Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f88af205
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f88af205
编写于
6月 21, 2021
作者:
C
cc
提交者:
GitHub
6月 21, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Combine amp and qat (#33484)
* Combine amp and qat * add unit test
上级
0905deec
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
267 addition
and
19 deletion
+267
-19
paddle/fluid/imperative/amp_auto_cast.cc
paddle/fluid/imperative/amp_auto_cast.cc
+15
-2
paddle/fluid/operators/fake_quantize_op.cu
paddle/fluid/operators/fake_quantize_op.cu
+27
-17
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
+1
-0
python/paddle/fluid/contrib/slim/tests/test_imperative_qat_amp.py
...addle/fluid/contrib/slim/tests/test_imperative_qat_amp.py
+222
-0
python/paddle/fluid/dygraph/amp/auto_cast.py
python/paddle/fluid/dygraph/amp/auto_cast.py
+2
-0
未找到文件。
paddle/fluid/imperative/amp_auto_cast.cc
浏览文件 @
f88af205
...
...
@@ -141,7 +141,7 @@ static inline std::shared_ptr<imperative::VarBase> CastToFP32(
}
static
inline
framework
::
proto
::
VarType
::
Type
GetPromoteType
(
const
NameVarBaseMap
&
ins
)
{
const
std
::
string
&
op_type
,
const
NameVarBaseMap
&
ins
)
{
auto
dst_type
=
framework
::
proto
::
VarType
::
FP16
;
for
(
const
auto
&
pair
:
ins
)
{
for
(
const
auto
&
var
:
pair
.
second
)
{
...
...
@@ -151,6 +151,18 @@ static inline framework::proto::VarType::Type GetPromoteType(
}
}
}
// NOTE(juncai): moving_average_abs_max_scale only consider the
// dtype of input(X)
if
(
op_type
==
"moving_average_abs_max_scale"
)
{
for
(
const
auto
&
pair
:
ins
)
{
if
(
pair
.
first
==
"X"
&&
pair
.
second
.
front
()
->
DataType
()
==
framework
::
proto
::
VarType
::
FP16
)
{
dst_type
=
framework
::
proto
::
VarType
::
FP16
;
}
}
}
return
dst_type
;
}
...
...
@@ -183,7 +195,8 @@ NameVarBaseMap AutoCastInputs(const std::string& op_type,
}
return
new_ins
;
}
else
{
auto
dst_type
=
GetPromoteType
(
ins
);
auto
dst_type
=
GetPromoteType
(
op_type
,
ins
);
// NOTE(zhiqiu): if the op has op fp16 kernel, fall back to fp32.
if
(
dst_type
==
framework
::
proto
::
VarType
::
FP16
&&
AmpOperators
::
Instance
().
GetMutableUnsupportedFp16Ops
()
->
count
(
...
...
paddle/fluid/operators/fake_quantize_op.cu
浏览文件 @
f88af205
...
...
@@ -25,18 +25,19 @@ __global__ void FindAbsMaxKernel(const T* in, const int n, T* out) {
int
bid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
int
tid
=
threadIdx
.
x
;
extern
__shared__
T
shared_max_data
[];
extern
__shared__
char
*
shared_max_data_tmp
[];
auto
shared_max_data
=
reinterpret_cast
<
T
*>
(
shared_max_data_tmp
);
if
(
gridDim
.
x
>
1
)
{
shared_max_data
[
tid
]
=
T
(
0
);
for
(
int
i
=
bid
;
i
<
n
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
tmp
=
f
abs
(
in
[
i
]);
T
tmp
=
abs
(
in
[
i
]);
if
(
tmp
>
shared_max_data
[
tid
])
{
shared_max_data
[
tid
]
=
tmp
;
}
}
}
else
{
if
(
bid
<
n
)
{
shared_max_data
[
tid
]
=
f
abs
(
in
[
bid
]);
shared_max_data
[
tid
]
=
abs
(
in
[
bid
]);
}
else
{
shared_max_data
[
tid
]
=
T
(
0
);
}
...
...
@@ -73,6 +74,8 @@ struct FindAbsMaxFunctor<platform::CUDADeviceContext, T> {
};
template
struct
FindAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
FindAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>;
template
<
typename
T
>
__global__
void
FindChannelAbsMaxKernelQuantAxis0
(
const
T
*
in
,
const
int
n
,
...
...
