Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f77a78cd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f77a78cd
编写于
11月 23, 2020
作者:
L
lilong12
提交者:
GitHub
11月 23, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enable pipeline to run with Executor.run() (#28373)
* update, test=develop
上级
9f642ed8
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
780 addition
and
1257 deletion
+780
-1257
paddle/fluid/framework/device_worker.h
paddle/fluid/framework/device_worker.h
+2
-12
paddle/fluid/framework/pipeline_trainer.cc
paddle/fluid/framework/pipeline_trainer.cc
+62
-175
paddle/fluid/framework/section_worker.cc
paddle/fluid/framework/section_worker.cc
+56
-502
paddle/fluid/framework/trainer.h
paddle/fluid/framework/trainer.h
+10
-17
paddle/fluid/framework/trainer_desc.proto
paddle/fluid/framework/trainer_desc.proto
+1
-1
python/paddle/distributed/fleet/meta_optimizers/pipeline_optimizer.py
...e/distributed/fleet/meta_optimizers/pipeline_optimizer.py
+98
-36
python/paddle/fluid/device_worker.py
python/paddle/fluid/device_worker.py
+11
-19
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+42
-12
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+214
-270
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-2
python/paddle/fluid/tests/unittests/pipeline_mnist.py
python/paddle/fluid/tests/unittests/pipeline_mnist.py
+136
-0
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+119
-1
python/paddle/fluid/tests/unittests/test_fleet_pipeline_meta_optimizer.py
...uid/tests/unittests/test_fleet_pipeline_meta_optimizer.py
+4
-7
python/paddle/fluid/tests/unittests/test_pipeline.py
python/paddle/fluid/tests/unittests/test_pipeline.py
+23
-203
未找到文件。
paddle/fluid/framework/device_worker.h
浏览文件 @
f77a78cd
...
...
@@ -540,7 +540,7 @@ class HeterBoxWorker : public HogwildWorker {
#if defined(PADDLE_WITH_NCCL)
class
SectionWorker
:
public
DeviceWorker
{
public:
SectionWorker
()
{
local_batch_id_
=
0
;
}
SectionWorker
()
{}
~
SectionWorker
()
override
{}
void
Initialize
(
const
TrainerDesc
&
desc
)
override
;
...
...
@@ -549,13 +549,12 @@ class SectionWorker : public DeviceWorker {
void
CreateDeviceResource
(
const
ProgramDesc
&
main_prog
)
override
{};
void
TrainFiles
()
override
;
void
TrainFilesWithProfiler
()
override
;
void
TrainFilesWithProfiler
()
override
{}
;
void
PrintFetchVars
()
override
{}
const
platform
::
Place
&
place
()
const
{
return
place_
;
}
void
SetSectionIndex
(
int
section_id
)
{
section_id_
=
section_id
;
}
void
SetDeviceIndex
(
int
tid
)
override
{}
void
SetThreadIndex
(
int
thread_id
)
{
thread_id_
=
thread_id
;
}
void
SetMicrobatchNum
(
int
num
)
{
num_microbatches_
=
num
;
}
...
...
@@ -566,13 +565,8 @@ class SectionWorker : public DeviceWorker {
void
SetSkipVars
(
const
std
::
vector
<
std
::
string
>&
skip_vars
)
{
skip_vars_
=
skip_vars
;
}
static
void
ResetBatchId
()
{
batch_id_
=
0
;
}
static
void
ResetThreadCompletedFlag
()
{
threads_completed
=
false
;
}
static
std
::
atomic
<
int
>
cpu_id_
;
protected:
void
AutoSetCPUAffinity
(
bool
reuse
);
int
section_id_
;
int
thread_id_
;
int
num_microbatches_
;
...
...
@@ -581,12 +575,8 @@ class SectionWorker : public DeviceWorker {
const
Scope
*
minibatch_scope_
;
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
static
std
::
mutex
thread_mutex
;
static
std
::
condition_variable
thread_condition
;
static
bool
threads_completed
;
std
::
shared_ptr
<
framework
::
ProgramDesc
>
program_
;
static
uint64_t
batch_id_
;
uint64_t
local_batch_id_
;
platform
::
DeviceContext
*
dev_ctx_
=
nullptr
;
};
...
...
paddle/fluid/framework/pipeline_trainer.cc
浏览文件 @
f77a78cd
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#if defined(PADDLE_WITH_NCCL)
#include <map>
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
...
...
@@ -26,83 +27,25 @@ void PipelineTrainer::Initialize(const TrainerDesc& trainer_desc,
const
auto
&
section_params
=
trainer_desc
.
section_param
();
num_microbatches_
=
section_params
.
num_microbatches
();
VLOG
(
3
)
<<
"Number of microbatches per minibatch: "
<<
num_microbatches_
;
section_num_
=
section_params
.
section_config_size
();
VLOG
(
3
)
<<
"Number of program sections: "
<<
section_num_
;
trainer_desc_
=
trainer_desc
;
start_cpu_core_id_
=
section_params
.
start_cpu_core_id
();
SetDataset
(
dataset
);
ParseDumpConfig
(
trainer_desc
);
// get filelist from trainer_desc here
const
std
::
vector
<
paddle
::
framework
::
DataFeed
*>
readers
=
dataset
->
GetReaders
();
VLOG
(
3
)
<<
"readers num: "
<<
readers
.
size
();
int
num_readers
=
readers
.
size
();
PADDLE_ENFORCE_EQ
(
num_readers
,
1
,
platform
::
errors
::
InvalidArgument
(
"Number of dataset readers for pipeline "
"must be 1 now, but the value you give is %d."
,
num_readers
));
auto
*
reader
=
readers
[
0
];
feed_var_names_
=
reader
->
GetUseSlotAlias
();
workers_
.
resize
(
section_num_
);
for
(
int
i
=
0
;
i
<
section_num_
;
++
i
)
{
const
auto
&
section_config
=
section_params
.
section_config
(
i
);
platform
::
Place
place
;
int
place_id
=
section_config
.
place_id
();
switch
(
section_config
.
place
())
{
case
SectionConfig
::
CPUPlace
:
place
=
platform
::
CPUPlace
();
break
;
case
SectionConfig
::
CUDAPlace
:
// Note that one section has at most one GPU place in one pipeline
PADDLE_ENFORCE_GE
(
place_id
,
0
,
platform
::
errors
::
InvalidArgument
(
"The place_id value for CUDAPlace shoud be greater "
"than or equal to 0, but the value you give is %d."
