Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f899150e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f899150e
编写于
12月 21, 2017
作者:
Y
Yang Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
pass forward runtime
上级
2f56d4b3
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
177 addition
and
48 deletion
+177
-48
paddle/framework/backward.cc
paddle/framework/backward.cc
+2
-1
paddle/framework/lod_tensor.cc
paddle/framework/lod_tensor.cc
+25
-0
paddle/framework/lod_tensor.h
paddle/framework/lod_tensor.h
+3
-0
paddle/framework/operator.cc
paddle/framework/operator.cc
+16
-4
paddle/framework/tensor.h
paddle/framework/tensor.h
+11
-0
paddle/operators/parallel_do_op.cc
paddle/operators/parallel_do_op.cc
+93
-39
python/paddle/v2/fluid/layers/control_flow.py
python/paddle/v2/fluid/layers/control_flow.py
+12
-1
python/paddle/v2/fluid/tests/test_parallel_op.py
python/paddle/v2/fluid/tests/test_parallel_op.py
+15
-3
未找到文件。
paddle/framework/backward.cc
浏览文件 @
f899150e
...
...
@@ -429,7 +429,8 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
VLOG
(
5
)
<<
"Making backward "
<<
(
*
it
)
->
Type
()
<<
" op"
;
std
::
vector
<
std
::
unique_ptr
<
OpDescBind
>>
op_grads
;
if
((
*
it
)
->
Type
()
==
"recurrent"
||
(
*
it
)
->
Type
()
==
"while"
)
{
if
((
*
it
)
->
Type
()
==
"recurrent"
||
(
*
it
)
->
Type
()
==
"while"
||
(
*
it
)
->
Type
()
==
"parallel_do"
)
{
int
step_block_idx
=
(
*
it
)
->
GetBlockAttr
(
"sub_block"
);
BlockDescBind
*
backward_block
=
CreateStepBlock
(
program_desc
,
no_grad_vars
,
grad_to_var
,
step_block_idx
);
...
...
paddle/framework/lod_tensor.cc
浏览文件 @
f899150e
...
...
@@ -314,5 +314,30 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor) {
}
}
void
LoDTensor
::
MergeLoDTensor
(
const
std
::
vector
<
const
LoDTensor
*>
&
lod_tensors
,
platform
::
Place
place
)
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
place
));
PADDLE_ENFORCE
(
!
lod_tensors
.
empty
());
framework
::
DDim
new_dim
=
lod_tensors
[
0
]
->
dims
();
std
::
type_index
new_type
=
lod_tensors
[
0
]
->
type
();
for
(
auto
*
lod
:
lod_tensors
)
{
PADDLE_ENFORCE
(
new_dim
==
lod
->
dims
());
PADDLE_ENFORCE
(
new_type
==
lod
->
type
());
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
lod
->
place
()));
}
new_dim
[
0
]
*=
lod_tensors
.
size
();
Resize
(
new_dim
);
auto
*
dst_ptr
=
reinterpret_cast
<
uint8_t
*>
(
mutable_data
(
place
,
new_type
));
for
(
auto
*
src
:
lod_tensors
)
{
auto
size
=
src
->
numel
()
*
SizeOfType
(
src
->
type
());
memory
::
Copy
(
boost
::
get
<
platform
::
CPUPlace
>
(
place
),
dst_ptr
,
boost
::
get
<
platform
::
CPUPlace
>
(
src
->
place
()),
src
->
data
<
void
>
(),
size
);
dst_ptr
+=
size
;
}
}
}
// namespace framework
}
// namespace paddle
paddle/framework/lod_tensor.h
浏览文件 @
f899150e
...
...
@@ -144,6 +144,9 @@ class LoDTensor : public Tensor {
*/
void
ShrinkInLevel
(
size_t
level
,
size_t
elem_begin
,
size_t
elem_end
);
void
MergeLoDTensor
(
const
std
::
vector
<
const
LoDTensor
*>&
lod_tensors
,
platform
::
Place
place
);
private:
LoD
lod_
;
};
...
...
paddle/framework/operator.cc
浏览文件 @
f899150e
...
...
@@ -179,10 +179,13 @@ static const Tensor* GetTensorFromVar(const Variable* var) {
const
Tensor
*
t
=
nullptr
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
t
=
&
(
var
->
Get
<
LoDTensor
>
());
}
else
if
(
var
->
IsType
<
Tensor
>
())
{
t
=
&
(
var
->
Get
<
Tensor
>
());
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
t
=
&
(
var
->
Get
<
SelectedRows
>
().
value
());
}
else
{
PADDLE_THROW
(
"Variable type must be LoDTensor/SelectedRows."