@@ -213,13 +216,16 @@ __global__ void ClipAndQuantDequantKernel(const T* in, const T* scale,
int
tid
=
threadIdx
.
x
;
T
s
=
scale
[
0
];
T
inv_s
=
inverse
(
s
);
T
bin_cnt_t
=
static_cast
<
T
>
(
bin_cnt
);
for
(
int
i
=
bid
;
i
<
n
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
x
=
in
[
i
];
T
v
=
x
>
s
?
s
:
x
;
v
=
v
<
-
s
?
-
s
:
v
;
v
=
bin_cnt
*
inv_s
*
v
;
out
[
i
]
=
round
(
v
)
*
s
/
bin_cnt
;
x
=
x
>
s
?
s
:
x
;
x
=
x
<
-
s
?
-
s
:
x
;
x
=
(
bin_cnt_t
/
s
)
*
x
;
x
=
static_cast
<
T
>
(
round
(
static_cast
<
float
>
(
x
)));
out
[
i
]
=
(
x
*
s
)
/
bin_cnt_t
;
}
}
...
...
@@ -261,9 +267,6 @@ struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
}
};
template
struct
ClipAndFakeQuantDequantFunctor
<
platform
::
CUDADeviceContext
,
float
>;
// ChannelClipAndQuantKernel for quant_axis is 0
template
<
typename
T
>
__global__
void
ChannelClipAndQuantKernelQuantAxis0
(
const
T
*
in
,
const
T
*
scale
,
...
...
@@ -423,8 +426,10 @@ struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> {
memory
::
Copy
(
platform
::
CPUPlace
(),
&
scale
,
gpu_place
,
cur_scale
,
sizeof
(
T
),
ctx
.
stream
());
ctx
.
Wait
();
state
=
rate
*
state
+
1
;
accum
=
rate
*
accum
+
scale
;
T
rate_t
=
static_cast
<
T
>
(
rate
);
state
=
rate_t
*
state
+
static_cast
<
T
>
(
1.0
);
accum
=
rate_t
*
accum
+
scale
;
scale
=
accum
/
state
;
memory
::
Copy
(
gpu_place
,
out_accum
->
mutable_data
<
T
>
(
gpu_place
),
...
...
@@ -527,10 +532,12 @@ template struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext,
namespace
ops
=
paddle
::
operators
;
using
CUDA
=
paddle
::
platform
::
CUDADeviceContext
;
using
float16
=
paddle
::
platform
::
float16
;
REGISTER_OP_CUDA_KERNEL
(
fake_quantize_abs_max
,
ops
::
FakeQuantizeAbsMaxKernel
<
CUDA
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_quantize_dequantize_abs_max
,
ops
::
FakeQuantizeDequantizeAbsMaxKernel
<
CUDA
,
float
>
);
ops
::
FakeQuantizeDequantizeAbsMaxKernel
<
CUDA
,
float
>
,
ops
::
FakeQuantizeDequantizeAbsMaxKernel
<
CUDA
,
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_channel_wise_quantize_abs_max
,
ops
::
FakeChannelWiseQuantizeAbsMaxKernel
<
CUDA
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_quantize_range_abs_max
,
...
...
@@ -539,12 +546,15 @@ REGISTER_OP_CUDA_KERNEL(
fake_quantize_moving_average_abs_max
,
ops
::
FakeQuantizeMovingAverageAbsMaxKernel
<
CUDA
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
moving_average_abs_max_scale
,
ops
::
MovingAverageAbsMaxScaleKernel
<
CUDA
,
float
>
);
ops
::
MovingAverageAbsMaxScaleKernel
<
CUDA
,
float
>
,
ops
::
MovingAverageAbsMaxScaleKernel
<
CUDA
,
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_quantize_dequantize_moving_average_abs_max
,
ops
::
FakeQuantizeDequantizeMovingAverageAbsMaxKernel
<
CUDA
,
float
>
);
ops
::
FakeQuantizeDequantizeMovingAverageAbsMaxKernel
<
CUDA
,
float
>
,
ops
::
FakeQuantizeDequantizeMovingAverageAbsMaxKernel
<
CUDA
,
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
stright_throuth_estimator_grad
,
ops
::
StrightThroughEstimatorGradKernel
<
CUDA
,
float
>
);
ops
::
StrightThroughEstimatorGradKernel
<
CUDA
,
float
>
,
ops
::
StrightThroughEstimatorGradKernel
<
CUDA
,
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_channel_wise_quantize_dequantize_abs_max
,
ops
::
FakeChannelWiseQuantizeDequantizeAbsMaxKernel
<
CUDA
,
float
>
);
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
浏览文件 @
f88af205
...