,
place_id
));
place
=
platform
::
CUDAPlace
(
place_id
);
break
;
case
SectionConfig
::
CUDAPinnedPlace
:
place
=
platform
::
CUDAPinnedPlace
();
break
;
default:
PADDLE_ENFORCE_NOT_NULL
(
nullptr
,
platform
::
errors
::
InvalidArgument
(
"Unkown place type in SectionConfig: %d"
,
section_config
.
place
()));
}
places_
.
emplace_back
(
place
);
VLOG
(
3
)
<<
"Device worker place: "
<<
place
<<
", device id: "
<<
place_id
<<
", section: "
<<
i
;
workers_
[
i
]
=
DeviceWorkerFactory
::
CreateDeviceWorker
(
trainer_desc
.
device_worker_name
());
auto
this_worker
=
std
::
dynamic_pointer_cast
<
paddle
::
framework
::
SectionWorker
>
(
workers_
[
i
]);
if
(
i
==
0
)
{
// we only set reader for the first section
this_worker
->
SetDataFeed
(
reader
);
this_worker
->
SetReaderPlace
(
place
);
}
this_worker
->
SetThreadIndex
(
i
);
this_worker
->
SetSectionIndex
(
i
);
this_worker
->
SetPlace
(
place
);
this_worker
->
Initialize
(
trainer_desc
);
this_worker
->
SetMicrobatchNum
(
num_microbatches_
);
}
// set debug here
SetDebug
(
trainer_desc
.
debug
());
const
auto
&
section_config
=
section_params
.
section_config
();
int
place_id
=
section_config
.
place_id
();
place_
=
platform
::
CUDAPlace
(
place_id
);
worker_
=
DeviceWorkerFactory
::
CreateDeviceWorker
(
trainer_desc
.
device_worker_name
());
auto
this_worker
=
std
::
dynamic_pointer_cast
<
paddle
::
framework
::
SectionWorker
>
(
worker_
);
this_worker
->
SetPlace
(
place_
);
this_worker
->
Initialize
(
trainer_desc
);
this_worker
->
SetMicrobatchNum
(
num_microbatches_
);
}
void
PipelineTrainer
::
InitOtherEnv
(
const
ProgramDesc
&
main_program
)
{
if
(
need_dump_field_
)
{
InitDumpEnv
();
}
VLOG
(
3
)
<<
"init other env done."
;
}
std
::
string
PipelineTrainer
::
GetDumpPath
(
int
tid
)
{
...
...
@@ -119,143 +62,87 @@ void PipelineTrainer::InitDumpEnv() {
}
}
void
PipelineTrainer
::
CopyParameters
(
int
section_id
,
int
microbatch_id
,
void
PipelineTrainer
::
CopyParameters
(
int
microbatch_id
,
const
ProgramDesc
&
program
,
const
platform
::
Place
&
place
)
{
auto
&
global_block
=
program
.
Block
(
0
);
std
::
map
<
std
::
string
,
int
>
param_map
;
for
(
auto
&
var
:
global_block
.
AllVars
())
{
int
is_feed_var
=
std
::
count
(
feed_var_names_
.
begin
(),
feed_var_names_
.
end
(),
var
->
Name
());
if
((
var
->
Persistable
()
||
is_feed_var
)
&&
microbatch_id
==
0
)
{
if
(
is_feed_var
)
{
auto
*
new_ptr
=
minibatch_scopes_
[
section_id
]
->
Var
(
var
->
Name
());
VLOG
(
3
)
<<
"data name: "
<<
var
->
Name
()
<<
", ptr: "
<<
new_ptr
;
InitializeVariable
(
new_ptr
,
var
->
GetType
());
}
else
{
auto
*
ptr
=
root_scope_
->
FindVar
(
var
->
Name
());
auto
*
new_ptr
=
minibatch_scopes_
[
section_id
]
->
Var
(
var
->
Name
());
VLOG
(
3
)
<<
"Create persistable var "
<<
var
->
Name
()
<<
" for minibatch "
<<
section_id
<<
", which pointer is "
<<
new_ptr
;
InitializeVariable
(
new_ptr
,
var
->
GetType
());
const
LoDTensor
&
root_tensor
=
ptr
->
Get
<
LoDTensor
>
();
LoDTensor
*
minibatch_tensor
=
new_ptr
->
GetMutable
<
LoDTensor
>
();
TensorCopy
(
*
static_cast
<
const
Tensor
*>
(
&
root_tensor
),
place
,
static_cast
<
Tensor
*>
(
minibatch_tensor
));
}
}
else
if
(
!
var
->
Persistable
()
&&
!
is_feed_var
)
{
auto
*
ptr
=
microbatch_scopes_
[
section_id
][
microbatch_id
]
->
Var
(
var
->
Name
());
VLOG
(
3
)
<<
"Create variable "
<<
var
->
Name
()
<<
" for section "
<<
section_id
<<
" microbatch "
<<
microbatch_id
<<
", which pointer is "
<<
ptr
;
InitializeVariable
(
ptr
,
var
->
GetType
());
if
(
var
->
Persistable
())
{
param_map
[
var
->
Name
()]
=
1
;
}
}
}
void
PipelineTrainer
::
GetSkipVars
(
int
section_id
,
const
ProgramDesc
&
program
)
{
auto
&
global_block
=
program
.
Block
(
0
);
for
(
auto
&
op
:
global_block
.
AllOps
())
{
if
(
op
->
Type
()
!=
"enqueue"
)
{
continue
;
for
(
auto
&
var
:
global_block
.
AllVars
())
{
bool
is_param_grad
=
false
;
size_t
pos
=
0
;
if
((
pos
=
var
->
Name
().
find
(
kGradVarSuffix
))
!=
std
::
string
::
npos
)
{
auto
prefix_name
=
var
->
Name
().
substr
(
0
,
pos
);
if
(
param_map
.
find
(
prefix_name
)
!=
param_map
.
end
())
{
is_param_grad
=
true
;
}
}
auto
input_arg_names
=
op
->
InputArgumentNames
();
PADDLE_ENFORCE_EQ
(
input_arg_names
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Number of input arguments for enqueue op must be 1, "
"but the value is %d."