);
PADDLE_THROW
(
"Variable type_id %s, expect LoDTensor/SelectedRows."
,
var
->
Type
().
name
());
}
return
t
;
}
...
...
@@ -191,10 +194,13 @@ static Tensor* GetMutableTensorFromVar(Variable* var) {
Tensor
*
t
=
nullptr
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
t
=
var
->
GetMutable
<
LoDTensor
>
();
}
else
if
(
var
->
IsType
<
Tensor
>
())
{
t
=
var
->
GetMutable
<
Tensor
>
();
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
t
=
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
();
}
else
{
PADDLE_THROW
(
"Variable type must be LoDTensor/SelectedRows."
);
PADDLE_THROW
(
"Variable type_id %s, expect LoDTensor/SelectedRows."
,
var
->
Type
().
name
());
}
return
t
;
}
...
...
@@ -359,10 +365,13 @@ class RuntimeInferShapeContext : public InferShapeContext {
Variable
*
var
=
scope_
.
FindVar
(
name
);
if
(
var
->
IsType
<
LoDTensor
>
())
{
return
var
->
Get
<
LoDTensor
>
().
dims
();
}
else
if
(
var
->
IsType
<
Tensor
>
())
{
return
var
->
Get
<
Tensor
>
().
dims
();
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
return
var
->
Get
<
SelectedRows
>
().
GetCompleteDims
();
}
else
{
PADDLE_THROW
(
"Variable type must be LoDTensor/SelectedRows."
);
PADDLE_THROW
(
"Variable %s type_id %s, expect LoDTensor/SelectedRows."
,
name
,
var
->
Type
().
name
());
}
}
...
...
@@ -370,10 +379,13 @@ class RuntimeInferShapeContext : public InferShapeContext {
Variable
*
var
=
scope_
.
FindVar
(
name
);
if
(
var
->
IsType
<
LoDTensor
>
())
{
var
->
GetMutable
<
LoDTensor
>
()
->
Resize
(
dim
);
}
else
if
(
var
->
IsType
<
Tensor
>
())
{
var
->
GetMutable
<
Tensor
>
()
->
Resize
(
dim
);
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
var
->
GetMutable
<
SelectedRows
>
()
->
set_height
(
dim
[
0
]);
}
else
{
PADDLE_THROW
(
"Variable type must be LoDTensor/SelectedRows."
);
PADDLE_THROW
(
"Variable %s type_id %s, expect LoDTensor/SelectedRows."
,
name
,
var
->
Type
().
name
());
}
}
...
...
paddle/framework/tensor.h
浏览文件 @
f899150e
...
...
@@ -55,6 +55,8 @@ class Tensor {
template
<
typename
T
>
inline
const
T
*
data
()
const
;
inline
void
switch_place
(
platform
::
Place
new_place
);
/**
* @brief Return a pointer to mutable memory block.
* @note If not exist, then allocation.
...
...
@@ -183,6 +185,15 @@ class Tensor {
size_t
offset_
;
};
inline
void
Tensor
::
switch_place
(
platform
::
Place
new_place
)
{
if
(
holder_
->
place
()
==
new_place
)
{
return
;
}
// TODO(tonyyang-svail): do memcpy here.
PADDLE_THROW
(
"Not Implemented"
);
}
}
// namespace framework
}
// namespace paddle
...
...
paddle/operators/parallel_do_op.cc
浏览文件 @
f899150e
...
...
@@ -13,9 +13,11 @@
limitations under the License. */
#include <vector>
#include "chunk_eval_op.h"
#include "paddle/framework/executor.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/platform/place.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -28,10 +30,6 @@ constexpr char kOutputs[] = "outputs";
constexpr
char
kParallelScopes
[]
=
"parallel_scopes"
;
constexpr
char
kParallelBlock
[]
=
"sub_block"
;
// #define GRAD_SUFFIX "@GRAD"
// constexpr char kInputGrads[] = "inputs" GRAD_SUFFIX;
// constexpr char kOutputGrads[] = "outputs" GRAD_SUFFIX;
// constexpr char kParamGrads[] = "parameters" GRAD_SUFFIX;
using
ParallelScopeVar
=
std
::
vector
<
framework
::
Scope
*>
;
using
OperatorBase
=
framework
::
OperatorBase
;
...
