Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f874e02b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f874e02b
编写于
3月 02, 2021
作者:
S
sandyhouse
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update optimizer
上级
d2c81529
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
212 addition
and
60 deletion
+212
-60
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+24
-7
python/paddle/fluid/device_worker.py
python/paddle/fluid/device_worker.py
+2
-0
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+186
-53
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
f874e02b
...
...
@@ -31,6 +31,8 @@ __all__ = ["ShardingOptimizer"]
class
ShardingOptimizer
(
MetaOptimizerBase
):
"""Sharding Optimizer."""
def
__init__
(
self
,
optimizer
):
super
(
ShardingOptimizer
,
self
).
__init__
(
optimizer
)
self
.
inner_opt
=
optimizer
...
...
@@ -77,6 +79,7 @@ class ShardingOptimizer(MetaOptimizerBase):
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
"""Implementation of minimize."""
# TODO: (JZ-LIANG) support multiple comm in future
# self._nrings = self.user_defined_strategy.nccl_comm_num
self
.
_nrings_sharding
=
1
...
...
@@ -91,12 +94,15 @@ class ShardingOptimizer(MetaOptimizerBase):
self
.
user_defined_strategy
.
sharding_configs
[
"parallelism"
])
self
.
use_pipeline
=
self
.
user_defined_strategy
.
sharding_configs
[
"use_pipeline"
]
self
.
acc_steps
=
self
.
user_defined_strategy
.
sharding_configs
[
"acc_steps"
]
if
self
.
inner_opt
is
None
:
raise
ValueError
(
"self.inner_opt of ShardingOptimizer should not be None."
)
if
self
.
use_pipeline
:
pp_optimizer
=
fluid
.
optimizer
.
PipelineOptimizer
(
self
.
inner_opt
)
pp_optimizer
=
fluid
.
optimizer
.
PipelineOptimizer
(
self
.
inner_opt
,
self
.
acc_steps
)
main_program
=
loss
.
block
.
program
main_program
.
_pipeline_opt
=
dict
()
pp_rank
=
self
.
role_maker
.
_worker_index
()
//
(
...
...
@@ -107,7 +113,7 @@ class ShardingOptimizer(MetaOptimizerBase):
'global_rank'
]
=
self
.
role_maker
.
_worker_index
()
main_program
.
_pipeline_opt
[
'use_sharding'
]
=
True
main_program
.
_pipeline_opt
[
'ring_id'
]
=
2
optimize_ops
,
params_grads
,
program_list
=
pp_optimizer
.
minimize
(
optimize_ops
,
params_grads
,
program_list
,
self
.
pipeline_pair
=
pp_optimizer
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
self
.
pipeline_nodes
=
len
(
program_list
)
else
:
...
...
@@ -349,8 +355,8 @@ class ShardingOptimizer(MetaOptimizerBase):
# check op dependecy
check_broadcast
(
main_block
)
check_allreduce_sum
(
main_block
,
self
.
_shard
,
self
.
sharding_ring_id
,
self
.
dp_ring_id
)
#
check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
#
self.dp_ring_id)
#check_allreduce_sum(main_block, self._shard, self.dp_ring_id)
self
.
_wait
()
return
optimize_ops
,
params_grads
...
...
@@ -403,9 +409,20 @@ class ShardingOptimizer(MetaOptimizerBase):
print
(
"pp_group_endpoints:"
,
self
.
pp_group_endpoints
)
print
(
"pp_rank:"
,
self
.
pp_rank
)
print
(
"pp_ring_id:"
,
self
.
pp_ring_id
)
for
pair
in
self
.
pipeline_pair
:
if
self
.
pp_rank
not
in
pair
:
continue
pp_group_endpoints
=
[
self
.
pp_group_endpoints
[
pair
[
0
]],
self
.
pp_group_endpoints
[
pair
[
1
]],
]
if
pair
[
0
]
<
pair
[
1
]:
start_ring_id
=
self
.
pp_ring_id
+
pair
[
1
]
-
pair
[
0
]
-
1
else
:
start_ring_id
=
self
.
pp_ring_id
+
2
+
pair
[
0
]
-
pair
[
1
]
-
1
pp_rank
=
0
if
self
.
pp_rank
==
pair
[
0
]
else
1
self
.
_collective_helper
.
_init_communicator
(
self
.
_startup_program
,
self
.
current_endpoint
,
self
.
pp_group_endpoints
,
self
.
pp_rank
,
self
.
pp
_ring_id
,
False
)
pp_group_endpoints
,
pp_rank
,
start
_ring_id
,
False
)
startup_block
=
self
.
