
<
std
::
vector
<
int
>>
(
"axes"
,
"(std::vector<int>). List of integers,"
" indicating the dimensions to squeeze."
)
.
SetDefault
({});
AddAttr
<
bool
>
(
"inplace"
,
"(default: false) Squeeze the source tensor's shape without "
"memory copy. When Attr(inplace) is set true, the output "
"tensor shares memory with Input(X), otherwise, a new output "
"tensor is created, and its data are copied from Input(x)."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Squeeze Operator.
Remove single-dimensional entries from the shape of a tensor.
Takes a parameter axes with a list of axes to squeeze.
If axes is not provided, all the single dimensions will be removed from the shape.
If an axis is selected with shape entry not equal to one, an error is raised.
Examples:
Case 1:
Given
X.shape = (1, 3, 1, 5)
and
axes = [0]
we get:
Out.shape = (3, 1, 5)
Case 2:
Given
X.shape = (1, 3, 1, 5)
and
axes = []
we get:
Out.shape = (3, 5)
)DOC"
);
}
};
class
SqueezeGradInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
context
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
context
->
GetInputDim
(
"X"
));
context
->
ShareLoD
(
"X"
,
framework
::
GradVarName
(
"X"
));
}
};
class
SqueezeGradOp
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
dx_name
=
Output
(
framework
::
GradVarName
(
"X"
));
auto
dout_name
=
Input
(
framework
::
GradVarName
(
"Out"
));
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
x_dims
);
attrs
[
"inplace"
]
=
Attr
<
bool
>
(
"inplace"
);
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
dx_name
}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
}
};
}
// namespace operators
}
// namespace paddle
// Tell linker to use reshape op
USE_OP
(
reshape
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
squeeze
,
ops
::
SqueezeOp
,
ops
::
SqueezeOpMaker
,
ops
::
SqueezeOpInferShape
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
squeeze_grad
,
ops
::
SqueezeGradOp
,
ops
::
SqueezeGradInferShape
);
paddle/fluid/operators/unsqueeze_op.cc
0 → 100644
浏览文件 @
f8e83196
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
class
UnsqueezeOpInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of UnsqueezeOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of UnsqueezeOp should not be null."
);
const
auto
&
axes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"axes"
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
// Validity Check: input tensor dims (<6).
PADDLE_ENFORCE
(
x_dims
.
size
()
<=
6
,
"Invalid dimensions, the rank of Input(X) "
"should be in the range of [1, 6] (Eigen limit)"
);
auto
out_dims
=
GetOutputShape
(
axes
,
x_dims
);
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
if
(
x_dims
[
0
]
==
out_dims
[
0
])
{
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
ctx
->
ShareLoD
(
"X"
,
"Out"
);
}
}
static
framework
::
DDim
GetOutputShape
(
const
std
::
vector
<
int
>
unsqz_dims
,
const
framework
::
DDim
&
in_dims
)
{
int
output_size
=
in_dims
.
size
()
+
static_cast
<
int
>
(
unsqz_dims
.
size
());
int
cur_output_size
=
in_dims
.
size
();
std
::
vector
<
int64_t
>
output_shape
(
output_size
,
0
);
// Validity Check: rank range.
PADDLE_ENFORCE
(
output_size
<=
6
,
"The output tensor's rank should be less than 6."
);
for
(
int
axis
:
unsqz_dims
)
{
int
cur
=
axis
<
0
?
axis
+
cur_output_size
+
1
:
axis
;
// Vaildity Check: the axis bound
PADDLE_ENFORCE
(
cur
>=
0
&&
cur
<=
cur_output_size
,
"The unsqueeze dims must be within range of current rank."