,
input_arg_names
.
size
()));
std
::
string
input_arg_name
=
input_arg_names
[
0
];
if
(
input_arg_name
.
rfind
(
"@GRAD"
)
!=
input_arg_name
.
size
()
-
5
)
{
skip_vars_
[
section_id
].
emplace_back
(
input_arg_name
);
VLOG
(
3
)
<<
"add skip var name: "
<<
input_arg_name
;
if
(
var
->
Persistable
()
&&
microbatch_id
==
0
)
{
auto
*
ptr
=
root_scope_
->
Var
(
var
->
Name
());
InitializeVariable
(
ptr
,
var
->
GetType
());
VLOG
(
3
)
<<
"Create persistable var: "
<<
var
->
Name
()
<<
", which pointer is "
<<
ptr
;
}
else
if
(
is_param_grad
&&
microbatch_id
==
0
)
{
auto
*
ptr
=
minibatch_scope_
->
Var
(
var
->
Name
());
InitializeVariable
(
ptr
,
var
->
GetType
());
VLOG
(
3
)
<<
"Create grad for persistable var: "
<<
var
->
Name
()
<<
", which pointer is "
<<
ptr
;
}
else
if
(
!
var
->
Persistable
()
&&
!
is_param_grad
)
{
auto
*
ptr
=
microbatch_scopes_
[
microbatch_id
]
->
Var
(
var
->
Name
());
VLOG
(
3
)
<<
"Create variable "
<<
var
->
Name
()
<<
" for microbatch "
<<
microbatch_id
<<
", which pointer is "
<<
ptr
;
InitializeVariable
(
ptr
,
var
->
GetType
());
}
}
}
void
PipelineTrainer
::
InitTrainerEnv
(
const
ProgramDesc
&
main_program
,
const
platform
::
Place
&
place
)
{
PADDLE_ENFORCE_NOT_NULL
(
root_scope_
,
platform
::
errors
::
InvalidArgument
(
"root_scope pointer can not be nullptr"
));
auto
start_cpu_id
=
trainer_desc_
.
section_param
().
start_cpu_core_id
();
SectionWorker
::
cpu_id_
.
store
(
start_cpu_id
);
minibatch_scopes_
.
resize
(
section_num_
);
microbatch_scopes_
.
resize
(
section_num_
);
skip_vars_
.
resize
(
section_num_
);
VLOG
(
3
)
<<
"Init ScopeQueues and create all scopes"
;
for
(
int
i
=
0
;
i
<
section_num_
;
++
i
)
{
minibatch_scopes_
[
i
]
=
&
root_scope_
->
NewScope
();
std
::
shared_ptr
<
framework
::
ProgramDesc
>
program
;
program
.
reset
(
new
ProgramDesc
(
trainer_desc_
.
section_param
().
section_config
(
i
).
program_desc
()));
microbatch_scopes_
[
i
].
resize
(
num_microbatches_
);
for
(
int
j
=
0
;
j
<
num_microbatches_
;
++
j
)
{
microbatch_scopes_
[
i
][
j
]
=
&
minibatch_scopes_
[
i
]
->
NewScope
();
CopyParameters
(
i
,
j
,
*
program
,
places_
[
i
]);
}
GetSkipVars
(
i
,
*
program
);
PADDLE_ENFORCE_NOT_NULL
(
root_scope_
,
platform
::
errors
::
InvalidArgument
(
"root_scope_ can not be nullptr"
));
microbatch_scopes_
.
resize
(
num_microbatches_
);
VLOG
(
3
)
<<
"Create minibatch and microbatch scopes..."
;
minibatch_scope_
=
&
root_scope_
->
NewScope
();
std
::
shared_ptr
<
framework
::
ProgramDesc
>
program
;
program
.
reset
(
new
ProgramDesc
(
trainer_desc_
.
section_param
().
section_config
().
program_desc
()));
for
(
int
j
=
0
;
j
<
num_microbatches_
;
++
j
)
{
microbatch_scopes_
[
j
]
=
&
minibatch_scope_
->
NewScope
();
CopyParameters
(
j
,
*
program
,
place_
);
}
for
(
int
i
=
0
;
i
<
section_num_
;
++
i
)
{
auto
this_worker
=
std
::
dynamic_pointer_cast
<
paddle
::
framework
::
SectionWorker
>
(
workers_
[
i
]);
this_worker
->
SetRootScope
(
root_scope_
);
this_worker
->
SetMinibatchScope
(
minibatch_scopes_
[
i
]);
this_worker
->
SetMicrobatchScopes
(
microbatch_scopes_
[
i
]);
this_worker
->
SetSkipVars
(
skip_vars_
[
i
]);
}
auto
this_worker
=
std
::
dynamic_pointer_cast
<
paddle
::
framework
::
SectionWorker
>
(
worker_
);
this_worker
->
SetRootScope
(
root_scope_
);
this_worker
->
SetMinibatchScope
(
minibatch_scope_
);
this_worker
->
SetMicrobatchScopes
(
microbatch_scopes_
);
}
void
PipelineTrainer
::
Run
()
{
VLOG
(
3
)
<<
"Going to run"
;
for
(
int
i
=
0
;
i
<
section_num_
;
++
i
)
{
if
(
!
debug_
)
{
section_threads_
.
push_back
(
std
::
thread
(
&
DeviceWorker
::
TrainFiles
,
workers_
[
i
].
get
()));
}
else
{
section_threads_
.
push_back
(
std
::
thread
(
&
DeviceWorker
::
TrainFilesWithProfiler
,
workers_
[
i
].
get
()));
}
}
VLOG
(
5
)
<<
"Going to run PipelineTrainer::Run()"
;
section_thread_
=
std
::
async
(
&
DeviceWorker
::
TrainFiles
,
worker_
.
get
());
}
void
PipelineTrainer
::
Finalize
()
{
for
(
auto
&
th
:
section_threads_
)
{
th
.
join
();
try
{
section_thread_
.
get
();
}
catch
(
platform
::
EOFException
&
e
)
{
std
::
rethrow_exception
(
std
::
current_exception
());
}
if
(
need_dump_field_
)
{
FinalizeDumpEnv
();
}
VLOG
(
3
)
<<
"copying back parameters. "
;
for
(
int
i
=
0
;
i
<
section_num_
;
++
i
)
{
std
::
shared_ptr
<
framework
::
ProgramDesc
>
program
;
program
.
reset
(
new
ProgramDesc
(
trainer_desc_
.
section_param
().
section_config
(
i
).
program_desc
()));
for
(
int
j
=
0
;
j
<
num_microbatches_
;
++
j
)
{
auto
&
global_block
=
program
->
Block
(
0
);
for
(
auto
&
var
:
global_block
.