_startup_program
.
global_block
()
startup_block
.
_sync_with_cpp
()
...
...
python/paddle/fluid/device_worker.py
浏览文件 @
f874e02b
...
...
@@ -413,6 +413,8 @@ class Section(DeviceWorker):
section_param
=
trainer_desc
.
section_param
section_param
.
num_microbatches
=
pipeline_opt
[
"num_microbatches"
]
section_param
.
start_cpu_core_id
=
pipeline_opt
[
"start_cpu_core_id"
]
section_param
.
pipeline_stage
=
pipeline_opt
[
"pipeline_stage"
]
section_param
.
num_pipeline_stages
=
pipeline_opt
[
"num_pipeline_stages"
]
cfg
=
section_param
.
section_config
program
=
pipeline_opt
[
"section_program"
]
cfg
.
program_desc
.
ParseFromString
(
program
[
"program"
].
_get_desc
()
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
f874e02b
...
...
@@ -3788,6 +3788,7 @@ class PipelineOptimizer(object):
self
.
_op_role_var_key
=
op_maker
.
kOpRoleVarAttrName
()
self
.
_op_device_key
=
op_maker
.
kOpDeviceAttrName
()
self
.
_param_device_map
=
None
self
.
_pipeline_pair
=
[]
def
_create_vars
(
self
,
block
,
ori_block
):
# Create vars for block, copied from ori_block
...
...
@@ -4134,6 +4135,7 @@ class PipelineOptimizer(object):
if
not
var_name
in
first_block
.
vars
:
self
.
_create_var
(
first_block
,
main_var
,
var_name
)
dev_index
=
int
(
device
.
split
(
':'
)[
1
])
print
(
"dev_index:"
,
dev_index
)
first_block
.
_insert_op
(
index
=
insert_index
,
type
=
'send_v2'
,
...
...
@@ -4141,9 +4143,11 @@ class PipelineOptimizer(object):
attrs
=
{
self
.
_op_device_key
:
first_dev_spec
,
self
.
_op_role_key
:
self
.
_op_role
.
Forward
,
'use_calc_stream'
:
Tru
e
,
'use_calc_stream'
:
Fals
e
,
'peer'
:
dev_index
,
'ring_id'
:
self
.
ring_id
,
#'ring_id': self.ring_id,
'ring_id'
:
self
.
ring_id
if
dev_index
>
first_dev_index
else
self
.
ring_id
+
2
,
})
# Get the device that that data on
assert
device
in
devices
...
...
@@ -4168,7 +4172,21 @@ class PipelineOptimizer(object):
self
.
_op_role_key
:
self
.
_op_role
.
Forward
,
'peer'
:
first_dev_index
,
'use_calc_stream'
:
True
,
'ring_id'
:
self
.
ring_id
,
#'ring_id': self.ring_id,
'ring_id'
:
self
.
ring_id
if
first_dev_index
<
dev_index
else
self
.
ring_id
+
2
,
})
block
.
_insert_op
(
index
=
index
+
1
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
[
new_var
]},
outputs
=
{
'Out'
:
[
new_var
]},
attrs
=
{
self
.
_op_device_key
:
device
,
self
.
_op_role_key
:
self
.
_op_role
.
Forward
,
#'ring_id': self.ring_id,
'ring_id'
:
self
.
ring_id
if
first_dev_index
>
dev_index
else
self
.
ring_id
+
2
,
})
def
_strip_grad_suffix
(
self
,
name
):
...
...
@@ -4409,30 +4427,91 @@ class PipelineOptimizer(object):
var
=
block
.
vars
[
var_name
]
prev_device_index
=
int
(
prev_device
.
split
(
':'
)[
1
])
cur_device_index
=
int
(
cur_device
.
split
(
':'
)[
1
])
pair
=
(
prev_device_index
,
cur_device_index
)
if
cur_device_index
>
prev_device_index
:
ring_id
=
self
.
ring_id
+
cur_device_index
-
prev_device_index
-
1
else
:
ring_id
=
self
.
ring_id
+
2
+
prev_device_index
-
cur_device_index
-
1
if
pair
not
in
self
.
_pipeline_pair
:
self
.
_pipeline_pair
.
append
(
pair
)
block
.
_insert_op
(
index
=
index
+
extra_index
,
type
=
'send_v2'
,
#type='send_v2',
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
var
},
outputs
=
{
'Out'
:
var
},
attrs
=
{
self
.
_op_device_key
:
prev_device
,
self
.