...
@@ -127,6 +127,7 @@ if(WIN32)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_lstm_model
)
list
(
REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1
)
list
(
REMOVE_ITEM TEST_OPS test_quantize_transpiler_v2
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_qat_amp
)
endif
()
if
(
LINUX AND WITH_MKLDNN
)
...
...
python/paddle/fluid/contrib/slim/tests/test_imperative_qat_amp.py
0 → 100644
浏览文件 @
f88af205
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
from
__future__
import
print_function
import
os
import
numpy
as
np
import
random
import
shutil
import
time
import
unittest
import
logging
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.contrib.slim.quantization
import
ImperativeQuantAware
from
paddle.fluid.log_helper
import
get_logger
from
paddle.dataset.common
import
download
from
imperative_test_utils
import
fix_model_dict
,
ImperativeLenet
os
.
environ
[
"CPU_NUM"
]
=
"1"
if
paddle
.
is_compiled_with_cuda
():
fluid
.
set_flags
({
"FLAGS_cudnn_deterministic"
:
True
})
_logger
=
get_logger
(
__name__
,
logging
.
INFO
,
fmt
=
'%(asctime)s-%(levelname)s: %(message)s'
)
class
TestImperativeQatAmp
(
unittest
.
TestCase
):
"""
Test the combination of qat and amp.
"""
@
classmethod
def
setUpClass
(
cls
):
timestamp
=
time
.
strftime
(
'%Y-%m-%d-%H-%M-%S'
,
time
.
localtime
())
cls
.
root_path
=
os
.
path
.
join
(
os
.
getcwd
(),
"imperative_qat_amp_"
+
timestamp
)
cls
.
save_path
=
os
.
path
.
join
(
cls
.
root_path
,
"model"
)
cls
.
download_path
=
'dygraph_int8/download'
cls
.
cache_folder
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset/'
+
cls
.
download_path
)
cls
.
lenet_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/lenet_pretrained.tar.gz"
cls
.
lenet_md5
=
"953b802fb73b52fae42896e3c24f0afb"
seed
=
1
np
.
random
.
seed
(
seed
)
paddle
.
static
.
default_main_program
().
random_seed
=
seed
paddle
.
static
.
default_startup_program
().
random_seed
=
seed
@
classmethod
def
tearDownClass
(
cls
):
try
:
shutil
.
rmtree
(
cls
.
root_path
)
except
Exception
as
e
:
print
(
"Failed to delete {} due to {}"
.
format
(
cls
.
root_path
,
str
(
e
)))
def
cache_unzipping
(
self
,
target_folder
,
zip_path
):
if
not
os
.
path
.
exists
(
target_folder
):
cmd
=
'mkdir {0} && tar xf {1} -C {0}'
.
format
(
target_folder
,
zip_path
)
os
.
system
(
cmd
)
def
download_model
(
self
,
data_url
,
data_md5
,
folder_name
):
download
(
data_url
,
self
.
download_path
,
data_md5
)
file_name
=
data_url
.
split
(
'/'
)[
-
1
]
zip_path
=
os
.
path
.
join
(
self
.
cache_folder
,
file_name
)
print
(
'Data is downloaded at {0}'
.
format
(
zip_path
))
data_cache_folder
=
os
.
path
.
join
(
self
.
cache_folder
,
folder_name
)
self
.
cache_unzipping
(
data_cache_folder
,
zip_path
)
return
data_cache_folder
def
set_vars
(
self
):
self
.
qat
=
ImperativeQuantAware
()
self
.
train_batch_num
=
30
self
.
train_batch_size
=
32
self
.
test_batch_num
=
100
self
.
test_batch_size
=
32
self
.
eval_acc_top1
=
0.99
def
model_train
(
self
,
model
,
batch_num
=-
1
,
batch_size
=
32
,
use_amp
=
False
):
model
.
train
()
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
batch_size
)
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.001
,
parameters
=
model
.
parameters
())
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
500
)
for
batch_id
,
data
in
enumerate
(
train_reader
()):
x_data
=
np
.
array
([
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
-
1
,
1
)
img
=
paddle
.
to_tensor
(
x_data
)
label
=
paddle
.
to_tensor
(
y_data
)
if
use_amp
:
with
paddle
.