);
// Move old axis, and insert new axis
for
(
int
i
=
cur_output_size
;
i
>=
cur
;
--
i
)
{
if
(
output_shape
[
i
]
==
1
)
{
// Move axis
output_shape
[
i
+
1
]
=
1
;
output_shape
[
i
]
=
0
;
}
}
output_shape
[
cur
]
=
1
;
// Add the output size.
cur_output_size
++
;
}
// Make output shape
for
(
int
in_idx
=
0
,
out_idx
=
0
;
out_idx
<
output_size
;
++
out_idx
)
{
if
(
output_shape
[
out_idx
]
==
0
)
{
output_shape
[
out_idx
]
=
in_dims
[
in_idx
++
];
}
}
return
framework
::
make_ddim
(
output_shape
);
}
};
class
UnsqueezeOp
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
&
axes
=
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
auto
out_dims
=
UnsqueezeOpInferShape
::
GetOutputShape
(
axes
,
x_dims
);
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
out_dims
);
attrs
[
"inplace"
]
=
Attr
<
bool
>
(
"inplace"
);
// Invoke Reshape op.
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
Output
(
"Out"
)}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
}
};
class
UnsqueezeOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor). The input tensor of unsqueeze operator."
);
AddOutput
(
"Out"
,
"(Tensor). The output tensor of unsqueeze operator."
);
AddAttr
<
std
::
vector
<
int
>>
(
"axes"
,
"(std::vector<int>). List of integers,"
" indicating the dimensions to be inserted"
)
.
AddCustomChecker
([](
const
std
::
vector
<
int
>
&
axes
)
{
PADDLE_ENFORCE
(
!
axes
.
empty
(),
"Invalid axes, The unsqueeze axes is empty."
);
// Validity Check: axes dims (<6).
PADDLE_ENFORCE
(
static_cast
<
int
>
(
axes
.
size
())
<
6
,
"Invalid dimensions, dynamic dimensions should be "
"within [1, 6] dimensions (Eigen limit)."
);
// Validity Check: the range of unsqueeze aixs.
for
(
int
axis
:
axes
)
{
PADDLE_ENFORCE
(
axis
<
6
,
"Invalid dimensions, input axis should be"
" within [1, 6] dimensions (Eigen limit)."
);
}
});
AddAttr
<
bool
>
(
"inplace"
,
"(default: false) Unsqueeze the source tensor's shape without "
"memory copy. When Attr(inplace) is set true, the output "
"tensor shares memory with Input(X), otherwise, a new output "
"tensor is created, and its data are copied from Input(x)."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Unsqueeze Operator.
Insert single-dimensional entries to the shape of a tensor.
Takes one required argument axes, a list of dimensions that will be inserted.
Dimension indices in axes are as seen in the output tensor.
For example:
Given a tensor such that tensor with shape [3, 4, 5],
then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
)DOC"
);
}
};
class
UnsqueezeGradInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
framework
::
GradVarName
(
"X"
));
}
};
class
UnsqueezeGradOp
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
dx_name
=
Output
(
framework
::
GradVarName
(
"X"
));
auto
dout_name
=
Input
(
framework
::
GradVarName
(
"Out"
));
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
x_dims
);
attrs
[
"inplace"
]
=
Attr
<
bool
>
(
"inplace"
);
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
dx_name
}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
}
};
}
// namespace operators
}
// namespace paddle
// Tell linker to use reshape op.
USE_OP
(
reshape
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
unsqueeze
,
ops
::
UnsqueezeOp
,
ops
::
UnsqueezeOpMaker
,
ops
::
UnsqueezeOpInferShape
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
unsqueeze_grad
,
ops
::
UnsqueezeGradOp
,
ops
::
UnsqueezeGradInferShape
);
paddle/fluid/pybind/pybind.cc
浏览文件 @
f8e83196
...
...
@@ -66,6 +66,14 @@ bool IsCompiledWithCUDA() {
#endif
}
bool
IsCompiledWithDIST
()
{
#ifdef PADDLE_WITH_DIST
return
true
;
#else
return
false
;
#endif
}
PYBIND11_PLUGIN
(
core
)
{
py
::
module
m
(
"core"
,
"C++ core of PaddlePaddle"
);
...
...
@@ -508,6 +516,7 @@ All parameter, weight, gradient are variables in Paddle.
[](
bool
init_p2p
)
{
framework
::
InitDevices
(
init_p2p
);
});
m
.
def
(
"is_compiled_with_cuda"
,
IsCompiledWithCUDA
);
m
.
def
(
"is_compiled_with_dist"
,
IsCompiledWithDIST
);
#ifdef PADDLE_WITH_CUDA
m
.
def
(
"is_float16_supported"
,
[](
const
platform
::
CUDAPlace
&
place
)
->
bool
{
// Only GPUs with Compute Capability >= 53 support float16
...