AllVars
())
{
if
(
var
->
Persistable
())
{
auto
*
ptr
=
root_scope_
->
FindVar
(
var
->
Name
());
LoDTensor
*
root_tensor
=
ptr
->
GetMutable
<
LoDTensor
>
();
auto
*
minibatch_ptr
=
minibatch_scopes_
[
i
]
->
Var
(
var
->
Name
());
const
LoDTensor
&
minibatch_tensor
=
minibatch_ptr
->
Get
<
LoDTensor
>
();
TensorCopy
(
*
static_cast
<
const
Tensor
*>
(
&
minibatch_tensor
),
places_
[
0
],
static_cast
<
Tensor
*>
(
root_tensor
));
VLOG
(
4
)
<<
"Copy persitable var "
<<
var
->
Name
()
<<
" to root scope"
;
}
}
}
}
root_scope_
->
DropKids
();
SectionWorker
::
ResetBatchId
();
SectionWorker
::
ResetThreadCompletedFlag
();
}
Scope
*
PipelineTrainer
::
GetWorkerScope
(
int
thread_id
)
{
return
microbatch_scopes_
[
thread_id
][
0
];
return
microbatch_scopes_
[
0
];
}
}
// end namespace framework
...
...
paddle/fluid/framework/section_worker.cc
浏览文件 @
f77a78cd
...
...
@@ -30,540 +30,94 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
std
::
atomic
<
int
>
SectionWorker
::
cpu_id_
(
0
);
std
::
mutex
SectionWorker
::
thread_mutex
;
std
::
condition_variable
SectionWorker
::
thread_condition
;
bool
SectionWorker
::
threads_completed
=
false
;
uint64_t
SectionWorker
::
batch_id_
(
0
);
void
SectionWorker
::
Initialize
(
const
TrainerDesc
&
desc
)
{
dev_ctx_
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
);
program_
.
reset
(
new
ProgramDesc
(
desc
.
section_param
().
section_config
(
section_id_
).
program_desc
()));
program_
.
reset
(
new
ProgramDesc
(
desc
.
section_param
().
section_config
(
).
program_desc
()));
for
(
auto
&
op_desc
:
program_
->
Block
(
0
).
AllOps
())
{
ops_
.
push_back
(
OpRegistry
::
CreateOp
(
*
op_desc
));
}
}
void
SectionWorker
::
AutoSetCPUAffinity
(
bool
reuse
)
{
int
thread_cpu_id
=
cpu_id_
.
fetch_add
(
1
);
unsigned
concurrency_cap
=
std
::
thread
::
hardware_concurrency
();
unsigned
proc
=
thread_cpu_id
;
if
(
proc
>=
concurrency_cap
)
{
if
(
reuse
)
{
proc
%=
concurrency_cap
;
}
else
{
LOG
(
INFO
)
<<
"All "
<<
concurrency_cap
<<
" CPUs have been set affinities. Fail to set "
<<
thread_cpu_id
<<
"th thread"
;
return
;
}
}
cpu_set_t
mask
;
CPU_ZERO
(
&
mask
);
CPU_SET
(
proc
,
&
mask
);
if
(
-
1
==
sched_setaffinity
(
0
,
sizeof
(
mask
),
&
mask
))
{
LOG
(
WARNING
)
<<
"Fail to set thread affinity to CPU "
<<
proc
;
return
;
}
CPU_ZERO
(
&
mask
);
if
((
0
!=
sched_getaffinity
(
0
,
sizeof
(
mask
),
&
mask
))
||
(
0
==
CPU_ISSET
(
proc
,
&
mask
)))
{
LOG
(
WARNING
)
<<
"Fail to set thread affinity to CPU "
<<
proc
;
}
VLOG
(
3
)
<<
"Set "
<<
thread_cpu_id
<<
"th thread affinity to CPU "
<<
proc
;
}
void
SectionWorker
::
TrainFiles
()
{
VLOG
(
3
)
<<
"begin section_worker TrainFiles"
;
AutoSetCPUAffinity
(
true
);
VLOG
(
5
)
<<
"begin section_worker TrainFiles"
;
int64_t
max_memory_size
=
0
;
int64_t
max_memory_size
=
GetEagerDeletionThreshold
()
;
std
::
unique_ptr
<
GarbageCollector
>
gc
;
auto
unused_vars_
=
GetUnusedVars
(
program_
->
Block
(
0
),
ops_
,
skip_vars_
);
if
(
max_memory_size
>=
0
)
{
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place_
))
{
if
(
IsFastEagerDeletionModeEnabled
())
{
gc
.
reset
(
new
UnsafeFastGPUGarbageCollector
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
),
max_memory_size
));
}
else
{
gc
.
reset
(
new
DefaultStreamGarbageCollector
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
),
max_memory_size
));
if
(
platform
::
is_gpu_place
(
place_
))
{
if
(
IsFastEagerDeletionModeEnabled
())
{
gc
.
reset
(
new
UnsafeFastGPUGarbageCollector
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
),
max_memory_size
));
}
}
}
else
if
(
platform
::
is_cpu_place
(
place_
))
{
#endif
gc
.
reset
(
new
CPUGarbageCollector
(
BOOST_GET_CONST
(
platform
::
CPUPlace
,
place_
),
max_memory_size
));
#ifdef PADDLE_WITH_CUDA
}
#endif
if
(
thread_id_
==
0
)
{
while
(
true
)
{
// Start a minibatch.
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
try
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
// We run op with op_role = kLRSched only for the first microbatch
// to avoid increasing the @LR_DECAY_STEP@ multiple times.
bool
run_first_mbatch
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
))
||
op_role
==
static_cast
<
int
>
(
OpRole
::
kLRSched
);
bool
run_others
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
// We run op with op_role = kLRSched only for the first microbatch
// to avoid increasing the @LR_DECAY_STEP@ multiple times.
bool
run_first_mbatch
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
));
if
((
i
==
0
&&
run_first_mbatch
)
||
(
i
!=
0
&&
run_others
))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
<<
" for scope "
<<
i
;
op
->
Run
(
*
microbatch_scopes_
[
i
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
}
}
catch
(
platform
::
EOFException
&
)
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
thread_mutex
);
threads_completed
=
true
;
VLOG
(
3
)
<<
"thread "
<<
thread_id_
<<
" completed."