amp
.
auto_cast
():
out
=
model
(
img
)
acc
=
fluid
.
layers
.
accuracy
(
out
,
label
)
loss
=
fluid
.
layers
.
cross_entropy
(
out
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
scaled_loss
=
scaler
.
scale
(
avg_loss
)
scaled_loss
.
backward
()
scaler
.
minimize
(
adam
,
scaled_loss
)
adam
.
clear_gradients
()
else
:
out
=
model
(
img
)
acc
=
fluid
.
layers
.
accuracy
(
out
,
label
)
loss
=
fluid
.
layers
.
cross_entropy
(
out
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
avg_loss
.
backward
()
adam
.
minimize
(
avg_loss
)
model
.
clear_gradients
()
if
batch_id
%
100
==
0
:
_logger
.
info
(
"Train | step {}: loss = {:}, acc= {:}"
.
format
(
batch_id
,
avg_loss
.
numpy
(),
acc
.
numpy
()))
if
batch_num
>
0
and
batch_id
+
1
>=
batch_num
:
break
def
model_test
(
self
,
model
,
batch_num
=-
1
,
batch_size
=
32
,
use_amp
=
False
):
model
.
eval
()
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
acc_top1_list
=
[]
for
batch_id
,
data
in
enumerate
(
test_reader
()):
x_data
=
np
.
array
([
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
-
1
,
1
)
img
=
paddle
.
to_tensor
(
x_data
)
label
=
paddle
.
to_tensor
(
y_data
)
with
paddle
.
amp
.
auto_cast
(
use_amp
):
out
=
model
(
img
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
acc_top1_list
.
append
(
float
(
acc_top1
.
numpy
()))
if
batch_id
%
100
==
0
:
_logger
.
info
(
"Test | At step {}: acc1 = {:}, acc5 = {:}"
.
format
(
batch_id
,
acc_top1
.
numpy
(),
acc_top5
.
numpy
()))
if
batch_num
>
0
and
batch_id
+
1
>=
batch_num
:
break
acc_top1
=
sum
(
acc_top1_list
)
/
len
(
acc_top1_list
)
return
acc_top1
def
test_ptq
(
self
):
start_time
=
time
.
time
()
self
.
set_vars
()
params_path
=
self
.
download_model
(
self
.
lenet_url
,
self
.
lenet_md5
,
"lenet"
)
params_path
+=
"/lenet_pretrained/lenet.pdparams"
with
fluid
.
dygraph
.
guard
():
model
=
ImperativeLenet
()
model_state_dict
=
paddle
.
load
(
params_path
)
model
.
set_state_dict
(
model_state_dict
)
_logger
.
info
(
"Test fp32 model"
)
fp32_acc_top1
=
self
.
model_test
(
model
,
self
.
test_batch_num
,
self
.
test_batch_size
)
self
.
qat
.
quantize
(
model
)
use_amp
=
True
self
.
model_train
(
model
,
self
.
train_batch_num
,
self
.
train_batch_size
,
use_amp
)
_logger
.
info
(
"Test int8 model"
)
int8_acc_top1
=
self
.
model_test
(
model
,
self
.
test_batch_num
,
self
.
test_batch_size
,
use_amp
)
_logger
.
info
(
'fp32_acc_top1: %f, int8_acc_top1: %f'
%
(
fp32_acc_top1
,
int8_acc_top1
))
self
.
assertTrue
(
int8_acc_top1
>
fp32_acc_top1
-
0.01
,
msg
=
'fp32_acc_top1: %f, int8_acc_top1: %f'
%
(
fp32_acc_top1
,
int8_acc_top1
))
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
1
,
28
,
28
],
dtype
=
'float32'
)
]
paddle
.
jit
.
save
(
layer
=
model
,
path
=
self
.
save_path
,
input_spec
=
input_spec
)
print
(
'Quantized model saved in {%s}'
%
self
.
save_path
)
end_time
=
time
.
time
()
print
(
"total time: %ss"
%
(
end_time
-
start_time
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/dygraph/amp/auto_cast.py
浏览文件 @
f88af205
...
...
@@ -29,6 +29,8 @@ WHITE_LIST = {
'matmul'
,
'matmul_v2'
,
'mul'
,
'fake_quantize_dequantize_abs_max'
,
'fake_quantize_dequantize_moving_average_abs_max'
,
}
# The set of ops that support fp16 calculation and are considered numerically-
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录