...
python/CMakeLists.txt
浏览文件 @
f8e83196
...
...
@@ -92,8 +92,15 @@ install(DIRECTORY ${PADDLE_PYTHON_PACKAGE_DIR}
DESTINATION opt/paddle/share/wheels
)
find_program
(
PATCHELF_EXECUTABLE patchelf
)
if
(
NOT PATCHELF_EXECUTABLE
)
if
(
APPLE
)
find_program
(
INSTALL_NAME_TOOL_EXECUTABLE install_name_tool
)
if
(
NOT INSTALL_NAME_TOOL_EXECUTABLE
)
message
(
FATAL_ERROR
"install_name_tool not found, please check.
\n
"
)
endif
()
else
(
APPLE
)
find_program
(
PATCHELF_EXECUTABLE patchelf
)
if
(
NOT PATCHELF_EXECUTABLE
)
message
(
FATAL_ERROR
"patchelf not found, please install it.
\n
"
"For Ubuntu, the command is: apt-get install -y patchelf."
)
endif
()
endif
()
endif
(
APPLE
)
python/paddle/fluid/__init__.py
浏览文件 @
f8e83196
...
...
@@ -121,6 +121,9 @@ def __bootstrap__():
'eager_delete_scope'
,
'use_mkldnn'
,
'initial_cpu_memory_in_mb'
,
'init_allocated_mem'
]
if
core
.
is_compiled_with_dist
():
read_env_flags
.
append
(
'rpc_deadline'
)
if
core
.
is_compiled_with_cuda
():
read_env_flags
+=
[
'fraction_of_gpu_memory_to_use'
,
'cudnn_deterministic'
...
...
python/paddle/fluid/annotations.py
0 → 100644
浏览文件 @
f8e83196
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
functools
import
sys
__all__
=
[
'deprecated'
]
def
deprecated
(
since
,
instead
,
extra_message
=
""
):
def
decorator
(
func
):
err_msg
=
"API {0} is deprecated since {1}. Please use {2} instead."
.
format
(
func
.
__name__
,
since
,
instead
)
if
len
(
extra_message
)
!=
0
:
err_msg
+=
"
\n
"
err_msg
+=
extra_message
@
functools
.
wraps
(
func
)
def
wrapper
(
*
args
,
**
kwargs
):
print
>>
sys
.
stderr
,
err_msg
return
func
(
*
args
,
**
kwargs
)
wrapper
.
__doc__
+=
"
\n
"
wrapper
.
__doc__
+=
err_msg
return
wrapper
return
decorator
python/paddle/fluid/backward.py
浏览文件 @
f8e83196
...
...
@@ -18,10 +18,7 @@ import collections
import
copy
import
unique_name
__all__
=
[
'append_backward'
,
'calc_gradient'
,
]
__all__
=
[
'append_backward'
]
def
_rename_arg_
(
op_descs
,
old_name
,
new_name
,
begin_idx
=
None
,
end_idx
=
None
):
...
...
python/paddle/fluid/layers/device.py
浏览文件 @
f8e83196
...
...
@@ -18,10 +18,12 @@ All util layers.
from
layer_function_generator
import
autodoc
from
..framework
import
unique_name
from
..layer_helper
import
LayerHelper
from
..annotations
import
deprecated
__all__
=
[
'get_places'
]
__all__
=
[]
@
deprecated
(
since
=
'0.15.0'
,
instead
=
"ParallelExecutor"
)
@
autodoc
()
def
get_places
(
device_count
=
None
,
device_type
=
None
):
helper
=
LayerHelper
(
'get_places'
,
**
locals
())
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
f8e83196
...
...
@@ -85,6 +85,7 @@ __all__ = [
'transpose'
,
'im2sequence'
,
'nce'
,
'hsigmoid'
,
'beam_search'
,
'row_conv'
,
'multiplex'
,
...
...
