From f7e75a03cf03d8b71ab9be2800c7ed8058866c02 Mon Sep 17 00:00:00 2001 From: hedaoyuan Date: Thu, 31 Aug 2017 19:57:22 +0800 Subject: [PATCH] Refine the neon depthwise convolution code(separate the Function and kernel). --- paddle/function/neon/NeonDepthwiseConv.cpp | 454 +------------------ paddle/function/neon/NeonDepthwiseConv.h | 480 +++++++++++++++++++++ 2 files changed, 481 insertions(+), 453 deletions(-) create mode 100644 paddle/function/neon/NeonDepthwiseConv.h diff --git a/paddle/function/neon/NeonDepthwiseConv.cpp b/paddle/function/neon/NeonDepthwiseConv.cpp index f09e98587d1..7e5f752a0b2 100644 --- a/paddle/function/neon/NeonDepthwiseConv.cpp +++ b/paddle/function/neon/NeonDepthwiseConv.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include "neon_util.h" +#include "NeonDepthwiseConv.h" #include "paddle/function/ConvOp.h" #include "paddle/function/Im2Col.h" @@ -22,458 +22,6 @@ namespace neon { #if defined(__ARM_NEON__) || defined(__ARM_NEON) -template -struct DepthwiseConvKernel {}; - -inline float32_t conv3x3(float32x4_t r0, - float32x4_t r1, - float32x4_t r2, - float32x4_t k0, - float32x4_t k1, - float32x4_t k2) { - float32x4_t tmp; - tmp = vmulq_f32(r0, k0); - tmp = vmlaq_f32(tmp, r1, k1); - tmp = vmlaq_f32(tmp, r2, k2); - return vaddvq_f32(tmp); -} - -inline float32_t conv4x4(float32x4_t r0, - float32x4_t r1, - float32x4_t r2, - float32x4_t r3, - float32x4_t k0, - float32x4_t k1, - float32x4_t k2, - float32x4_t k3) { - float32x4_t tmp; - tmp = vmulq_f32(r0, k0); - tmp = vmlaq_f32(tmp, r1, k1); - tmp = vmlaq_f32(tmp, r2, k2); - tmp = vmlaq_f32(tmp, r3, k3); - return vaddvq_f32(tmp); -} - -/** - * Each step calculates four elements of the output. - * First step: - * R0[0, 1, 2, 3...] * K[0][0] - * R0[1, 2, 3, 4...] * K[0][1] - * R0[2, 3, 4, 5...] * K[0][2] - * R1[0, 1, 2, 3...] * K[1][0] - * R1[1, 2, 3, 4...] * K[1][1] - * R1[2, 3, 4, 5...] * K[1][2] - * R2[0, 1, 2, 3...] * K[2][0] - * R2[1, 2, 3, 4...] * K[2][1] - * + R2[2, 3, 4, 5...] * K[2][2] - * ------------------------------ - * Output[0, 1, 2, 3] - */ -template <> -struct DepthwiseConvKernel<3, 1> { - static void run(const float* inputData, - const float* filterData, - int inputHeight, - int inputWidth, - int outputChannels, - int outputHeight, - int outputWidth, - int filterMultiplier, - float* outputData) { - const int steps = outputWidth >> 2; - const int remain = outputWidth & 3; - for (int c = 0; c < outputChannels; c++, filterData += 9) { - // Load the filters - float32x4_t k[3]; - k[0] = vld1q_f32(filterData); - k[1] = vld1q_f32(filterData + 3); - k[2] = vld1q_f32(filterData + 6); - k[0] = vsetq_lane_f32(0.f, k[0], 3); - k[1] = vsetq_lane_f32(0.f, k[1], 3); - k[2] = vsetq_lane_f32(0.f, k[2], 3); - - const float* r0 = - inputData + (c / filterMultiplier) * (inputHeight * inputWidth); - const float* r1 = r0 + inputWidth; - const float* r2 = r0 + inputWidth * 2; - float32x4_t input[3][3]; - for (int h = 0; h < outputHeight; h++) { - for (int s = 0; s < steps; s++) { - // Load the inputs - float32x4_t tmp; - input[0][0] = vld1q_f32(r0); - tmp = vld1q_f32(r0 + 4); - input[0][1] = vextq_f32(input[0][0], tmp, 1); - input[0][2] = vextq_f32(input[0][0], tmp, 2); - input[1][0] = vld1q_f32(r1); - tmp = vld1q_f32(r1 + 4); - input[1][1] = vextq_f32(input[1][0], tmp, 1); - input[1][2] = vextq_f32(input[1][0], tmp, 2); - input[2][0] = vld1q_f32(r2); - tmp = vld1q_f32(r2 + 4); - input[2][1] = vextq_f32(input[2][0], tmp, 1); - input[2][2] = vextq_f32(input[2][0], tmp, 2); - - float32x4_t