未验证 提交 f82da79c 编写于 作者: A Ainavo 提交者: GitHub

[CodeStyle][C400] replace unnecessary generator list (#51839)

上级 f3ef748a
...@@ -364,7 +364,7 @@ class DistributedPNormImpl0(DistributedOperatorImpl): ...@@ -364,7 +364,7 @@ class DistributedPNormImpl0(DistributedOperatorImpl):
slice_ends.append(item[1]) slice_ends.append(item[1])
slices_axes.append(idx) slices_axes.append(idx)
infer_flags = list(1 for i in range(len(slices_axes))) infer_flags = [1 for i in range(len(slices_axes))]
attrs = { attrs = {
"axes": slices_axes, "axes": slices_axes,
"starts": slice_starts, "starts": slice_starts,
......
...@@ -507,7 +507,7 @@ class Inserter: ...@@ -507,7 +507,7 @@ class Inserter:
# use slice # use slice
else: else:
inputs = {'Input': tensor} inputs = {'Input': tensor}
infer_flags = list(1 for i in range(len(axes))) infer_flags = [1 for i in range(len(axes))]
attrs = { attrs = {
"axes": axes, "axes": axes,
"starts": starts, "starts": starts,
...@@ -2944,7 +2944,7 @@ class Resharder: ...@@ -2944,7 +2944,7 @@ class Resharder:
to_slice_tensor_shape = op_desc.shape to_slice_tensor_shape = op_desc.shape
slice_desc = {} slice_desc = {}
slice_desc["op"] = "slice" slice_desc["op"] = "slice"
infer_flags = list(1 for i in range(len(op_desc.axes))) infer_flags = [1 for i in range(len(op_desc.axes))]
slice_desc["attrs"] = { slice_desc["attrs"] = {
"axes": op_desc.axes, "axes": op_desc.axes,
"starts": op_desc.starts, "starts": op_desc.starts,
......
...@@ -101,7 +101,7 @@ class MetricRecords: ...@@ -101,7 +101,7 @@ class MetricRecords:
self._records[step] = MetricRecord(value, step=step) self._records[step] = MetricRecord(value, step=step)
def get_best_value(self): def get_best_value(self):
values = list(r.mean() for r in self._records.values()) values = [r.mean() for r in self._records.values()]
if not values: if not values:
return None return None
if self._direction == "min": if self._direction == "min":
......
...@@ -209,11 +209,11 @@ class RecomputeFunction(PyLayer): ...@@ -209,11 +209,11 @@ class RecomputeFunction(PyLayer):
if isinstance(inp, (core.VarBase, core.eager.Tensor)) if isinstance(inp, (core.VarBase, core.eager.Tensor))
) )
else: else:
grads = list( grads = [
inp._grad_ivar() inp._grad_ivar()
for inp in detached_inputs for inp in detached_inputs
if isinstance(inp, (core.VarBase, core.eager.Tensor)) if isinstance(inp, (core.VarBase, core.eager.Tensor))
) ]
return grads return grads
......
...@@ -60,9 +60,9 @@ def _compute_numerical_jacobian(func, xs, delta, np_dtype): ...@@ -60,9 +60,9 @@ def _compute_numerical_jacobian(func, xs, delta, np_dtype):
ys = list(as_tensors(func(*xs))) ys = list(as_tensors(func(*xs)))
fin_size = len(xs) fin_size = len(xs)
fout_size = len(ys) fout_size = len(ys)
jacobian = list([] for _ in range(fout_size)) jacobian = [[] for _ in range(fout_size)]
for i in range(fout_size): for i in range(fout_size):
jac_i = list([] for _ in range(fin_size)) jac_i = [[] for _ in range(fin_size)]
for j in range(fin_size): for j in range(fin_size):
jac_i[j] = np.zeros( jac_i[j] = np.zeros(
(_product(ys[i].shape), _product(xs[j].shape)), dtype=np_dtype (_product(ys[i].shape), _product(xs[j].shape)), dtype=np_dtype
...@@ -94,9 +94,9 @@ def _compute_numerical_hessian(func, xs, delta, np_dtype): ...@@ -94,9 +94,9 @@ def _compute_numerical_hessian(func, xs, delta, np_dtype):
xs = list(as_tensors(xs)) xs = list(as_tensors(xs))
ys = list(as_tensors(func(*xs))) ys = list(as_tensors(func(*xs)))
fin_size = len(xs) fin_size = len(xs)
hessian = list([] for _ in range(fin_size)) hessian = [[] for _ in range(fin_size)]
for i in range(fin_size): for i in range(fin_size):
hessian_i = list([] for _ in range(fin_size)) hessian_i = [[] for _ in range(fin_size)]
for j in range(fin_size): for j in range(fin_size):
hessian_i[j] = np.zeros( hessian_i[j] = np.zeros(
(_product(xs[i].shape), _product(xs[j].shape)), dtype=np_dtype (_product(xs[i].shape), _product(xs[j].shape)), dtype=np_dtype
......
...@@ -23,7 +23,7 @@ from paddle import fluid, nn ...@@ -23,7 +23,7 @@ from paddle import fluid, nn
def _reverse_repeat_list(t, n): def _reverse_repeat_list(t, n):
return list(x for x in reversed(t) for _ in range(n)) return [x for x in reversed(t) for _ in range(n)]
class Conv2DTestCase(unittest.TestCase): class Conv2DTestCase(unittest.TestCase):
......