@@ -3871,6 +3872,74 @@ def nce(input,
return
cost
/
(
num_neg_samples
+
1
)
def
hsigmoid
(
input
,
label
,
num_classes
,
param_attr
=
None
,
bias_attr
=
None
):
"""
The hierarchical sigmoid operator is used to accelerate the training
process of language model. This operator organizes the classes into a
complete binary tree, each leaf node represents a class(a word) and each
internal node acts as a binary classifier. For each word there's a unique
path from root to it's leaf node, hsigmoid calculate the cost for each
internal node on the path, and sum them to get a total cost. hsigmoid can
achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
represents the size of word dict.
Refer to `Hierarchical Probabilistic Neural Network Language Model
<http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
Args:
input (Variable): The input tensor variable with shape
:math:`[N
\\
times D]`, where :math:`N` is the size of mini-batch,
and :math:`D` is the feature size.
label (Variable): The tensor variable contains labels of training data.
It's a tensor with shape is :math:`[N
\\
times 1]`.
num_classes: (int), The number of classes, must not be less than 2.
param_attr (ParamAttr|list of ParamAttr, default None): The parameter
attribute for learnable parameters/weights of this layer.
bias_attr (ParamAttr|list of ParamAttr, default None): The parameter
attribute for the bias of this layer. If it is set to False, no
bias will be applied.
Returns:
Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[2], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='int64')
out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
"""
helper
=
LayerHelper
(
'hierarchical_sigmoid'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_tmp_variable
(
dtype
)
pre_out
=
helper
.
create_tmp_variable
(
dtype
)
dim
=
input
.
shape
[
1
]
if
num_classes
<
2
:
raise
ValueError
(
"num_classes must not be less than 2."
)
weights
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
num_classes
-
1
,
dim
],
is_bias
=
False
,
dtype
=
input
.
dtype
)
inputs
=
{
"X"
:
input
,
"W"
:
weights
,
"Label"
:
label
}
if
helper
.
bias_attr
:
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
[
1
,
num_classes
-
1
],
is_bias
=
True
,
dtype
=
input
.
dtype
)
inputs
[
'Bias'
]
=
bias
helper
.
append_op
(
type
=
"hierarchical_sigmoid"
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
,
"PreOut"
:
pre_out
},
attrs
=
{
"num_classes"
:
num_classes
})
return
out
def
transpose
(
x
,
perm
,
name
=
None
):
"""
Permute the dimensions of `input` according to `perm`.
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
f8e83196
...
...
@@ -29,7 +29,7 @@ __all__ = [
'SGD'
,
'Momentum'
,
'Adagrad'
,
'Adam'
,
'Adamax'
,
'DecayedAdagrad'
,
'Ftrl'
,
'SGDOptimizer'
,
'MomentumOptimizer'
,
'AdagradOptimizer'
,
'AdamOptimizer'
,
'AdamaxOptimizer'
,
'DecayedAdagradOptimizer'
,
'RMSPropOptimizer'
,
'FtrlOptimizer'
,
'Adadelta'
,
'ModelAverage'
,
'
Optimizer'
,
'
RMSPropOptimizer'
'FtrlOptimizer'
,
'Adadelta'
,
'ModelAverage'
,
'RMSPropOptimizer'
]
...
...
@@ -67,7 +67,7 @@ class Optimizer(object):
self
.
_LARS_weight_decay
=
LARS_weight_decay
def
_create_global_learning_rate
(
self
):
lr
=
self
.
global_learning_rate
()
lr
=
self
.
_
global_learning_rate
()
if
isinstance
(
lr
,
framework
.
Variable
):
return
...
...
@@ -86,7 +86,7 @@ class Optimizer(object):
dtype
=
'float32'
if
self
.
_dtype
==
None
else
self
.
_dtype
,
persistable
=
True
)
def
global_learning_rate
(
self
,
program
=
None
):
def
_
global_learning_rate
(
self
,
program
=
None
):
"""
get global decayed learning rate
:return:
...
...
@@ -110,9 +110,9 @@ class Optimizer(object):
return
param_lr
else
:
if
param_lr
==
1.0
:
return
self
.
global_learning_rate
()
return
self
.