;
VLOG
(
3
)
<<
"called notify all"
;
thread_condition
.
notify_all
();
VLOG
(
0
)
<<
"EOF encountered"
;
return
;
}
if
(
i
==
0
)
{
VLOG
(
3
)
<<
"called notify all"
;
std
::
unique_lock
<
std
::
mutex
>
lk
(
thread_mutex
);
batch_id_
+=
1
;
thread_condition
.
notify_all
();
static_cast
<
int
>
(
OpRole
::
kLoss
))
||
op_role
==
static_cast
<
int
>
(
OpRole
::
kLRSched
);
bool
run_others
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
));
if
((
i
==
0
&&
run_first_mbatch
)
||
(
i
!=
0
&&
run_others
))
{
VLOG
(
3
)
<<
"Forward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
i
;
op
->
Run
(
*
microbatch_scopes_
[
i
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
// backward pass
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
<<
" for scope "
<<
i
;
op
->
Run
(
*
microbatch_scopes_
[
i
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
}
}
// update pass
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
<<
" for minibatch scope"
;
op
->
Run
(
*
microbatch_scopes_
[
0
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
}
dev_ctx_
->
Wait
();
}
}
else
{
while
(
true
)
{
{
PADDLE_ENFORCE_LE
(
local_batch_id_
,
batch_id_
,
platform
::
errors
::
InvalidArgument
(
"local_batch_id_ (%d) must be less than or equal to "
"batch_id_ (%d)"
,
local_batch_id_
,
batch_id_
));
std
::
unique_lock
<
std
::
mutex
>
lk
(
thread_mutex
);
if
(
local_batch_id_
==
batch_id_
&&
!
threads_completed
)
{
thread_condition
.
wait
(
lk
);
}
VLOG
(
3
)
<<
"thread "
<<
thread_id_
<<
" local_batch_id_ "
<<
local_batch_id_
<<
" batch_id_ "
<<
batch_id_
;
if
(
threads_completed
)
{
VLOG
(
3
)
<<
"thread "
<<
thread_id_
<<
" completed."
;
lk
.
unlock
();
return
;
}
lk
.
unlock
();
local_batch_id_
+=
1
;
}
// forward pass:
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
// We run op with op_role = kLRSched only for the first microbatch
// to avoid increasing the @LR_DECAY_STEP@ multiple times.
bool
run_first_mbatch
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
))
||
op_role
==
static_cast
<
int
>
(
OpRole
::
kLRSched
);
bool
run_others
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
));
if
((
i
==
0
&&
run_first_mbatch
)
||
(
i
!=
0
&&
run_others
))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
<<
" for scope "
<<
i
;
op
->
Run
(
*
microbatch_scopes_
[
i
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
}
}
// backward pass
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
<<
" for scope "
<<
i
;
op
->
Run
(
*
microbatch_scopes_
[
i
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
}
}
// update pass
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
<<
" for minibatch scope"
;
op
->
Run
(
*
microbatch_scopes_
[
0
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
cudaDeviceSynchronize
();
}
// backward pass
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)))
{
VLOG
(
3
)
<<
"Backward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
i
;
op
->
Run
(
*
microbatch_scopes_
[
i
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
dev_ctx_
->
Wait
();
}
cudaDeviceSynchronize
();
}
}
void
SectionWorker
::
TrainFilesWithProfiler
()
{
VLOG
(
3
)
<<
"begin section_worker TrainFiles with profiler"
;
AutoSetCPUAffinity
(
true
);
platform
::
Timer
batch_timer
;
platform
::
Timer
timeline
;
std
::
vector
<
double
>
op_total_time
;
std
::
vector
<
std
::
string
>
op_name
;
std
::
vector
<
double
>
op_max_time
;
std
::
vector
<
double
>
op_min_time
;
std
::
vector
<
uint64_t
>
op_count
;
// update pass
for
(
auto
&
op
:
ops_
)
{
op_name
.
push_back
(
op
->
Type
());
}
op_total_time
.
resize
(
ops_
.
size
());
op_max_time
.
resize
(
ops_
.
size
());
op_min_time
.
resize
(
ops_
.
size
());
for
(
size_t
i
=
0
;
i
<
op_min_time
.
size
();
++
i
)
{
op_min_time
[
i
]
=
DBL_MAX
;
}
op_count
.
resize
(
ops_
.
size
());
int64_t
max_memory_size
=
0
;
std
::
unique_ptr
<
GarbageCollector
>
gc
;
// const std::vector<std::string> keep_vars;
auto
unused_vars_
=
GetUnusedVars
(
program_
->
Block
(
0
),
ops_
,
skip_vars_
);
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place_
))
{
if
(
IsFastEagerDeletionModeEnabled
())
{
gc
.
reset
(
new
UnsafeFastGPUGarbageCollector
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
),
max_memory_size
));
}
else
{
gc
.
reset
(
new
DefaultStreamGarbageCollector
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
),
max_memory_size
));
}
}
else
if
(
platform
::
is_cpu_place
(
place_
))
{
#endif
gc
.
reset
(
new
CPUGarbageCollector
(
BOOST_GET_CONST
(
platform
::
CPUPlace
,
place_
),
max_memory_size
));
#ifdef PADDLE_WITH_CUDA
}
#endif
if
(
thread_id_
==
0
)
{
while
(
true
)
{
// Start a minibatch.
// int batch_size = 0;
batch_timer
.
Start
();
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
try
{
int
op_idx
=
0
;
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
// We run op with op_role = kLRSched only for the first microbatch
// to avoid increasing the @LR_DECAY_STEP@ multiple times.
bool
run_first_mbatch
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
))
||
op_role
==
static_cast
<
int
>
(
OpRole
::
kLRSched
);
bool
run_others
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
));
if
((
i
==
0
&&
run_first_mbatch
)
||
(
i
!=
0
&&
run_others
))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
<<
" for scope "
<<
i
;
timeline
.
Start
();
op
->
Run
(
*
microbatch_scopes_
[
i
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
timeline
.
Pause
();
auto
time
=
timeline
.
ElapsedUS
();
op_total_time
[
op_idx
]
+=
time
;
if
(
time
>
op_max_time
[
op_idx
])
{
op_max_time
[
op_idx
]
=
time
;
}
if
(
time
<
op_min_time
[
op_idx
])
{
op_min_time
[
op_idx
]
=
time
;
}
op_count
[
op_idx
]
+=
1
;
op_total_time
[
op_idx
]
+=
time
;
}
op_idx
++
;
}
}
catch
(
platform
::
EOFException
&
)
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
thread_mutex
);
threads_completed
=
true
;
VLOG
(
3
)
<<
"thread "
<<
thread_id_
<<
" completed."
;
VLOG
(
3
)
<<
"called notify all"
;
thread_condition
.
notify_all
();
VLOG
(
0
)
<<
"EOF encountered"
;
VLOG
(
0
)
<<
"============timeline============"
;
for
(
size_t
i
=
0
;
i
<
ops_
.
size
();
++
i
)
{
VLOG
(
0
)
<<
"op: "
<<
op_name
[
i
]
<<
", max_time: "
<<
op_max_time
[
i
]
<<
", min_time: "
<<
op_min_time
[
i
]
<<
", mean_time: "
<<
op_total_time
[
i
]
/
op_count
[
i
];
}
VLOG
(
0
)
<<
"================================"
;
return
;
}
if
(
i
==
0
)
{
VLOG
(
3
)
<<
"called notify all"
;
std
::
unique_lock
<
std
::
mutex
>
lk
(
thread_mutex
);
batch_id_
+=
1
;
thread_condition
.
notify_all
();
}
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
VLOG
(
3
)
<<
"Update: running op "
<<
op
->
Type
();
op
->
Run
(
*
microbatch_scopes_
[
0
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
0
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
// backward pass
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
int
op_idx
=
0
;
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
<<
" for scope "
<<
i
;
timeline
.