_op_role_key
:
op_role
,
'use_calc_stream'
:
True
,
'peer'
:
cur_device_index
,
'use_calc_stream'
:
False
,
#'peer': cur_device_index,
#'ring_id': self.ring_id if cur_device_index > prev_device_index else self.ring_id + 2,
'ring_id'
:
ring_id
,
#'ring_id': self.ring_id,
#'root': prev_device_index,
'root'
:
0
,
})
extra_index
+=
1
block
.
_insert_op
(
index
=
index
+
extra_index
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
[
var
]},
outputs
=
{
'Out'
:
[
var
]},
attrs
=
{
self
.
_op_device_key
:
cur_device
,
self
.
_op_role_key
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
,
'ring_id'
:
self
.
ring_id
,
#'ring_id': self.ring_id if prev_device_index > cur_device_index else self.ring_id + 2,
})
extra_index
+=
1
fill_shape
=
list
(
var
.
shape
)
fill_shape
[
0
]
=
1
block
.
_insert_op
(
index
=
index
+
extra_index
,
type
=
'recv_v2'
,
#type='recv_v2',
type
=
'fill_constant'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
var
]},
attrs
=
{
'
out_shape'
:
var
.
shape
,
'
shape'
:
fill_
shape
,
'dtype'
:
var
.
dtype
,
self
.
_op_device_key
:
cur_device
,
self
.
_op_role_key
:
op_role
,
'use_calc_stream'
:
True
,
'peer'
:
prev_device_index
,
'value'
:
float
(
0.0
),
})
extra_index
+=
1
block
.
_insert_op
(
index
=
index
+
extra_index
,
#type='recv_v2',
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
var
},
outputs
=
{
'Out'
:
var
},
attrs
=
{
#'out_shape': var.shape,
#'dtype': var.dtype,
self
.
_op_device_key
:
cur_device
,
self
.
_op_role_key
:
op_role
,
'use_calc_stream'
:
False
,
#'peer': prev_device_index,
#'root': prev_device_index,
'root'
:
0
,
#'ring_id': self.ring_id,
'ring_id'
:
ring_id
,
#'ring_id': self.ring_id if cur_device_index > prev_device_index else self.ring_id + 2,
#'ring_id': self.ring_id if prev_device_index < cur_device_index else self.ring_id + 2,
})
extra_index
+=
1
block
.
_insert_op
(
index
=
index
+
extra_index
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
[
var
]},
outputs
=
{
'Out'
:
[
var
]},
attrs
=
{
self
.
_op_device_key
:
cur_device
,
self
.
_op_role_key
:
op_role
,
'ring_id'
:
self
.
ring_id
,
#'ring_id': self.ring_id if prev_device_index > cur_device_index else self.ring_id + 2,
})
extra_index
+=
1
...
...
@@ -4512,6 +4591,15 @@ class PipelineOptimizer(object):
first_optimize_op_index
=
None
for
index
,
op
in
reversed
(
tuple
(
enumerate
(
list
(
block
.
ops
)))):
# device = op.attr(self._op_device_key)
# remove the cast op of fp16 grad to fp32 grad
if
self
.
_is_optimize_op
(
op
)
and
op
.
type
==
'cast'
:
in_name
=
op
.
input_arg_names
[
0
]
out_name
=
op
.
output_arg_names
[
0
]
if
out_name
.
strip
(
'@GRAD'
)
in
self
.
_param_device_map
:
assert
in_name
.
replace
(
'.cast_fp16'
,
''
)
==
out_name
block
.
_remove_op
(
index
)
continue
if
not
self
.
_is_optimize_op
(
op
)
and
not
first_optimize_op_index
:
first_optimize_op_index
=
index
+
1
if
block
.
ops
[
...
...
@@ -4553,11 +4641,11 @@ class PipelineOptimizer(object):
# a trick to run this op once per mini-batch
self
.
_op_role_key
:
self
.
_op_role
.
Optimize
.
LRSched
,
})
offset
+=
1
#
offset += 1
grad_name
=
op_role_var
[
i
+
1
]
# with _0 suffix
grad_var
=
block
.
vars
[
grad_name
]
# without _0 suffix
grad_var
=
block
.
vars
[
grad_name
]
real_grad_name
=
grad_name
[
0
:
grad_name
.
find
(
'@GRAD'
)]
+
'@GRAD'
'@GRAD'
)]
+
'@GRAD'
# without _0 suffix
real_grad_var
=
block
.
vars
[
real_grad_name
]
# without _0 suffix
# new_grad_var_name = unique_name.generate(grad_name)
...
...
@@ -4567,7 +4655,7 @@ class PipelineOptimizer(object):
# self._rename_arg(op, grad_name, new_grad_var_name)
if
not
'cast_fp16'
in
grad_name
:
block
.