tmp1 = vdupq_n_f32(0.f); - float32x4_t tmp2 = vdupq_n_f32(0.f); - tmp1 = vmlaq_laneq_f32(tmp1, input[0][0], k[0], 0); - tmp2 = vmlaq_laneq_f32(tmp2, input[0][1], k[0], 1); - tmp1 = vmlaq_laneq_f32(tmp1, input[0][2], k[0], 2); - tmp2 = vmlaq_laneq_f32(tmp2, input[1][0], k[1], 0); - tmp1 = vmlaq_laneq_f32(tmp1, input[1][1], k[1], 1); - tmp2 = vmlaq_laneq_f32(tmp2, input[1][2], k[1], 2); - tmp1 = vmlaq_laneq_f32(tmp1, input[2][0], k[2], 0); - tmp2 = vmlaq_laneq_f32(tmp2, input[2][1], k[2], 1); - tmp1 = vmlaq_laneq_f32(tmp1, input[2][2], k[2], 2); - tmp1 = vaddq_f32(tmp1, tmp2); - - vst1q_f32(outputData, tmp1); - r0 += 4; - r1 += 4; - r2 += 4; - outputData += 4; - } - - for (int r = 0; r < remain; r++) { - float32x4_t i0 = vld1q_f32(r0); - float32x4_t i1 = vld1q_f32(r1); - float32x4_t i2 = vld1q_f32(r2); - *outputData = conv3x3(i0, i1, i2, k[0], k[1], k[2]); - r0++; - r1++; - r2++; - outputData++; - } - - r0 += 2; - r1 += 2; - r2 += 2; - } - } - } -}; - -/** - * Each step calculates four elements of the output. - * First step: - * R0[0, 2, 4, 6...] * K[0][0] - * R0[1, 3, 5, 7...] * K[0][1] - * R0[2, 4, 6, 8...] * K[0][2] - * R1[0, 2, 4, 6...] * K[1][0] - * R1[1, 3, 5, 7...] * K[1][1] - * R1[2, 4, 6, 8...] * K[1][2] - * R2[0, 2, 4, 6...] * K[2][0] - * R2[1, 3, 5, 7...] * K[2][1] - * R2[2, 4, 6, 8...] * K[2][2] - * ------------------------------ - * Output[0, 1, 2, 3] - */ -template <> -struct DepthwiseConvKernel<3, 2> { - static void run(const float* inputData, - const float* filterData, - int inputHeight, - int inputWidth, - int outputChannels, - int outputHeight, - int outputWidth, - int filterMultiplier, - float* outputData) { - const int steps = outputWidth >> 2; - const int remain = outputWidth & 3; - for (int c = 0; c < outputChannels; c++, filterData += 9) { - // Load the filters - float32x4_t k[3]; - k[0] = vld1q_f32(filterData); - k[1] = vld1q_f32(filterData + 3); - k[2] = vld1q_f32(filterData + 6); - k[0] = vsetq_lane_f32(0.f, k[0], 3); - k[1] = vsetq_lane_f32(0.f, k[1], 3); - k[2] = vsetq_lane_f32(0.f, k[2], 3); - - const float* start = - inputData + (c / filterMultiplier) * (inputHeight * inputWidth); - float32x4_t input[3][3]; - for (int h = 0; h < outputHeight; h++) { - const float* r0 = start + 2 * h * inputWidth; - const float* r1 = start + (2 * h + 1) * inputWidth; - const float* r2 = start + (2 * h + 2) * inputWidth; - for (int s = 0; s < steps; s++) { - // Load the inputs - float32x4_t data1; - float32x4x2_t data2; - - data2 = vld2q_f32(r0); - input[0][0] = data2.val[0]; - input[0][1] = data2.val[1]; - data1 = vld1q_f32(r0 + 8); - input[0][2] = vextq_f32(data2.val[0], data1, 1); - - data2 = vld2q_f32(r1); - input[1][0] = data2.val[0]; - input[1][1] = data2.val[1]; - data1 = vld1q_f32(r1 + 8); - input[1][2] = vextq_f32(data2.val[0], data1, 1); - - data2 = vld2q_f32(r2); - input[2][0] = data2.val[0]; - input[2][1] = data2.val[1]; - data1 = vld1q_f32(r2 + 8); - input[2][2] = vextq_f32(data2.val[0], data1, 1); - - float32x4_t tmp1 = vdupq_n_f32(0.f); - float32x4_t tmp2 = vdupq_n_f32(0.f); - tmp1 = vmlaq_laneq_f32(tmp1, input[0][0], k[0], 0); - tmp2 = vmlaq_laneq_f32(tmp2, input[0][1], k[0], 1); - tmp1 = vmlaq_laneq_f32(tmp1, input[0][2], k[0], 2); - tmp2 = vmlaq_laneq_f32(tmp2, input[1][0], k[1], 0); - tmp1 = vmlaq_laneq_f32(tmp1, input[1][1], k[1], 1); - tmp2 = vmlaq_laneq_f32(tmp2, input[1][2], k[1], 2); - tmp1 = vmlaq_laneq_f32(tmp1, input[2][0], k[2], 0); - tmp2 = vmlaq_laneq_f32(tmp2, input[2][1], k[2], 1); - tmp1 = vmlaq_laneq_f32(tmp1, input[2][2], k[2], 