Start
();
op
->
Run
(
*
microbatch_scopes_
[
i
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
timeline
.
Pause
();
auto
time
=
timeline
.
ElapsedUS
();
op_total_time
[
op_idx
]
+=
time
;
if
(
time
>
op_max_time
[
op_idx
])
{
op_max_time
[
op_idx
]
=
time
;
}
if
(
time
<
op_min_time
[
op_idx
])
{
op_min_time
[
op_idx
]
=
time
;
}
op_count
[
op_idx
]
+=
1
;
op_total_time
[
op_idx
]
+=
time
;
}
op_idx
++
;
}
}
// update pass
int
op_idx
=
0
;
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
<<
" for minibatch scope"
;
timeline
.
Start
();
op
->
Run
(
*
microbatch_scopes_
[
0
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
timeline
.
Pause
();
auto
time
=
timeline
.
ElapsedUS
();
op_total_time
[
op_idx
]
+=
time
;
if
(
time
>
op_max_time
[
op_idx
])
{
op_max_time
[
op_idx
]
=
time
;
}
if
(
time
<
op_min_time
[
op_idx
])
{
op_min_time
[
op_idx
]
=
time
;
}
op_count
[
op_idx
]
+=
1
;
op_total_time
[
op_idx
]
+=
time
;
}
op_idx
++
;
}
dev_ctx_
->
Wait
();
batch_timer
.
Pause
();
VLOG
(
0
)
<<
"batch time: "
<<
batch_timer
.
ElapsedUS
();
}
}
else
{
while
(
true
)
{
{
PADDLE_ENFORCE_LE
(
local_batch_id_
,
batch_id_
,
platform
::
errors
::
InvalidArgument
(
"local_batch_id_ (%d) must be less than or equal to "
"batch_id_ (%d)"
,
local_batch_id_
,
batch_id_
));
std
::
unique_lock
<
std
::
mutex
>
lk
(
thread_mutex
);
if
(
local_batch_id_
==
batch_id_
&&
!
threads_completed
)
{
thread_condition
.
wait
(
lk
);
}
VLOG
(
3
)
<<
"thread "
<<
thread_id_
<<
" local_batch_id_ "
<<
local_batch_id_
<<
" batch_id_ "
<<
batch_id_
;
if
(
threads_completed
)
{
VLOG
(
3
)
<<
"thread "
<<
thread_id_
<<
" completed."
;
lk
.
unlock
();
VLOG
(
0
)
<<
"============timeline============"
;
for
(
size_t
i
=
0
;
i
<
ops_
.
size
();
++
i
)
{
VLOG
(
0
)
<<
"op: "
<<
op_name
[
i
]
<<
", max_time: "
<<
op_max_time
[
i
]
<<
", min_time: "
<<
op_min_time
[
i
]
<<
", mean_time: "
<<
op_total_time
[
i
]
/
op_count
[
i
];
}
VLOG
(
0
)
<<
"================================"
;
return
;
}
lk
.
unlock
();
local_batch_id_
+=
1
;
}
// forward pass:
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
int
op_idx
=
0
;
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
// We run op with op_role = kLRSched only for the first microbatch
// to avoid increasing the @LR_DECAY_STEP@ multiple times.
bool
run_first_mbatch
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
))
||
op_role
==
static_cast
<
int
>
(
OpRole
::
kLRSched
);
bool
run_others
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
));
if
((
i
==
0
&&
run_first_mbatch
)
||
(
i
!=
0
&&
run_others
))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
<<
" for scope "
<<
i
;
timeline
.
Start
();
op
->
Run
(
*
microbatch_scopes_
[
i
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
timeline
.
Pause
();
auto
time
=
timeline
.
ElapsedUS
();
op_total_time
[
op_idx
]
+=
time
;
if
(
time
>
op_max_time
[
op_idx
])
{
op_max_time
[
op_idx
]
=
time
;
}
if
(
time
<
op_min_time
[
op_idx
])
{
op_min_time
[
op_idx
]
=
time
;
}
op_count
[
op_idx
]
+=
1
;
op_total_time
[
op_idx
]
+=
time
;
}
op_idx
++
;
}
}
// backward pass
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
int
op_idx
=
0
;
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
<<
" for scope "
<<
i
;
timeline
.
Start
();
op
->
Run
(
*
microbatch_scopes_
[
i
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
timeline
.
Pause
();
auto
time
=
timeline
.
ElapsedUS
();
op_total_time
[
op_idx
]
+=
time
;
if
(
time
>
op_max_time
[
op_idx
])
{
op_max_time
[
op_idx
]
=
time
;
}
if
(
time
<
op_min_time
[
op_idx
])
{
op_min_time
[
op_idx
]
=
time
;
}
op_count
[
op_idx
]
+=
1
;
op_total_time
[
op_idx
]
+=
time
;
}
op_idx
++
;
}
}
// update pass
int
op_idx
=
0
;
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
<<
" for minibatch scope"
;
timeline
.
Start
();
op
->
Run
(
*
microbatch_scopes_
[
0
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
timeline
.
Pause
();
auto
time
=
timeline
.
ElapsedUS
();
op_total_time
[
op_idx
]
+=
time
;
if
(
time
>
op_max_time
[
op_idx
])
{
op_max_time
[
op_idx
]
=
time
;
}
if
(
time
<
op_min_time
[
op_idx
])
{
op_min_time
[
op_idx
]
=
time
;
}
op_count
[
op_idx
]
+=
1
;
op_total_time
[
op_idx
]
+=
time
;
}
op_idx
++
;
}
dev_ctx_
->
Wait
();
}
}
dev_ctx_
->
Wait
();
++
batch_id_
;
}
}
// namespace framework
}
// namespace paddle
#endif
paddle/fluid/framework/trainer.h
浏览文件 @
f77a78cd
...
...