_
global_learning_rate
()
else
:
return
self
.
global_learning_rate
()
*
param_lr
return
self
.
_
global_learning_rate
()
*
param_lr
def
_create_accumulators
(
self
,
block
,
parameters
):
"""Create all accumulators needed by the parameters
...
...
@@ -185,7 +185,7 @@ class Optimizer(object):
format
(
name
,
param
.
name
))
return
self
.
_accumulators
[
name
][
param
.
name
]
def
create_optimization_pass
(
self
,
def
_
create_optimization_pass
(
self
,
parameters_and_grads
,
loss
,
startup_program
=
None
):
...
...
@@ -221,7 +221,7 @@ class Optimizer(object):
self
.
_create_global_learning_rate
()
if
self
.
_LARS_weight_decay
>
0.0
:
layers
.
append_LARS
(
parameters_and_grads
,
self
.
global_learning_rate
(),
self
.
_
global_learning_rate
(),
self
.
_LARS_weight_decay
)
optimize_ops
=
[]
...
...
@@ -262,7 +262,7 @@ class Optimizer(object):
params_grads
=
append_regularization_ops
(
params_grads
,
self
.
regularization
)
optimize_ops
=
self
.
create_optimization_pass
(
params_grads
,
loss
,
optimize_ops
=
self
.
_
create_optimization_pass
(
params_grads
,
loss
,
startup_program
)
return
optimize_ops
,
params_grads
...
...
python/paddle/fluid/tests/book/notest_understand_sentiment.py
浏览文件 @
f8e83196
...
...
@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
paddle.fluid.layers.device
import
get_places
import
unittest
import
paddle.fluid
as
fluid
import
paddle
...
...
@@ -144,7 +144,7 @@ def train(word_dict,
cost
,
acc_out
,
prediction
=
net_method
(
data
,
label
,
input_dim
=
dict_dim
,
class_dim
=
class_dim
)
else
:
places
=
fluid
.
layers
.
get_places
()
places
=
get_places
()
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
cost
,
acc
,
_
=
net_method
(
...
...
python/paddle/fluid/tests/book/test_recognize_digits.py
浏览文件 @
f8e83196
...
...
@@ -12,15 +12,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
argparse
import
paddle.fluid
as
fluid
import
paddle
import
sys
import
numpy
import
unittest
import
math
import
sys
import
os
import
sys
import
unittest
import
numpy
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.layers.device
import
get_places
BATCH_SIZE
=
64
...
...
@@ -76,7 +78,7 @@ def train(nn_type,
net_conf
=
conv_net
if
parallel
:
places
=
fluid
.
layers
.
get_places
()
places
=
get_places
()
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
img_
=
pd
.
read_input
(
img
)
...
...
python/paddle/fluid/tests/book/test_word2vec.py
浏览文件 @
f8e83196
...
...
@@ -14,6 +14,7 @@
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.layers.device
import
get_places
import
unittest
import
os
import
numpy
as
np
...
...
@@ -80,7 +81,7 @@ def train(use_cuda, is_sparse, is_parallel, save_dirname, is_local=True):
avg_cost
,
predict_word
=
__network__
(
[
first_word
,
second_word
,
third_word
,
forth_word
,
next_word
])
else
:
places
=
fluid
.
layers
.
get_places
()
places
=
get_places
()
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
avg_cost
,
predict_word
=
__network__
(
...
...
python/paddle/fluid/tests/book_memory_optimization/test_memopt_fit_a_line.py
浏览文件 @
f8e83196
...
...
@@ -12,12 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
math
import
sys
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.layers.device
import
get_places
# need to fix random seed and training data to compare the loss
# value accurately calculated by the default and the memory optimization
# version.
...
...
@@ -34,7 +35,7 @@ if fluid.core.is_compiled_with_cuda():
use_nccl
=
False
place
=
fluid
.
CUDAPlace
(
0
)
places
=
fluid
.
layers
.
get_places
(
device_count
=
0
,
device_type
=
device_type
)
places
=
get_places
(
device_count
=
0
,
device_type
=
device_type
)
pd
=
fluid
.
layers
.