...@@ -43,7 +43,7 @@ def _reverse_repeat_list(t, n): ...@@ -43,7 +43,7 @@ def _reverse_repeat_list(t, n):
This can be used to translate padding arg used by Conv and Pooling modules This can be used to translate padding arg used by Conv and Pooling modules
to the ones used by `F.pad`. to the ones used by `F.pad`.
""" """
return list(x for x in reversed(t) for _ in range(n)) return [x for x in reversed(t) for _ in range(n)]
class _ConvNd(Layer): class _ConvNd(Layer):
......
...@@ -324,7 +324,7 @@ def slice(input, axes, starts, ends): ...@@ -324,7 +324,7 @@ def slice(input, axes, starts, ends):
) )
) )
infer_flags = list(1 for i in range(len(axes))) infer_flags = [1 for i in range(len(axes))]
tmp_tensor_type = core.eager.Tensor tmp_tensor_type = core.eager.Tensor
...@@ -336,7 +336,7 @@ def slice(input, axes, starts, ends): ...@@ -336,7 +336,7 @@ def slice(input, axes, starts, ends):
elif isinstance(starts, tmp_tensor_type): elif isinstance(starts, tmp_tensor_type):
tensor_t = starts.numpy() tensor_t = starts.numpy()
starts = [ele for ele in tensor_t] starts = [ele for ele in tensor_t]
infer_flags = list(-1 for i in range(len(axes))) infer_flags = [-1 for i in range(len(axes))]
if isinstance(ends, (list, tuple)): if isinstance(ends, (list, tuple)):
ends = [ ends = [
...@@ -346,7 +346,7 @@ def slice(input, axes, starts, ends): ...@@ -346,7 +346,7 @@ def slice(input, axes, starts, ends):
elif isinstance(ends, tmp_tensor_type): elif isinstance(ends, tmp_tensor_type):
tensor_t = ends.numpy() tensor_t = ends.numpy()
ends = [ele for ele in tensor_t] ends = [ele for ele in tensor_t]
infer_flags = list(-1 for i in range(len(axes))) infer_flags = [-1 for i in range(len(axes))]
return _C_ops.slice(input, axes, starts, ends, infer_flags, []) return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
else: else:
...@@ -363,13 +363,13 @@ def slice(input, axes, starts, ends): ...@@ -363,13 +363,13 @@ def slice(input, axes, starts, ends):
inputs = {'Input': input} inputs = {'Input': input}
attrs = {'axes': axes} attrs = {'axes': axes}
infer_flags = list(1 for i in range(len(axes))) infer_flags = [1 for i in range(len(axes))]
# starts # starts
if isinstance(starts, Variable): if isinstance(starts, Variable):
starts.stop_gradient = True starts.stop_gradient = True
inputs['StartsTensor'] = starts inputs['StartsTensor'] = starts
infer_flags = list(-1 for i in range(len(axes))) infer_flags = [-1 for i in range(len(axes))]
elif isinstance(starts, (list, tuple)): elif isinstance(starts, (list, tuple)):
attrs['starts'] = [] attrs['starts'] = []
if paddle.utils._contain_var(starts): if paddle.utils._contain_var(starts):
...@@ -389,7 +389,7 @@ def slice(input, axes, starts, ends): ...@@ -389,7 +389,7 @@ def slice(input, axes, starts, ends):
if isinstance(ends, Variable): if isinstance(ends, Variable):
ends.stop_gradient = True ends.stop_gradient = True
inputs['EndsTensor'] = ends inputs['EndsTensor'] = ends
infer_flags = list(-1 for i in range(len(axes))) infer_flags = [-1 for i in range(len(axes))]
elif isinstance(ends, (list, tuple)): elif isinstance(ends, (list, tuple)):
attrs['ends'] = [] attrs['ends'] = []
if paddle.utils._contain_var(ends): if paddle.utils._contain_var(ends):
...@@ -3899,7 +3899,7 @@ def strided_slice(x, axes, starts, ends, strides, name=None): ...@@ -3899,7 +3899,7 @@ def strided_slice(x, axes, starts, ends, strides, name=None):
inputs = {'Input': x} inputs = {'Input': x}
attrs = {'axes': axes} attrs = {'axes': axes}
infer_flags = list(1 for i in range(len(axes))) infer_flags = [1 for i in range(len(axes))]
# starts # starts
if isinstance(starts, Variable): if isinstance(starts, Variable):
starts.stop_gradient = True starts.stop_gradient = True
......
...@@ -4662,7 +4662,7 @@ def diff(x, n=1, axis=-1, prepend=None, append=None, name=None): ...@@ -4662,7 +4662,7 @@ def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
axis = 0 axis = 0
dtype = x.dtype dtype = x.dtype
axes = [axis] axes = [axis]
infer_flags = list(1 for i in range(len(axes))) infer_flags = [1 for i in range(len(axes))]
if in_dygraph_mode(): if in_dygraph_mode():
has_pend = False has_pend = False
input_list = [] input_list = []
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册