_insert_op
(
index
=
first_optimize_op_index
+
offset
,
index
=
index
+
1
,
type
=
'sum'
,
inputs
=
{
'X'
:
[
grad_var
,
real_grad_var
]},
outputs
=
{
'Out'
:
real_grad_var
},
...
...
@@ -4576,58 +4664,83 @@ class PipelineOptimizer(object):
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
#self._op_role_var_key: op_role_var
})
offset
+=
1
#
offset += 1
else
:
grad_name
=
op_role_var
[
i
+
1
]
# with _0 suffix
grad_var
=
block
.
vars
[
grad_name
]
# without _0 suffix
fp32_grad_var_name
=
param_name
+
core
.
grad_var_suffix
()
grad_var
=
block
.
vars
[
grad_name
]
fp32_grad_var_name
=
param_name
+
core
.
grad_var_suffix
(
)
# without _0 suffix
fp32_grad_var
=
block
.
vars
[
fp32_grad_var_name
]
fp32_grad_var
.
persistable
=
True
cast_grad_var_name
=
unique_name
.
generate
(
fp32_grad_var_name
)
cast_
var
=
self
.
_create_var
(
block
,
grad_var
,
cast_
grad_var
=
self
.
_create_var
(
block
,
fp32_
grad_var
,
cast_grad_var_name
)
cast_var
.
persistable
=
False
real_grad_name
=
grad_name
[
0
:
grad_name
.
find
(
'@GRAD'
)]
+
'@GRAD'
real_grad_var
=
block
.
vars
[
real_grad_name
]
# without _0 suffix
cast_grad_var
.
persistable
=
False
block
.
_insert_op
(
index
=
first_optimize_op_index
+
offset
,
index
=
index
+
1
,
type
=
'cast'
,
inputs
=
{
'X'
:
fp32_
grad_var
},
outputs
=
{
'Out'
:
cast_var
},
inputs
=
{
'X'
:
grad_var
},
outputs
=
{
'Out'
:
cast_
grad_
var
},
attrs
=
{
'in_dtype'
:
fp32_
grad_var
.
dtype
,
'out_dtype'
:
cast_var
.
dtype
,
'in_dtype'
:
grad_var
.
dtype
,
'out_dtype'
:
cast_
grad_
var
.
dtype
,
# self._op_device_key: device,
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
# self._op_role_var_key: op_role_var
})
offset
+=
1
block
.
_insert_op
(
index
=
first_optimize_op_index
+
offset
,
index
=
index
+
2
,
type
=
'sum'
,
inputs
=
{
'X'
:
[
grad_var
,
cast_var
]},
outputs
=
{
'Out'
:
real_grad_var
},
attrs
=
{
# self._op_device_key: device,
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
# self._op_role_var_key: op_role_var
})
offset
+=
1
block
.
_insert_op
(
index
=
first_optimize_op_index
+
offset
,
type
=
'cast'
,
inputs
=
{
'X'
:
real_grad_var
},
inputs
=
{
'X'
:
[
fp32_grad_var
,
cast_grad_var
]},
outputs
=
{
'Out'
:
fp32_grad_var
},
attrs
=
{
'in_dtype'
:
real_grad_var
.
dtype
,
'out_dtype'
:
fp32_grad_var
.
dtype
,
# self._op_device_key: device,
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
# self._op_role_var_key: op_role_var
})
offset
+=
1
#real_grad_name = grad_name[0:grad_name.find(
# '@GRAD')] + '@GRAD'
#real_grad_var = block.vars[
# real_grad_name] # without _0 suffix
#block._insert_op(
# index=first_optimize_op_index + offset,
# type='cast',
# inputs={'X': fp32_grad_var},
# outputs={'Out': cast_var},
# attrs={
# 'in_dtype': fp32_grad_var.dtype,
# 'out_dtype': cast_var.dtype,
# # self._op_device_key: device,
# self._op_role_key: self._op_role.Backward,
# # self._op_role_var_key: op_role_var
# })
#offset += 1
#block._insert_op(
# index=first_optimize_op_index + offset,
# type='sum',
# inputs={'X': [grad_var, cast_var]},
# outputs={'Out': real_grad_var},
# attrs={
# # self._op_device_key: device,
# self._op_role_key: self._op_role.Backward,
# # self._op_role_var_key: op_role_var
# })
#offset += 1
#block._insert_op(
# index=first_optimize_op_index + offset,
# type='cast',
# inputs={'X': real_grad_var},
# outputs={'Out': fp32_grad_var},
# attrs={
# 'in_dtype': real_grad_var.dtype,
# 'out_dtype': fp32_grad_var.dtype,
# # self._op_device_key: device,
# self._op_role_key: self._op_role.Backward,
# # self._op_role_var_key: op_role_var
# })
def
_add_sub_blocks
(
self
,
main_block
,
program_list
):
main_program
=
main_block
.
program
...