@@ -290,29 +290,22 @@ class PipelineTrainer : public TrainerBase {
virtual
Scope
*
GetWorkerScope
(
int
thread_id
);
void
InitDumpEnv
()
override
;
virtual
std
::
string
GetDumpPath
(
int
tid
);
void
GetSkipVars
(
int
section_id
,
const
ProgramDesc
&
main_program
);
void
GetSkipVars
(
const
ProgramDesc
&
main_program
);
protected:
int
section_num_
;
int
num_microbatches_
;
int
start_cpu_core_id_
;
std
::
vector
<
std
::
string
>
feed_var_names_
;
std
::
vector
<
platform
::
Place
>
places_
;
std
::
vector
<
std
::
vector
<
std
::
string
>>
skip_vars_
;
platform
::
Place
place_
;
std
::
vector
<
std
::
string
>
skip_vars_
;
TrainerDesc
trainer_desc_
;
std
::
vector
<
std
::
thread
>
section_threads_
;
// worker: [section_id]
std
::
vector
<
std
::
shared_ptr
<
paddle
::
framework
::
DeviceWorker
>>
workers_
;
// minibatch_scopes_: [section_id]
std
::
vector
<
Scope
*>
minibatch_scopes_
;
// microbatch_scopes_: [section_id][microbatch_id]
std
::
vector
<
std
::
vector
<
Scope
*>>
microbatch_scopes_
;
std
::
future
<
void
>
section_thread_
;
std
::
shared_ptr
<
paddle
::
framework
::
DeviceWorker
>
worker_
;
Scope
*
minibatch_scope_
;
// microbatch_scopes_: [microbatch_id]
std
::
vector
<
Scope
*>
microbatch_scopes_
;
void
CopyParameters
(
int
section_id
,
int
microbatch_id
,
const
ProgramDesc
&
program
,
const
platform
::
Place
&
place
);
bool
isPersistableVarGrad
(
std
::
string
name
);
bool
isPersistable
(
VarDesc
*
var
);
void
CopyParameters
(
int
microbatch_id
,
const
ProgramDesc
&
program
,
const
platform
::
Place
&
place
);
};
#endif
...
...
paddle/fluid/framework/trainer_desc.proto
浏览文件 @
f77a78cd
...
...
@@ -86,7 +86,7 @@ message DownpourWorkerParameter {
}
message
SectionWorkerParameter
{
repeated
SectionConfig
section_config
=
1
;
optional
SectionConfig
section_config
=
1
;
optional
int32
queue_size
=
2
[
default
=
1
];
optional
int64
sync_steps
=
3
[
default
=
1
];
optional
int32
start_cpu_core_id
=
4
[
default
=
1
];
...
...
python/paddle/distributed/fleet/meta_optimizers/pipeline_optimizer.py
浏览文件 @
f77a78cd
...
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
from
__future__
import
print_function
from
__future__
import
division
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
,
unique_name
...
...
@@ -21,9 +22,55 @@ from .meta_optimizer_base import MetaOptimizerBase
from
.common
import
OpRole
,
OP_ROLE_KEY
,
OP_ROLE_VAR_KEY
,
CollectiveHelper
,
is_update_op
,
is_loss_grad_op
,
is_backward_op
,
is_optimizer_op
class
PipelineHelper
(
CollectiveHelper
):
def
__init__
(
self
,
role_maker
,
nrings
=
1
,
wait_port
=
'6174'
):
super
(
PipelineHelper
,
self
).
__init__
(
role_maker
,
nrings
,
wait_port
)
def
_get_node_num
(
endpoints
):
ss
=
set
()
for
ep
in
endpoints
:
ip
=
ep
.
split
(
":"
)[
0
].
strip
()
if
ip
not
in
ss
:
ss
.
add
(
ip
)
return
len
(
ss
)
class
PipelineHelper
(
object
):
def
__init__
(
self
,
role_maker
,
wait_port
=
'6174'
):
self
.
wait_port
=
wait_port
self
.
role_maker
=
role_maker
def
update_startup_program
(
self
,
startup_program
=
None
,
inner_parallelism
=
None
):
self
.
startup_program
=
startup_program
endpoints
=
self
.
role_maker
.
_get_trainer_endpoints
()
current_endpoint
=
endpoints
[
self
.
role_maker
.
_worker_index
()]
node_num
=
_get_node_num
(
endpoints
)
assert
len
(
endpoints
)
%
node_num
==
0
nranks
=
self
.
role_maker
.
_worker_num
()
rank
=
self
.
role_maker
.
_worker_index
()
# Create ring 0 for all gpus in a pipeline
pipeline_endpoints
=
[]
pipeline_rank
=
rank
%
inner_parallelism
pipeline_id
=
rank
//
inner_parallelism
for
idx
,
ep
in
enumerate
(
endpoints
):
if
idx
//
inner_parallelism
==
pipeline_id
:
pipeline_endpoints
.
append
(
ep
)
self
.
_init_communicator
(
self
.
startup_program
,
current_endpoint
,
pipeline_endpoints
,
pipeline_rank
,
0
,
self
.
wait_port
)
pipeline_num
=
len
(
endpoints
)
//
inner_parallelism
if
pipeline_num
==
1
:
return
# Create rings for gpus with the same gpu id
eps
=
[]
local_rank
=
self
.
role_maker
.
_worker_index
()
%
inner_parallelism
ring_id
=
local_rank
+
1
for
i
in
range
(
pipeline_num
):
eps
.
append
(
endpoints
[
i
*
inner_parallelism
+
local_rank
])
temp_rank
=
self
.
role_maker
.
_worker_index
()
//
inner_parallelism
self
.
_init_communicator
(
self
.
startup_program
,
current_endpoint
,
eps
,
temp_rank
,
ring_id
,
self
.
wait_port
)
self
.
_broadcast_params
(
ring_id
)
def
_init_communicator
(
self
,
program
,
current_endpoint
,
endpoints
,
rank
,
ring_id
,
wait_port
):
...
...
@@ -46,9 +93,8 @@ class PipelineHelper(CollectiveHelper):
'rank'
:
rank
,
'endpoint'
:
current_endpoint
,
'other_endpoints'
:
other_endpoints
,
OP_ROLE_KEY
:
OpRole
.
Forward
OP_ROLE_KEY
:
OpRole
.
Forward
,
})
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
nccl_id_var
},
...
...
@@ -58,12 +104,10 @@ class PipelineHelper(CollectiveHelper):
'rank'
:
rank
,
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
,
'device_id'
:
OpRole
.
Forward
})
def
_broadcast_params
(
self
):
def
_broadcast_params
(
self
,
ring_id
):
block
=
self
.
startup_program
.
global_block
()
ring_id
=
0
for
param
in
block
.
iter_parameters
():
if
param
.
is_distributed
:
continue
...
...
@@ -78,13 +122,12 @@ class PipelineHelper(CollectiveHelper):
OP_ROLE_KEY
:
OpRole
.