2); - tmp1 = vaddq_f32(tmp1, tmp2); - - vst1q_f32(outputData, tmp1); - r0 += 8; - r1 += 8; - r2 += 8; - outputData += 4; - } - - for (int r = 0; r < remain; r++) { - float32x4_t i0 = vld1q_f32(r0); - float32x4_t i1 = vld1q_f32(r1); - float32x4_t i2 = vld1q_f32(r2); - *outputData = conv3x3(i0, i1, i2, k[0], k[1], k[2]); - r0 += 2; - r1 += 2; - r2 += 2; - outputData++; - } - } - } - } -}; - -/** - * Each step calculates four elements of the output. - */ -template <> -struct DepthwiseConvKernel<4, 1> { - static void run(const float* inputData, - const float* filterData, - int inputHeight, - int inputWidth, - int outputChannels, - int outputHeight, - int outputWidth, - int filterMultiplier, - float* outputData) { - const int steps = outputWidth >> 2; - const int remain = outputWidth & 3; - for (int c = 0; c < outputChannels; c++, filterData += 16) { - // Load the filters - float32x4_t k[4]; - k[0] = vld1q_f32(filterData); - k[1] = vld1q_f32(filterData + 4); - k[2] = vld1q_f32(filterData + 8); - k[3] = vld1q_f32(filterData + 12); - - const float* r0 = - inputData + (c / filterMultiplier) * (inputHeight * inputWidth); - const float* r1 = r0 + inputWidth; - const float* r2 = r0 + inputWidth * 2; - const float* r3 = r0 + inputWidth * 3; - float32x4_t input[4][4]; - for (int h = 0; h < outputHeight; h++) { - for (int s = 0; s < steps; s++) { - // Load the inputs - float32x4_t tmp; - input[0][0] = vld1q_f32(r0); - tmp = vld1q_f32(r0 + 4); - input[0][1] = vextq_f32(input[0][0], tmp, 1); - input[0][2] = vextq_f32(input[0][0], tmp, 2); - input[0][3] = vextq_f32(input[0][0], tmp, 3); - - input[1][0] = vld1q_f32(r1); - tmp = vld1q_f32(r1 + 4); - input[1][1] = vextq_f32(input[1][0], tmp, 1); - input[1][2] = vextq_f32(input[1][0], tmp, 2); - input[1][3] = vextq_f32(input[1][0], tmp, 3); - - input[2][0] = vld1q_f32(r2); - tmp = vld1q_f32(r2 + 4); - input[2][1] = vextq_f32(input[2][0], tmp, 1); - input[2][2] = vextq_f32(input[2][0], tmp, 2); - input[2][3] = vextq_f32(input[2][0], tmp, 3); - - input[3][0] = vld1q_f32(r3); - tmp = vld1q_f32(r3 + 4); - input[3][1] = vextq_f32(input[3][0], tmp, 1); - input[3][2] = vextq_f32(input[3][0], tmp, 2); - input[3][3] = vextq_f32(input[3][0], tmp, 3); - - float32x4_t tmp1 = vdupq_n_f32(0.f); - float32x4_t tmp2 = vdupq_n_f32(0.f); - tmp1 = vmlaq_laneq_f32(tmp1, input[0][0], k[0], 0); - tmp2 = vmlaq_laneq_f32(tmp2, input[0][1], k[0], 1); - tmp1 = vmlaq_laneq_f32(tmp1, input[0][2], k[0], 2); - tmp2 = vmlaq_laneq_f32(tmp2, input[0][3], k[0], 3); - tmp1 = vmlaq_laneq_f32(tmp1, input[1][0], k[1], 0); - tmp2 = vmlaq_laneq_f32(tmp2, input[1][1], k[1], 1); - tmp1 = vmlaq_laneq_f32(tmp1, input[1][2], k[1], 2); - tmp2 = vmlaq_laneq_f32(tmp2, input[1][3], k[1], 3); - tmp1 = vmlaq_laneq_f32(tmp1, input[2][0], k[2], 0); - tmp2 = vmlaq_laneq_f32(tmp2, input[2][1], k[2], 1); - tmp1 = vmlaq_laneq_f32(tmp1, input[2][2], k[2], 2); - tmp2 = vmlaq_laneq_f32(tmp2, input[2][3], k[2], 3); - tmp1 = vmlaq_laneq_f32(tmp1, input[3][0], k[3], 0); - tmp2 = vmlaq_laneq_f32(tmp2, input[3][1], k[3], 1); - tmp1 = vmlaq_laneq_f32(tmp1, input[3][2], k[3], 2); - tmp2 = vmlaq_laneq_f32(tmp2, input[3][3], k[3], 3); - tmp1 = vaddq_f32(tmp1, tmp2); - - vst1q_f32(outputData, tmp1); - r0 += 4; - r1 += 4; - r2 += 4; - r3 += 4; - outputData += 4; - } - - for (int r = 0; r < remain; r++) { - float32x4_t i0 = vld1q_f32(r0); - float32x4_t i1 = vld1q_f32(r1); - float32x4_t i2 = vld1q_f32(r2); - float32x4_t i3 = vld1q_f32(r3); - *outputData = conv4x4(i0, i1, i2, i3, k[0], k[1], k[2], k[3]); - r0++; - r1++; - r2++; - r3++; - outputData++; - } - - r0 += 3; - r1 += 3; - r2 += 3; - r3 += 3; - } - } - } -}; - -/** - * Each step calculates four elements of the output. - */ -template <> -struct DepthwiseConvKernel<4, 2> { - static void run(const float* inputData, - const float* filterData, - int inputHeight, - int inputWidth, - int outputChannels, - int outputHeight, - int outputWidth, - int filterMultiplier, - float* outputData) { - const int steps = outputWidth >> 2; - const int remain = outputWidth & 3; - for (int c = 0; c < outputChannels; c++, filterData += 16) { - // Load the filters - float32x4_t k[4]; - k[0] = vld1q_f32(filterData); - k[1] = vld1q_f32(filterData + 4); - k[2] = vld1q_f32(filterData + 8); - k[3] = vld1q_f32(filterData + 12); - - const float* start = - inputData + (c / filterMultiplier) * (inputHeight * inputWidth); - float32x4_t input[4][4]; - for (int h = 0; h < outputHeight; h++) { - const float* r0 = start + 2 * h * inputWidth; - const float* r1 = start + (2 * h + 1) * inputWidth; - const float* r2 = start + (2 * h + 2) * inputWidth; - const float* r3 = start + (2 * h + 3) * inputWidth; - for (int s = 0; s < steps; s++) { - // Load the inputs - float32x4x2_t data1; - float32x4x2_t data2; - - data1 = vld2q_f32(r0); - data2 = vld2q_f32(r0 + 8); - input[0][0] = data1.val[0]; - input[0][1] = data1.val[1]; - input[0][2] = vextq_f32(data1.val[0], data2.val[0], 1); - input[0][3] = vextq_f32(data1.val[1], data2.val[1], 1); - - data1 = vld2q_f32(r1); - data2 = vld2q_f32(r1 + 8); - input[1][0] = data1.val[0]; - input[1][1] = data1.val[1]; - input[1][2] = vextq_f32(data1.val[0], data2.val[0], 1); - input[1][3] = vextq_f32(data1.val[1], data2.val[1], 1); - - data1 = vld2q_f32(r2); - data2 = vld2q_f32(r2 + 8); - input[2][0] = data1.val[0]; - input[2][1] = data1.val[1]; - input[2][2] = vextq_f32(data1.val[0], data2.val[0], 1); - input[2][3] = vextq_f32(data1.val[1], data2.val[1], 1); - - data1 = vld2q_f32(r3); - data2 = vld2q_f32(r3 + 8); - input[3][0] = data1.val[0]; - input[3][1] = data1.val[1]; - input[3][2] = vextq_f32(data1.val[0], data2.val[0], 1); - input[3][3] = vextq_f32(data1.val[1], data2.val[1], 1); - - float32x4_t tmp1 = vdupq_n_f32(0.f); - float32x4_t tmp2 = vdupq_n_f32(0.f); - tmp1 = vmlaq_laneq_f32(tmp1, input[0][0], k[0], 0); - tmp2 = vmlaq_laneq_f32(tmp2, input[0][1], k[0], 1); - tmp1 = vmlaq_laneq_f32(tmp1, input[0][2], k[0], 2); - tmp2 = vmlaq_laneq_f32(tmp2, input[0][3], k[0], 3); - tmp1 = vmlaq_laneq_f32(tmp1, input[1][0], k[1], 0); - tmp2 = vmlaq_laneq_f32(tmp2, input[1][1], k[1], 1); - tmp1 = vmlaq_laneq_f32(tmp1, input[1][2], k[1], 2); - tmp2 = vmlaq_laneq_f32(tmp2, input[1][3], k[1], 3); - tmp1 = vmlaq_laneq_f32(tmp1, input[2][0], k[2], 0); - tmp2 = vmlaq_laneq_f32(tmp2, input[2][1], k[2], 1); - tmp1 = vmlaq_laneq_f32(tmp1, input[2][2], k[2], 2); - tmp2 = vmlaq_laneq_f32(tmp2, input[2][3], k[2], 3); - tmp1 = vmlaq_laneq_f32(tmp1, input[3][0], k[3], 0); - tmp2 = vmlaq_laneq_f32(tmp2, input[3][1], k[3], 1); - tmp1 = vmlaq_laneq_f32(tmp1, input[3][2], k[3], 2); - tmp2 = vmlaq_laneq_f32(tmp2, input[3][3], k[3], 3); - tmp1 = vaddq_f32(tmp1, tmp2); - - vst1q_f32(outputData, tmp1); - r0 += 8; - r1 += 8; - r2 += 8; - r3 += 8; - outputData += 4; - } - - for (int r = 0; r < remain; r++) { - float32x4_t i0 = vld1q_f32(r0); - float32x4_t i1 = vld1q_f32(r1); - float32x4_t i2 = vld1q_f32(r2); - float32x4_t i3 = vld1q_f32(r3); - *outputData = conv4x4(i0, i1, i2, i3, k[0], k[1], k[2], k[3]); - r0 += 2; - r1 += 2; - r2 += 2; - r3 += 2; - outputData++; - } - } - } - } -}; - template class NeonDepthwiseConvFunction : public ConvFunctionBase { public: diff --git a/paddle/function/neon/NeonDepthwiseConv.h b/paddle/function/neon/NeonDepthwiseConv.h new file mode 100644 index 00000000000..cb1abe1f326 --- /dev/null +++ b/paddle/function/neon/NeonDepthwiseConv.h @@ -0,0 +1,480 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "neon_util.h" + +namespace paddle { + +namespace neon { + +#if defined(__ARM_NEON__) || defined(__ARM_NEON) + +template +struct DepthwiseConvKernel {}; + +inline float32_t conv3x3(float32x4_t r0, + float32x4_t r1, + float32x4_t r2, + float32x4_t k0, + float32x4_t k1, + float32x4_t k2) { + float32x4_t tmp; + tmp = vmulq_f32(r0, k0); + tmp = vmlaq_f32(tmp, r1, k1); + tmp = vmlaq_f32(tmp, r2, k2); + return vaddvq_f32(tmp); +} + +inline float32_t conv4x4(float32x4_t r0, + float32x4_t r1, + float32x4_t r2, + float32x4_t r3, + float32x4_t k0, + float32x4_t k1, + float32x4_t k2, + float32x4_t k3) { + float32x4_t tmp; + tmp = vmulq_f32(r0, k0); + tmp = vmlaq_f32(tmp, r1, k1); + tmp = vmlaq_f32(tmp, r2, k2); + tmp = vmlaq_f32(tmp, r3, k3); + return vaddvq_f32(tmp); +} + +/** + * Each step calculates four elements of the output. + * First step: + * R0[0, 1, 2, 3...] * K[0][0] + * R0[1, 2, 3, 4...] * K[0][1] + * R0[2, 3, 4, 5...] * K[0][2] + * R1[0, 1, 2, 3...] * K[1][0] + * R1[1, 2, 3, 4...] * K[1][1] + * R1[2, 3, 4, 5...] * K[1][2] + * R2[0, 1, 2, 3...] * K[2][0] + * R2[1, 2, 3, 4...] * K[2][1] + * + R2[2, 3, 4, 5...] * K[2][2] + * ------------------------------ + * Output[0, 1, 2, 3] + */ +template <> +struct DepthwiseConvKernel<3, 1> { + static void run(const float* inputData, + const float* filterData, + int inputHeight, + int inputWidth, + int outputChannels, + int outputHeight, + int outputWidth, + int filterMultiplier, + float* outputData) { + const int steps = outputWidth >> 2; + const int remain = outputWidth & 3; + for (int c = 0; c < outputChannels; c++, filterData += 9) { + // Load the filters + float32x4_t k[3]; + k[0] = vld1q_f32(filterData); + k[1] = vld1q_f32(filterData + 3); + k[2] = vld1q_f32(filterData + 6); + k[0] = vsetq_lane_f32(0.f, k[0], 3); + k[1] = vsetq_lane_f32(0.f, k[1], 3); + k[2] = vsetq_lane_f32(0.f, k[2], 3); + + const float* r0 = + inputData + (c / filterMultiplier) * (inputHeight * inputWidth); + const float* r1 = r0 + inputWidth; + const float* r2 = r0 + inputWidth * 2; + float32x4_t input[3][3]; + for (int h = 0; h < outputHeight; h++) { + for (int s = 0; s < steps; s++) { + // Load the inputs + float32x4_t tmp; + input[0][0] = vld1q_f32(r0); + tmp = vld1q_f32(r0 + 4); + input[0][1] = vextq_f32(input[0][0], tmp, 1); + input[0][2] = vextq_f32(input[0][0], tmp, 2); + input[1][0] = vld1q_f32(r1); + tmp = vld1q_f32(r1 + 4); + input[1][1] = vextq_f32(input[1][0], tmp, 1); + input[1][2] = vextq_f32(input[1][0], tmp, 2); + input[2][0] = vld1q_f32(r2); + tmp = vld1q_f32(r2 + 4); + input[2][1] = vextq_f32(input[2][0], tmp, 1); + input[2][2] = vextq_f32(input[2][0], tmp, 2); + + float32x4_t tmp1 = vdupq_n_f32(0.f); + float32x4_t tmp2 = vdupq_n_f32(0.f); + tmp1 = vmlaq_laneq_f32(tmp1, input[0][0], k[0], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[0][1], k[0], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[0][2], k[0], 2); + tmp2 = vmlaq_laneq_f32(tmp2, input[1][0], k[1], 0); + tmp1 = vmlaq_laneq_f32(tmp1, input[1][1], k[1], 1); + tmp2 = vmlaq_laneq_f32(tmp2, input[1][2], k[1], 2); + tmp1 = vmlaq_laneq_f32(tmp1, input[2][0], k[2], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[2][1], k[2], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[2][2], k[2], 2); + tmp1 = vaddq_f32(tmp1, tmp2); + + vst1q_f32(outputData, tmp1); + r0 += 4; + r1 += 4; + r2 += 4; + outputData += 4; + } + + for (int r = 0; r < remain; r++) { + float32x4_t i0 = vld1q_f32(r0); + float32x4_t i1 = vld1q_f32(r1); + float32x4_t i2 = vld1q_f32(r2); + *outputData = conv3x3(i0, i1, i2, k[0], k[1], k[2]); + r0++; + r1++; + r2++; + outputData++; + } + + r0 += 2; + r1 += 2; + r2 += 2; + } + } + } +}; + +/** + * Each step calculates four elements of the output. + * First step: + * R0[0, 2, 4, 6...] * K[0][0] + * R0[1, 3, 5, 7...] * K[0][1] + * R0[2, 4, 6, 8...] * K[0][2] + * R1[0, 2, 4, 6...] * K[1][0] + * R1[1, 3, 5, 7...] * K[1][1] + * R1[2, 4, 6, 8...] * K[1][2] + * R2[0, 2, 4, 6...] * K[2][0] + * R2[1, 3, 5, 7...] * K[2][1] + * R2[2, 4, 6, 8...] * K[2][2] + * ------------------------------ + * Output[0, 1, 2, 3] + */ +template <> +struct DepthwiseConvKernel<3, 2> { + static void run(const float* inputData, + const float* filterData, + int inputHeight, + int inputWidth, + int outputChannels, + int outputHeight, + int outputWidth, + int filterMultiplier, + float* outputData) { + const int steps = outputWidth >> 2; + const int remain = outputWidth & 3; + for (int c = 0; c < outputChannels; c++, filterData += 9) { + // Load the filters + float32x4_t k[3]; + k[0] = vld1q_f32(filterData); + k[1] = vld1q_f32(filterData + 3); + k[2] = vld1q_f32(filterData + 6); + k[0] = vsetq_lane_f32(0.f, k[0], 3); + k[1] = vsetq_lane_f32(0.f, k[1], 3); + k[2] = vsetq_lane_f32(0.f, k[2], 3); + + const float* start = + inputData + (c / filterMultiplier) * (inputHeight * inputWidth); + float32x4_t input[3][3]; + for (int h = 0; h < outputHeight; h++) { + const float* r0 = start + 2 * h * inputWidth; + const float* r1 = start + (2 * h + 1) * inputWidth; + const float* r2 = start + (2 * h + 2) * inputWidth; + for (int s = 0; s < steps; s++) { + // Load the inputs + float32x4_t data1; + float32x4x2_t data2; + + data2 = vld2q_f32(r0); + input[0][0] = data2.val[0]; + input[0][1] = data2.val[1]; + data1 = vld1q_f32(r0 + 8); + input[0][2] = vextq_f32(data2.val[0], data1, 1); + + data2 = vld2q_f32(r1); + input[1][0] = data2.val[0]; + input[1][1] = data2.val[1]; + data1 = vld1q_f32(r1 + 8); + input[1][2] = vextq_f32(data2.val[0], data1, 1); + + data2 = vld2q_f32(r2); + input[2][0] = data2.val[0]; + input[2][1] = data2.val[1]; + data1 = vld1q_f32(r2 + 8); + input[2][2] = vextq_f32(data2.val[0], data1, 1); + + float32x4_t tmp1 = vdupq_n_f32(0.f); + float32x4_t tmp2 = vdupq_n_f32(0.f); + tmp1 = vmlaq_laneq_f32(tmp1, input[0][0], k[0], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[0][1], k[0], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[0][2], k[0], 2); + tmp2 = vmlaq_laneq_f32(tmp2, input[1][0], k[1], 0); + tmp1 = vmlaq_laneq_f32(tmp1, input[1][1], k[1], 1); + tmp2 = vmlaq_laneq_f32(tmp2, input[1][2], k[1], 2); + tmp1 = vmlaq_laneq_f32(tmp1, input[2][0], k[2], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[2][1], k[2], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[2][2], k[2], 2); + tmp1 = vaddq_f32(tmp1, tmp2); + + vst1q_f32(outputData, tmp1); + r0 += 8; + r1 += 8; + r2 += 8; + outputData += 4; + } + + for (int r = 0; r < remain; r++) { + float32x4_t i0 = vld1q_f32(r0); + float32x4_t i1 = vld1q_f32(r1); + float32x4_t i2 = vld1q_f32(r2); + *outputData = conv3x3(i0, i1, i2, k[0], k[1], k[2]); + r0 += 2; + r1 += 2; + r2 += 2; + outputData++; + } + } + } + } +}; + +/** + * Each step calculates four elements of the output. + */ +template <> +struct DepthwiseConvKernel<4, 1> { + static void run(const float* inputData, + const float* filterData, + int inputHeight, + int inputWidth, + int outputChannels, + int outputHeight, + int outputWidth, + int filterMultiplier, + float* outputData) { + const int steps = outputWidth >> 2; + const int remain = outputWidth & 3; + for (int c = 0; c < outputChannels; c++, filterData += 16) { + // Load the filters + float32x4_t k[4]; + k[0] = vld1q_f32(filterData); + k[1] = vld1q_f32(filterData + 4); + k[2] = vld1q_f32(filterData + 8); + k[3] = vld1q_f32(filterData + 12); + + const float* r0 = + inputData + (c / filterMultiplier) * (inputHeight * inputWidth); + const float* r1 = r0 + inputWidth; + const float* r2 = r0 + inputWidth * 2; + const float* r3 = r0 + inputWidth * 3; + float32x4_t input[4][4]; + for (int h = 0; h < outputHeight; h++) { + for (int s = 0; s < steps; s++) { + // Load the inputs + float32x4_t tmp; + input[0][0] = vld1q_f32(r0); + tmp = vld1q_f32(r0 + 4); + input[0][1] = vextq_f32(input[0][0], tmp, 1); + input[0][2] = vextq_f32(input[0][0], tmp, 2); + input[0][3] = vextq_f32(input[0][0], tmp, 3); + + input[1][0] = vld1q_f32(r1); + tmp = vld1q_f32(r1 + 4); + input[1][1] = vextq_f32(input[1][0], tmp, 1); + input[1][2] = vextq_f32(input[1][0], tmp, 2); + input[1][3] = vextq_f32(input[1][0], tmp, 3); + + input[2][0] = vld1q_f32(r2); + tmp = vld1q_f32(r2 + 4); + input[2][1] = vextq_f32(input[2][0], tmp, 1); + input[2][2] = vextq_f32(input[2][0], tmp, 2); + input[2][3] = vextq_f32(input[2][0], tmp, 3); + + input[3][0] = vld1q_f32(r3); + tmp = vld1q_f32(r3 + 4); + input[3][1] = vextq_f32(input[3][0], tmp, 1); + input[3][2] = vextq_f32(input[3][0], tmp, 2); + input[3][3] = vextq_f32(input[3][0], tmp, 3); + + float32x4_t tmp1 = vdupq_n_f32(0.f); + float32x4_t tmp2 = vdupq_n_f32(0.f); + tmp1 = vmlaq_laneq_f32(tmp1, input[0][0], k[0], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[0][1], k[0], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[0][2], k[0], 2); + tmp2 = vmlaq_laneq_f32(tmp2, input[0][3], k[0], 3); + tmp1 = vmlaq_laneq_f32(tmp1, input[1][0], k[1], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[1][1], k[1], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[1][2], k[1], 2); + tmp2 = vmlaq_laneq_f32(tmp2, input[1][3], k[1], 3); + tmp1 = vmlaq_laneq_f32(tmp1, input[2][0], k[2], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[2][1], k[2], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[2][2], k[2], 2); + tmp2 = vmlaq_laneq_f32(tmp2, input[2][3], k[2], 3); + tmp1 = vmlaq_laneq_f32(tmp1, input[3][0], k[3], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[3][1], k[3], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[3][2], k[3], 2); + tmp2 = vmlaq_laneq_f32(tmp2, input[3][3], k[3], 3); + tmp1 = vaddq_f32(tmp1, tmp2); + + vst1q_f32(outputData, tmp1); + r0 += 4; + r1 += 4; + r2 += 4; + r3 += 4; + outputData += 4; + } + + for (int r = 0; r < remain; r++) { + float32x4_t i0 = vld1q_f32(r0); + float32x4_t i1 = vld1q_f32(r1); + float32x4_t i2 = vld1q_f32(r2); + float32x4_t i3 = vld1q_f32(r3); + *outputData = conv4x4(i0, i1, i2, i3, k[0], k[1], k[2], k[3]); + r0++; + r1++; + r2++; + r3++; + outputData++; + } + + r0 += 3; + r1 += 3; + r2 += 3; + r3 += 3; + } + } + } +}; + +/** + * Each step calculates four elements of the output. + */ +template <> +struct