ParallelDo
(
places
,
use_nccl
=
use_nccl
)
with
pd
.
do
():
x_
=
pd
.
read_input
(
x
)
...
...
python/paddle/fluid/tests/unittests/test_calc_gradient.py
浏览文件 @
f8e83196
...
...
@@ -16,8 +16,6 @@ import unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.framework
as
framework
import
paddle.fluid.optimizer
as
optimizer
from
paddle.fluid.backward
import
calc_gradient
...
...
python/paddle/fluid/tests/unittests/test_get_places_op.py
浏览文件 @
f8e83196
...
...
@@ -13,6 +13,7 @@
# limitations under the License.
import
paddle.fluid
as
fluid
from
paddle.fluid.layers.device
import
get_places
import
decorators
import
unittest
...
...
@@ -20,7 +21,7 @@ import unittest
class
TestGetPlaces
(
unittest
.
TestCase
):
@
decorators
.
prog_scope
()
def
test_get_places
(
self
):
places
=
fluid
.
layers
.
get_places
()
places
=
get_places
()
cpu
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
cpu
)
exe
.
run
(
fluid
.
default_main_program
())
...
...
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
0 → 100644
浏览文件 @
f8e83196
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
math
from
op_test
import
OpTest
def
find_latest_set
(
num
):
return
1
+
int
(
math
.
floor
(
math
.
log
(
num
,
2
)))
class
CodeTable
(
object
):
def
__init__
(
self
,
num_classes
,
code
):
self
.
c
=
num_classes
+
code
def
cal_index
(
self
,
bit
):
return
(
self
.
c
>>
(
bit
+
1
))
-
1
def
get_length
(
self
):
return
find_latest_set
(
self
.
c
)
-
1
def
cal_bit
(
self
,
bit
):
return
self
.
c
&
(
1
<<
bit
)
def
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
):
batch_size
=
x
.
shape
[
0
]
code_length
=
find_latest_set
(
num_classes
-
1
)
code_table
=
[
0
for
_
in
range
(
code_length
)]
pre_output
=
np
.
zeros
((
batch_size
,
code_length
))
pre_sum
=
np
.
zeros
((
batch_size
,
1
))
out
=
np
.
zeros
((
batch_size
,
1
)).
astype
(
"float32"
)
for
i
in
range
(
batch_size
):
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
bias
[
0
][
idx
]
for
i
in
range
(
batch_size
):
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
np
.
dot
(
w
[
idx
],
x
[
i
])
# clip[-40.0, 40.0]
pre_output
=
np
.
clip
(
pre_output
,
-
40.0
,
40.0
)
# out(i, 0) = \sum_j bit(i, j) * preout(i, j)
for
i
in
range
(
batch_size
):
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
length
=
code_table
.
get_length
()
sum
=
0.0
for
j
in
range
(
length
):
if
code_table
.
cal_bit
(
j
):
sum
+=
pre_output
[
i
][
j
]
out
[
i
]
=
-
1.0
*
sum
# soft relu
pre_output
=
np
.
log
(
1
+
np
.
exp
(
pre_output
))
pre_sum
=
pre_output
.
sum
(
1
).
reshape
((
batch_size
,
1
))
out
+=
pre_sum
return
pre_output
,
out
class
TestHSigmoidOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
w
=
np
.
random
.
random
((
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
label
=
np
.
random
.
randint
(
0
,
num_classes
,
(
batch_size
,
1
))
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
f8e83196
...
...
@@ -16,6 +16,7 @@ from __future__ import print_function
import
unittest
import
paddle.fluid.layers
as
layers
from
paddle.fluid.layers.device
import
get_places
import
paddle.fluid.nets
as
nets
from
paddle.fluid.framework
import
Program
,
program_guard
,
default_main_program
from
paddle.fluid.param_attr
import
ParamAttr
...
...
