Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f8bab5b0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f8bab5b0
编写于
4月 10, 2021
作者:
A
AshburnLee
提交者:
GitHub
4月 10, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimize the performance of the forward of log_softmax when axis is -1 and dim <= 1024 (#31630)
上级
afa3720c
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
170 addition
and
0 deletion
+170
-0
paddle/fluid/operators/log_softmax_op.cu
paddle/fluid/operators/log_softmax_op.cu
+170
-0
未找到文件。
paddle/fluid/operators/log_softmax_op.cu
浏览文件 @
f8bab5b0
...
...
@@ -12,7 +12,177 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <limits>
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/log_softmax_op.h"
#include "paddle/fluid/platform/cuda_device_function.h"
namespace
paddle
{
namespace
operators
{
#define LAUNCH_WARP_FORWAR_COMPUTE(near_greater_power_of_two) \
case near_greater_power_of_two: \
ComputeLogSoftmaxForwardInWarp< \
T, AccT, near_greater_power_of_two><<<blocks, threads, 0, stream>>>( \
dst, src, outer_size, dim_size); \
break;
template
<
typename
T
,
int
KernelWarpSize
>
__device__
__forceinline__
T
WarpReduceSum
(
T
value
)
{
#pragma unroll
for
(
int
offset
=
KernelWarpSize
/
2
;
offset
>
0
;
offset
/=
2
)
{
T
sum_val
=
platform
::
CudaShuffleXorSync
(
0xFFFFFFFF
,
value
,
offset
);
value
=
value
+
sum_val
;
}
return
value
;
}
template
<
typename
T
,
int
KernelWarpSize
>
__device__
__forceinline__
T
WarpReduceMax
(
T
value
)
{
#pragma unroll
for
(
int
offset
=
KernelWarpSize
/
2
;
offset
>
0
;
offset
/=
2
)
{
T
max_val
=
platform
::
CudaShuffleXorSync
(
0xFFFFFFFF
,
value
,
offset
);
value
=
max
(
value
,
max_val
);
}
return
value
;
}
int
GetNearGreaterPowerOfTwo
(
int
value
)
{
int
log2_value
=
0
;
while
((
1
<<
log2_value
)
<
value
)
{
++
log2_value
;
}
return
1
<<
log2_value
;
}
template
<
typename
T
,
typename
AccT
,
int
NearGreaterPowerOfTwo
>
__global__
void
ComputeLogSoftmaxForwardInWarp
(
T
*
dst
,
const
T
*
src
,
int
batch_size
,
int
element_count
)
{
constexpr
int
near_greater_power_of_two
=
NearGreaterPowerOfTwo
;
constexpr
int
kernel_warp_size
=
(
near_greater_power_of_two
<
32
)
?
near_greater_power_of_two
:
32
;
constexpr
int
warp_iter
=
near_greater_power_of_two
/
kernel_warp_size
;
int
batch_id
=
blockDim
.
y
*
blockIdx
.
x
+
threadIdx
.
y
;
// set effective_warp_id as 1 when warps do effective work,
// when warps do ineffective work, effective_warp_id remains unchanged.
int
effective_warp_id
=
batch_size
-
batch_id
;
if
(
effective_warp_id
>
1
)
effective_warp_id
=
1
;
int
thread_in_warp_idx
=
threadIdx
.
x
;
// 1.read data from global memory to registers
AccT
elements
[
warp_iter
];
// set effective_element_count as the num of elements when warps do effective
// work
// set effective_element_count as 0, when warps do ineffective work
int
effective_element_count
=
(
effective_warp_id
<=
0
)
?
0
:
element_count
;
for
(
int
it
=
0
;
it
<
warp_iter
;
++
it
)
{
int
element_index
=
thread_in_warp_idx
+
it
*
kernel_warp_size
;
if
(
element_index
<
effective_element_count
)
{
elements
[
it
]
=
static_cast
<
AccT
>
(
src
[
batch_id
*
element_count
+
element_index
]);
}
else
{
elements
[
it
]
=
-
std
::
numeric_limits
<
AccT
>::
infinity
();
}
}
// 2.compute max_value. For each thread, loop all registers to find max
AccT
max_value
=
elements
[
0
];
#pragma unroll
for
(
int
it
=
1
;
it
<
warp_iter
;
++
it
)
{
max_value
=
(
max_value
>
elements
[
it
])
?