...
@@ -46,21 +44,66 @@ class ParallelDoOp : public OperatorBase {
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{
// create scope
// copy parameters
auto
*
block
=
Attr
<
framework
::
BlockDescBind
*>
(
kParallelBlock
);
auto
*
program
=
block
->
Program
();
// TODO(tonyyang-svail): get places from input
std
::
vector
<
platform
::
Place
>
places
;
places
.
emplace_back
(
platform
::
CPUPlace
());
places
.
emplace_back
(
platform
::
CPUPlace
());
std
::
vector
<
framework
::
Scope
*>
sub_scopes
;
for
(
int
place_idx
=
0
;
place_idx
<
places
.
size
();
++
place_idx
)
{
VLOG
(
3
)
<<
"Run "
<<
place_idx
;
sub_scopes
.
push_back
(
&
scope
.
NewScope
());
auto
&
place
=
places
[
place_idx
];
auto
*
cur_scope
=
sub_scopes
[
place_idx
];
// copy parameter
if
(
dev_ctx
.
GetPlace
()
!=
place
)
{
PADDLE_THROW
(
"Not Implemented"
);
}
};
class
ParallelDoGradOp
:
public
OperatorBase
{
public:
ParallelDoGradOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
// feed input
for
(
auto
&
argu
:
Inputs
(
kInputs
))
{
auto
*
var
=
scope
.
FindVar
(
argu
);
const
auto
&
tensor
=
var
->
Get
<
LoDTensor
>
();
if
(
!
tensor
.
lod
().
empty
())
{
PADDLE_THROW
(
"Disable parallel lod for now"
);
}
else
{
PADDLE_ENFORCE
(
tensor
.
dims
()[
0
]
%
places
.
size
()
==
0
,
"Batch size should be divided by places size"
);
int
begin
=
place_idx
*
tensor
.
dims
()[
0
]
/
places
.
size
();
int
end
=
(
place_idx
+
1
)
*
tensor
.
dims
()[
0
]
/
places
.
size
();
auto
feed_tensor
=
tensor
.
Slice
(
begin
,
end
);
feed_tensor
.
switch_place
(
place
);
auto
*
cur_var
=
cur_scope
->
Var
(
argu
);
auto
*
cur_tensor
=
cur_var
->
GetMutable
<
Tensor
>
();
*
cur_tensor
=
feed_tensor
;
}
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
// execute
auto
executor
=
framework
::
Executor
(
place
);
executor
.
Run
(
*
program
,
cur_scope
,
block
->
ID
(),
false
/*create_local_scope*/
);
}
// merge output
for
(
auto
&
o_name
:
Outputs
(
kOutputs
))
{
std
::
vector
<
const
framework
::
LoDTensor
*>
lod_tensors
;
for
(
auto
*
sub_scope
:
sub_scopes
)
{
lod_tensors
.
push_back
(
&
sub_scope
->
FindVar
(
o_name
)
->
Get
<
LoDTensor
>
());
}
auto
*
lod_tensor_to_be_merged
=
scope
.
FindVar
(
o_name
)
->
GetMutable
<
LoDTensor
>
();
lod_tensor_to_be_merged
->
MergeLoDTensor
(
lod_tensors
,
dev_ctx
.
GetPlace
());
}
}
};
class
ParallelDoOpProtoMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -80,16 +123,28 @@ ParallelDo Operator.
}
};
class
ParallelDoGradOp
:
public
OperatorBase
{
public:
ParallelDoGradOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
};
class
ParallelDoGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
virtual
std
::
unique_ptr
<
framework
::
OpDescBind
>
Apply
()
const
{
PADDLE_THROW
(
"Not Implemented"
);
auto
*
grad
=
new
framework
::
OpDescBind
();
grad
->
SetType
(
"
recurrent
_grad"
);
grad
->
SetType
(
"
parallel_do
_grad"
);
for
(
auto
&
input_param
:
this
->
InputNames
())
{
LOG
(
INFO
)
<<
input_param
;
grad
->
SetInput
(
input_param
,
this
->
Input
(
input_param
));
grad
->
SetOutput
(
framework
::
GradVarName
(
input_param
),
this
->
InputGrad
(
input_param
));
...
...