@@ -173,6 +174,16 @@ class TestBook(unittest.TestCase):
x
=
dat
,
label
=
lbl
))
print
(
str
(
program
))
def
test_hsigmoid
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
2
],
dtype
=
'float32'
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
2
],
dtype
=
'int64'
)
self
.
assertIsNotNone
(
layers
.
hsigmoid
(
input
=
x
,
label
=
y
,
num_classes
=
2
))
print
(
str
(
program
))
def
test_sequence_expand
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
@@ -238,7 +249,7 @@ class TestBook(unittest.TestCase):
def
test_get_places
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
get_places
(
device_count
=
4
)
x
=
get_places
(
device_count
=
4
)
self
.
assertIsNotNone
(
x
)
print
(
str
(
program
))
...
...
python/paddle/fluid/tests/unittests/test_optimizer.py
浏览文件 @
f8e83196
...
...
@@ -97,7 +97,7 @@ class TestMomentumOptimizer(unittest.TestCase):
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
momentum_optimizer
.
get_accumulators
()),
0
)
opts
=
momentum_optimizer
.
create_optimization_pass
(
opts
=
momentum_optimizer
.
_
create_optimization_pass
(
params_grads
,
mul_out
,
init_program
)
self
.
assertEqual
(
len
(
opts
),
3
)
sgd_op
=
opts
[
-
1
]
...
...
@@ -151,7 +151,7 @@ class TestMomentumOptimizer(unittest.TestCase):
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
momentum_optimizer
.
get_accumulators
()),
0
)
opts
=
momentum_optimizer
.
create_optimization_pass
(
opts
=
momentum_optimizer
.
_
create_optimization_pass
(
params_grads
,
mul_out
,
init_program
)
self
.
assertEqual
(
len
(
opts
),
3
)
sgd_op
=
opts
[
-
1
]
...
...
@@ -214,8 +214,8 @@ class TestAdagradOptimizer(unittest.TestCase):
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
adagrad_optimizer
.
get_accumulators
()),
0
)
opts
=
adagrad_optimizer
.
create_optimization_pass
(
params_grads
,
mul_out
,
init_program
)
opts
=
adagrad_optimizer
.
_create_optimization_pass
(
params_grads
,
mul_out
,
init_program
)
self
.
assertEqual
(
len
(
opts
),
3
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"fill_constant"
,
"elementwise_mul"
,
"adagrad"
])
...
...
@@ -278,7 +278,7 @@ class TestAdamOptimizer(unittest.TestCase):
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
adam_optimizer
.
get_accumulators
()),
0
)
opts
=
adam_optimizer
.
create_optimization_pass
(
params_grads
,
mul_out
,
opts
=
adam_optimizer
.
_
create_optimization_pass
(
params_grads
,
mul_out
,
init_program
)
self
.
assertEqual
(
len
(
opts
),
5
)
self
.
assertEqual
(
...
...
@@ -345,7 +345,7 @@ class TestAdamaxOptimizer(unittest.TestCase):
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
adamax_optimizer
.
get_accumulators
()),
0
)
opts
=
adamax_optimizer
.
create_optimization_pass
(
params_grads
,
mul_out
,
opts
=
adamax_optimizer
.
_
create_optimization_pass
(
params_grads
,
mul_out
,
init_program
)
self
.
assertEqual
(
len
(
opts
),
4
)
self
.
assertEqual
(
...
...
@@ -409,7 +409,7 @@ class TestDecayedAdagradOptimizer(unittest.TestCase):
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
decayed_adagrad_optimizer
.
get_accumulators
()),
0
)
opts
=
decayed_adagrad_optimizer
.
create_optimization_pass
(
opts
=
decayed_adagrad_optimizer
.
_
create_optimization_pass
(
params_grads
,
mul_out
,
init_program
)
self
.
assertEqual
(
len
(
opts
),
3
)
self
.
assertEqual
(
...
...
@@ -475,7 +475,7 @@ class TestFtrlOptimizer(unittest.TestCase):
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
ftrl_optimizer
.
get_accumulators
()),
0
)
opts
=
ftrl_optimizer
.
create_optimization_pass
(
params_grads
,
mul_out
,
opts
=
ftrl_optimizer
.
_
create_optimization_pass
(
params_grads
,
mul_out
,
init_program
)
self
.
assertEqual
(
len
(
opts
),
3
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
...
...
python/paddle/fluid/tests/unittests/test_parallel_op.py
浏览文件 @
f8e83196
...