max_value
:
elements
[
it
];
}
max_value
=
WarpReduceMax
<
AccT
,
kernel_warp_size
>
(
max_value
);
// 3.For each warp, accumulate all thread registers
AccT
sum
=
0.0
f
;
#pragma unroll
for
(
int
it
=
0
;
it
<
warp_iter
;
++
it
)
{
sum
+=
std
::
exp
(
elements
[
it
]
-
max_value
);
}
sum
=
WarpReduceSum
<
AccT
,
kernel_warp_size
>
(
sum
);
// 4.store result.
sum
=
std
::
log
(
sum
);
#pragma unroll
for
(
int
it
=
0
;
it
<
warp_iter
;
++
it
)
{
int
element_index
=
thread_in_warp_idx
+
it
*
kernel_warp_size
;
if
(
element_index
<
element_count
)
{
dst
[
batch_id
*
element_count
+
element_index
]
=
static_cast
<
T
>
(
elements
[
it
]
-
max_value
-
sum
);
}
else
{
break
;
}
}
}
template
<
typename
T
,
typename
AccT
>
void
LaunchSoftmaxForwardForLastAxis
(
T
*
dst
,
const
T
*
src
,
int
dim_size
,
int
outer_size
,
gpuStream_t
stream
)
{
int
threads_per_block
=
128
;
int
near_greater_power_of_two
=
GetNearGreaterPowerOfTwo
(
dim_size
);
int
kernel_warp_size
=
(
near_greater_power_of_two
<
32
)
?
near_greater_power_of_two
:
32
;
int
warps_per_block
=
(
threads_per_block
/
kernel_warp_size
);
int
blocks
=
(
outer_size
+
warps_per_block
-
1
)
/
warps_per_block
;
dim3
threads
(
kernel_warp_size
,
warps_per_block
,
1
);
switch
(
near_greater_power_of_two
)
{
LAUNCH_WARP_FORWAR_COMPUTE
(
1
);
LAUNCH_WARP_FORWAR_COMPUTE
(
2
);
LAUNCH_WARP_FORWAR_COMPUTE
(
4
);
// dim_size: 3~4
LAUNCH_WARP_FORWAR_COMPUTE
(
8
);
// dim_size: 5~8
LAUNCH_WARP_FORWAR_COMPUTE
(
16
);
// dim_size: 9~16
LAUNCH_WARP_FORWAR_COMPUTE
(
32
);
// dim_size: 17~32
LAUNCH_WARP_FORWAR_COMPUTE
(
64
);
// dim_size: 33~64
LAUNCH_WARP_FORWAR_COMPUTE
(
128
);
// dim_size 65~128
LAUNCH_WARP_FORWAR_COMPUTE
(
256
);
// dim_size 129~256
LAUNCH_WARP_FORWAR_COMPUTE
(
512
);
// dim_size 257~512
LAUNCH_WARP_FORWAR_COMPUTE
(
1024
);
// dim_size 513~1024
default:
break
;
}
}
template
<
typename
T
>
class
LogSoftmaxKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
using
MPDType
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
auto
*
x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
const
auto
*
input_data
=
x
->
data
<
T
>
();
auto
*
output_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
int
rank
=
x
->
dims
().
size
();
const
int
axis
=
CanonicalAxis
(
context
.
Attr
<
int
>
(
"axis"
),
rank
);
int
dim_size
=
x
->
dims
()[
axis
];
int
inner_size
=
1
;
for
(
int
i
=
axis
+
1
;
i
<
x
->
dims
().
size
();
++
i
)
{
inner_size
*=
x
->
dims
()[
i
];
}
int
outer_size
=
SizeToAxis
(
axis
,
x
->
dims
());
gpuStream_t
stream
=
context
.
cuda_device_context
().
stream
();
if
(
inner_size
==
1
&&
dim_size
<=
1024
&&
dim_size
*
sizeof
(
T
)
<=
4096
)
{
LaunchSoftmaxForwardForLastAxis
<
T
,
MPDType
>
(
output_data
,
input_data
,
dim_size
,
outer_size
,
stream
);
}
else
{
LogSoftmaxFunctor
<
platform
::
CUDADeviceContext
,
T
>
()(
context
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
x
,
out
,
axis
);
}
}
};
}
// operators
}
// paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录