@@ -116,26 +171,25 @@ class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker {
class
ParallelDoGradOpShapeInference
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_THROW
(
"Not Implemented"
);
// std::vector<std::string> input{kInputs};
// std::vector<std::string> output{kOutputs};
// for (auto &s : input) {
// PADDLE_ENFORCE(ctx->HasInputs(s));
// PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(s)),
// "Cannot find the gradient variable %s",
// framework::GradVarName(s));
// }
// for (auto &s : output) {
// PADDLE_ENFORCE(ctx->HasInputs(s));
// }
// for (auto &s : input) {
// ctx->SetOutputsDim(framework::GradVarName(s), ctx->GetInputsDim(s));
// }
// if (ctx->HasInputs(kParameters)) {
// PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters)));
// ctx->SetOutputsDim(framework::GradVarName(kParameters),
// ctx->GetInputsDim(kParameters));
// }
std
::
vector
<
std
::
string
>
input
{
kParameters
,
kInputs
};
std
::
vector
<
std
::
string
>
output
{
kOutputs
};
for
(
auto
&
s
:
input
)
{
PADDLE_ENFORCE
(
ctx
->
HasInputs
(
s
));
PADDLE_ENFORCE
(
ctx
->
HasOutputs
(
framework
::
GradVarName
(
s
)),
"Cannot find the gradient variable %s"
,
framework
::
GradVarName
(
s
));
}
for
(
auto
&
s
:
output
)
{
PADDLE_ENFORCE
(
ctx
->
HasInputs
(
s
));
}
for
(
auto
&
s
:
input
)
{
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
s
),
ctx
->
GetInputsDim
(
s
));
}
if
(
ctx
->
HasInputs
(
kParameters
))
{
PADDLE_ENFORCE
(
ctx
->
HasOutputs
(
framework
::
GradVarName
(
kParameters
)));
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
kParameters
),
ctx
->
GetInputsDim
(
kParameters
));
}
}
};
...
...
python/paddle/v2/fluid/layers/control_flow.py
浏览文件 @
f899150e
...
...
@@ -140,7 +140,18 @@ class ParallelDo(object):
step_scope
=
parent_block
.
create_var
(
type
=
core
.
VarDesc
.
VarType
.
STEP_SCOPES
)
self
.
outputs
=
[
parent_block
.
create_var
(
name
=
o
.
name
,
shape
=
o
.
shape
,
dtype
=
o
.
dtype
,
lod_level
=
o
.
lod_level
,
persistable
=
o
.
persistable
,
stop_gradient
=
o
.
stop_gradient
)
for
o
in
self
.
outputs
]
inputs
=
[
parent_block
.
var
(
i
.
name
)
for
i
in
self
.
inputs
]
outputs
=
[
parent_block
.
var
(
o
.
name
)
for
o
in
self
.
outputs
]
parent_block
.
append_op
(
type
=
'parallel_do'
,
...
...
@@ -149,7 +160,7 @@ class ParallelDo(object):
'parameters'
:
self
.
get_parameters
(),
'places'
:
self
.
places
},
outputs
=
{
'outputs'
:
self
.
outputs
,
outputs
=
{
'outputs'
:
outputs
,
'parallel_scopes'
:
[
step_scope
]},
attrs
=
{
'sub_block'
:
current_block
})
...
...
python/paddle/v2/fluid/tests/test_parallel_op.py
浏览文件 @
f899150e
...
...
@@ -12,7 +12,11 @@ import paddle.v2.fluid.core as core
class
ParallelOpTest
(
unittest
.
TestCase
):
def
setUp
(
self
):
x
=
layers
.
data
(
shape
=
[
2
,
3
,
4
],
dtype
=
'float32'
,
name
=
'x'
,
append_batch_size
=
False
)
shape
=
[
-
1
,
3
,
4
],
dtype
=
'float32'
,
name
=
'x'
,
append_batch_size
=
False
,
stop_gradient
=
False
)
places
=
fluid
.
default_main_program
().
global_block
().
create_var
()
pd
=
layers
.
ParallelDo
(
places
=
places
)
...
...
@@ -22,8 +26,16 @@ class ParallelOpTest(unittest.TestCase):
hidden
=
layers
.
fc
(
input
=
data
,
size
=
7
)
pd
.
write_output
(
hidden
)
data
=
pd
()
print
data
print
fluid
.
default_main_program
()
loss
=
layers
.
mean
(
x
=
data
)
append_backward_ops
(
loss
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
x
.
name
:
np
.
random
.
uniform
(
0.1
,
0.6
,
(
2
,
3
,
4
)).
astype
(
"float32"
)
})
def
test_forward
(
self
):
pass
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录