...
@@ -4720,12 +4833,14 @@ class PipelineOptimizer(object):
inputs
=
{
'X'
:
write_block
.
var
(
var_name
),
},
attrs
=
{
self
.
_op_device_key
:
write_device
,
'use_calc_stream'
:
Tru
e
,
'use_calc_stream'
:
Fals
e
,
# A trick to make the role LRSched to avoid copy every
# microbatch
self
.
_op_role_key
:
self
.
_op_role
.
LRSched
,
'peer'
:
read_dev_index
,
'ring_id'
:
self
.
ring_id
,
#'ring_id': self.ring_id,
'ring_id'
:
self
.
ring_id
if
read_dev_index
>
write_dev_index
else
self
.
ring_id
+
2
,
})
read_block
.
_insert_op
(
index
=
0
,
...
...
@@ -4735,12 +4850,28 @@ class PipelineOptimizer(object):
'out_shape'
:
read_block
.
var
(
var_name
).
shape
,
'dtype'
:
read_block
.
var
(
var_name
).
dtype
,
self
.
_op_device_key
:
read_device
,
'use_calc_stream'
:
Tru
e
,
'use_calc_stream'
:
Fals
e
,
# A trick to make the role LRSched to avoid copy every
# microbatch
self
.
_op_role_key
:
self
.
_op_role
.
LRSched
,
'peer'
:
write_dev_index
,
'ring_id'
:
self
.
ring_id
,
#'ring_id': self.ring_id,
'ring_id'
:
self
.
ring_id
if
write_dev_index
<
read_dev_index
else
self
.
ring_id
+
2
,
})
read_block
.
_insert_op
(
index
=
1
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
[
read_block
.
var
(
var_name
)]},
outputs
=
{
'Out'
:
[
read_block
.
var
(
var_name
)]},
attrs
=
{
self
.
_op_device_key
:
read_device
,
# A trick to make the role LRSched to avoid copy every
# microbatch
self
.
_op_role_key
:
self
.
_op_role
.
LRSched
,
#'ring_id': self.ring_id,
'ring_id'
:
self
.
ring_id
if
write_dev_index
>
read_dev_index
else
self
.
ring_id
+
2
,
})
def
_is_gradient_clip_op
(
self
,
op
):
...
...
@@ -4809,8 +4940,8 @@ class PipelineOptimizer(object):
program_list
=
self
.
_split_program
(
main_program
,
device_list
)
for
p
in
program_list
:
self
.
_create_vars
(
p
[
"program"
].
block
(
0
),
main_block
)
self
.
_insert_sendrecv_for_data_var
(
main_block
,
program_list
,
startup_program
,
device_list
)
#
self._insert_sendrecv_for_data_var(main_block, program_list,
#
startup_program, device_list)
# Step4: Special Case: process persistable vars that exist in
# multiple sections
...
...
@@ -4824,8 +4955,8 @@ class PipelineOptimizer(object):
place_list
=
[]
for
dev
in
device_list
:
dev_index
=
int
(
dev
.
split
(
":"
)[
1
])
%
8
place_list
.
append
(
core
.
CUDAPlace
(
dev_index
))
dev_index
=
int
(
dev
.
split
(
":"
)[
1
])
place_list
.
append
(
core
.
CUDAPlace
(
dev_index
%
8
))
# Step6: Split startup program
new_startup_program
=
self
.
_split_startup_program
(
startup_program
,
...
...
@@ -4851,6 +4982,8 @@ class PipelineOptimizer(object):
"trainer"
:
"PipelineTrainer"
,
"device_worker"
:
"Section"
,
"inner_parallelism"
:
len
(
device_list
),
"num_pipeline_stages"
:
len
(
device_list
),
"pipeline_stage"
:
local_rank
,
"section_program"
:
program_list
[
local_rank
],
"place"
:
place_list
[
local_rank
],
"place_id"
:
place_id
,
...
...
@@ -4858,7 +4991,7 @@ class PipelineOptimizer(object):
"num_microbatches"
:
self
.
_num_microbatches
,
"start_cpu_core_id"
:
self
.
_start_cpu_core_id
,
}
return
optimize_ops
,
params_grads
,
program_list
return
optimize_ops
,
params_grads
,
program_list
,
self
.
_pipeline_pair
class
RecomputeOptimizer
(
Optimizer
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录