DepthwiseConvKernel<4, 2> { + static void run(const float* inputData, + const float* filterData, + int inputHeight, + int inputWidth, + int outputChannels, + int outputHeight, + int outputWidth, + int filterMultiplier, + float* outputData) { + const int steps = outputWidth >> 2; + const int remain = outputWidth & 3; + for (int c = 0; c < outputChannels; c++, filterData += 16) { + // Load the filters + float32x4_t k[4]; + k[0] = vld1q_f32(filterData); + k[1] = vld1q_f32(filterData + 4); + k[2] = vld1q_f32(filterData + 8); + k[3] = vld1q_f32(filterData + 12); + + const float* start = + inputData + (c / filterMultiplier) * (inputHeight * inputWidth); + float32x4_t input[4][4]; + for (int h = 0; h < outputHeight; h++) { + const float* r0 = start + 2 * h * inputWidth; + const float* r1 = start + (2 * h + 1) * inputWidth; + const float* r2 = start + (2 * h + 2) * inputWidth; + const float* r3 = start + (2 * h + 3) * inputWidth; + for (int s = 0; s < steps; s++) { + // Load the inputs + float32x4x2_t data1; + float32x4x2_t data2; + + data1 = vld2q_f32(r0); + data2 = vld2q_f32(r0 + 8); + input[0][0] = data1.val[0]; + input[0][1] = data1.val[1]; + input[0][2] = vextq_f32(data1.val[0], data2.val[0], 1); + input[0][3] = vextq_f32(data1.val[1], data2.val[1], 1); + + data1 = vld2q_f32(r1); + data2 = vld2q_f32(r1 + 8); + input[1][0] = data1.val[0]; + input[1][1] = data1.val[1]; + input[1][2] = vextq_f32(data1.val[0], data2.val[0], 1); + input[1][3] = vextq_f32(data1.val[1], data2.val[1], 1); + + data1 = vld2q_f32(r2); + data2 = vld2q_f32(r2 + 8); + input[2][0] = data1.val[0]; + input[2][1] = data1.val[1]; + input[2][2] = vextq_f32(data1.val[0], data2.val[0], 1); + input[2][3] = vextq_f32(data1.val[1], data2.val[1], 1); + + data1 = vld2q_f32(r3); + data2 = vld2q_f32(r3 + 8); + input[3][0] = data1.val[0]; + input[3][1] = data1.val[1]; + input[3][2] = vextq_f32(data1.val[0], data2.val[0], 1); + input[3][3] = vextq_f32(data1.val[1], data2.val[1], 1); + + float32x4_t tmp1 = vdupq_n_f32(0.f); + float32x4_t tmp2 = vdupq_n_f32(0.f); + tmp1 = vmlaq_laneq_f32(tmp1, input[0][0], k[0], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[0][1], k[0], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[0][2], k[0], 2); + tmp2 = vmlaq_laneq_f32(tmp2, input[0][3], k[0], 3); + tmp1 = vmlaq_laneq_f32(tmp1, input[1][0], k[1], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[1][1], k[1], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[1][2], k[1], 2); + tmp2 = vmlaq_laneq_f32(tmp2, input[1][3], k[1], 3); + tmp1 = vmlaq_laneq_f32(tmp1, input[2][0], k[2], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[2][1], k[2], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[2][2], k[2], 2); + tmp2 = vmlaq_laneq_f32(tmp2, input[2][3], k[2], 3); + tmp1 = vmlaq_laneq_f32(tmp1, input[3][0], k[3], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[3][1], k[3], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[3][2], k[3], 2); + tmp2 = vmlaq_laneq_f32(tmp2, input[3][3], k[3], 3); + tmp1 = vaddq_f32(tmp1, tmp2); + + vst1q_f32(outputData, tmp1); + r0 += 8; + r1 += 8; + r2 += 8; + r3 += 8; + outputData += 4; + } + + for (int r = 0; r < remain; r++) { + float32x4_t i0 = vld1q_f32(r0); + float32x4_t i1 = vld1q_f32(r1); + float32x4_t i2 = vld1q_f32(r2); + float32x4_t i3 = vld1q_f32(r3); + *outputData = conv4x4(i0, i1, i2, i3, k[0], k[1], k[2], k[3]); + r0 += 2; + r1 += 2; + r2 += 2; + r3 += 2; + outputData++; + } + } + } + } +}; + +#endif + +} // namespace neon +} // namespace paddle -- GitLab