...
@@ -15,6 +15,7 @@
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.layers.device
import
get_places
import
paddle.fluid.profiler
as
profiler
import
numpy
...
...
@@ -115,7 +116,7 @@ class BaseParallelForTest(unittest.TestCase):
if
use_parallel
:
thread_num
=
fluid
.
core
.
get_cuda_device_count
(
)
if
use_gpu
else
8
places
=
fluid
.
layers
.
get_places
(
thread_num
)
places
=
get_places
(
thread_num
)
pd
=
fluid
.
layers
.
ParallelDo
(
places
,
use_nccl
=
use_nccl
)
data
=
next
(
generator
)
...
...
python/paddle/fluid/tests/unittests/test_squeeze_op.py
0 → 100644
浏览文件 @
f8e83196
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
# Correct: General.
class
TestSqueezeOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"squeeze"
self
.
init_test_case
()
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)}
self
.
init_attrs
()
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
new_shape
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
def
init_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
(
0
,
2
)
self
.
new_shape
=
(
3
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
False
}
# Correct: There is mins axis.
class
TestSqueezeOp1
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
(
0
,
-
2
)
self
.
new_shape
=
(
3
,
5
)
# Correct: No axes input.
class
TestSqueezeOp2
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
()
self
.
new_shape
=
(
3
,
5
)
# Correct: Just part of axes be squeezed.
class
TestSqueezeOp3
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
1
,
5
,
1
,
4
,
1
)
self
.
axes
=
(
1
,
-
1
)
self
.
new_shape
=
(
3
,
5
,
1
,
4
)
# Correct: Inplace.
class
TestSqueezeOpInplace1
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
(
0
,
2
)
self
.
new_shape
=
(
3
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inplace. There is mins axis.
class
TestSqueezeOpInplace2
(
TestSqueezeOp
):
def
inti_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
(
0
,
-
2
)
self
.
new_shape
=
(
3
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inplace. No axes input.
class
TestSqueezeOpInplace3
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
()
self
.
new_shape
=
(
3
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inpalce. Just part of axes be squeezed.
class
TestSqueezeOpInplace4
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
1
,
5
,
1
,
4
,
1
)
self
.
axes
=
(
1
,
-
1
)
self
.
new_shape
=
(
3
,
5
,
1
,
4
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
0 → 100644
浏览文件 @
f8e83196
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
# Correct: General.
class
TestUnsqueezeOp
(
OpTest
):
def
setUp
(
self
):
self
.
init_test_case
()
self
.
op_type
=
"unsqueeze"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)}
self
.
init_attrs
()
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
new_shape
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
1
,
2
)
self
.
new_shape
=
(
3
,
1
,
1
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
False
}
# Correct: Single input index.
class
TestUnsqueezeOp1
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
-
1
,
)
self
.
new_shape
=
(
3
,
5
,
1
)
# Correct: Mixed input axis.
class
TestUnsqueezeOp2
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
0
,
-
1
)
self
.
new_shape
=
(
1
,
3
,
5
,
1
)
# Correct: There is duplicated axis.
class
TestUnsqueezeOp3
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
2
,
5
)
self
.
axes
=
(
0
,
3
,
3
)
self
.
new_shape
=
(
1
,
3
,
2
,
1
,
1
,
5
)
# Correct: Reversed axes.
class
TestUnsqueezeOp4
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
2
,
5
)
self
.
axes
=
(
3
,
1
,
1
)
self
.
new_shape
=
(
3
,
1
,
1
,
2
,
5
,
1
)
# Correct: Inplace.
class
TestUnsqueezeOpInplace1
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
0
,
2
)
self
.
new_shape
=
(
1
,
3
,
1
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inplace. There is mins index.
class
TestUnsqueezeOpInplace2
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
0
,
-
2
)
self
.
new_shape
=
(
1
,
3
,
1
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inplace. There is duplicated axis.
class
TestUnsqueezeOpInplace3
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
2
,
5
)
self
.
axes
=
(
0
,
3
,
3
)
self
.
new_shape
=
(
1
,
3
,
2
,
1
,
1
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录