Forward
})
for
ring_id
in
range
(
self
.
nrings
):
block
.
append_op
(
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
block
.
append_op
(
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
class
PipelineOptimizer
(
MetaOptimizerBase
):
...
...
@@ -99,8 +142,8 @@ class PipelineOptimizer(MetaOptimizerBase):
user_defined_strategy
):
super
(
PipelineOptimizer
,
self
).
_set_basic_info
(
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
)
num_microbatches
=
user_defined_strategy
.
pipeline_configs
[
'micro_batch'
]
self
.
wrapped_opt
=
PO
(
self
.
inner_opt
,
num_microbatches
=
num_microbatches
)
self
.
num_microbatches
=
user_defined_strategy
.
pipeline_configs
[
'micro_batch'
]
def
_can_apply
(
self
):
if
not
self
.
role_maker
.
_is_collective
:
...
...
@@ -115,29 +158,46 @@ class PipelineOptimizer(MetaOptimizerBase):
dist_strategy
.
pipeline_configs
=
{}
def
_enable_strategy
(
self
,
dist_strategy
,
context
):
# we do not support enable pipeline automatically right now
return
dist_strategy
.
pipeline
=
True
dist_strategy
.
pipeline_configs
=
{
"micro_batch"
:
1
,
}
def
_get_local_rank
(
self
,
current_endpoint
,
endpoints
):
cur_node_endpoints
=
[]
cur_ip
=
current_endpoint
.
split
(
':'
)[
0
].
strip
()
for
ep
in
endpoints
:
if
cur_ip
==
ep
.
split
(
':'
)[
0
].
strip
():
cur_node_endpoints
.
append
(
ep
)
return
cur_node_endpoints
.
index
(
current_endpoint
)
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
optimize_ops
,
params_grads
,
prog_list
=
\
self
.
wrapped_opt
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
if
self
.
role_maker
.
_worker_num
()
==
1
:
return
optimize_ops
,
params_grads
endpoints
=
self
.
role_maker
.
_get_trainer_endpoints
()
current_endpoint
=
endpoints
[
self
.
role_maker
.
_worker_index
()]
self
.
local_rank
=
self
.
_get_local_rank
(
current_endpoint
,
endpoints
)
self
.
wrapped_opt
=
PO
(
self
.
inner_opt
,
num_microbatches
=
self
.
num_microbatches
,
start_cpu_core_id
=
self
.
local_rank
)
node_num
=
_get_node_num
(
endpoints
)
gpus_per_node
=
len
(
endpoints
)
//
node_num
self
.
startup_program
=
startup_program
self
.
local_rank
=
self
.
_get_local_rank
(
current_endpoint
,
endpoints
)
if
startup_program
is
None
:
self
.
startup_program
=
fluid
.
default_startup_program
()
loss
.
block
.
program
.
_pipeline_opt
=
dict
()
loss
.
block
.
program
.
_pipeline_opt
[
'local_rank'
]
=
self
.
local_rank
optimize_ops
,
params_grads
,
prog_list
=
\
self
.
wrapped_opt
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
assert
prog_list
self
.
main_program_list
=
prog_list
self
.
main_program
=
loss
.
block
.
program
self
.
inner_parallelism
=
loss
.
block
.
program
.
_pipeline_opt
[
'inner_parallelism'
]
nranks
=
len
(
endpoints
)
self
.
nranks
=
nranks
self
.
nrings
=
len
(
self
.
main_program_list
)
...
...
@@ -146,24 +206,26 @@ class PipelineOptimizer(MetaOptimizerBase):
self
.
endpoints
=
endpoints
self
.
current_endpoint
=
current_endpoint
pipeline_helper
=
PipelineHelper
(
self
.
role_maker
,
nrings
=
self
.
nrings
)
pipeline_helper
.
update_startup_program
(
self
.
startup_program
)
pipeline_helper
=
PipelineHelper
(
self
.
role_maker
)
pipeline_helper
.
update_startup_program
(
self
.
startup_program
.
_pipeline_opt
[
"startup_program"
],
self
.
inner_parallelism
)
self
.
_transpile_main_program
()
self
.
_transpile_main_program
(
loss
,
node_num
,
gpus_per_node
)
return
optimize_ops
,
params_grads
def
_transpile_main_program
(
self
):
self
.
_insert_loss_grad_ops
()
for
ring_id
in
range
(
self
.
nrings
):
def
_transpile_main_program
(
self
,
loss
,
node_num
,
gpus_per_node
):
self
.
_insert_loss_grad_ops
(
loss
,
gpus_per_node
,
node_num
)
for
ring_id
in
range
(
1
,
gpus_per_node
+
1
):
self
.
_insert_allreduce_ops
(
ring_id
)
def
_insert_loss_grad_ops
(
self
):
def
_insert_loss_grad_ops
(
self
,
loss
,
gpus_per_node
,
node_num
):
"""
In order to keep the learning rate consistent in different numbers of
training workers, we scale the loss grad by the number of workers
"""
block
=
self
.
main_program_list
[
self
.
nrings
-
1
][
'program'
].
global_block
(
)
block
=
self
.
main_program_list
[
gpus_per_node
-
1
][
'program'
].
global_block
(
)
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_loss_grad_op
(
op
):
loss_grad_var
=
block
.
vars
[
op
.
output_arg_names
[
0
]]
...
...
@@ -173,12 +235,12 @@ class PipelineOptimizer(MetaOptimizerBase):
inputs
=
{
'X'
:
loss_grad_var
},
outputs
=
{
'Out'
:
loss_grad_var
},
attrs
=
{
'scale'
:
1.0
/
self
.
nranks
,
'scale'
:
1.0
/
node_num
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
def
_insert_allreduce_ops
(
self
,
ring_id
):
block
=
self
.
main_program_list
[
ring_id
][
'program'
].
global_block
()
block
=
self
.
main_program_list
[
ring_id
-
1
][
'program'
].
global_block
()
origin_block
=
self
.
main_program
.
global_block
()
grad
=
None
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
...
...
python/paddle/fluid/device_worker.py
浏览文件 @
f77a78cd
...
...
@@ -413,25 +413,17 @@ class Section(DeviceWorker):
section_param
=
trainer_desc
.
section_param
section_param
.
num_microbatches
=
pipeline_opt
[
"num_microbatches"
]
section_param
.
start_cpu_core_id
=
pipeline_opt
[
"start_cpu_core_id"
]
for
i
,
program
in
enumerate
(
pipeline_opt
[
"section_program_list"
]):
cfg
=
section_param
.
section_config
.
add
()
cfg
.
program_desc
.
ParseFromString
(
program
[
"program"
].
_get_desc
()
.
serialize_to_string
())
# TODO: why does not work
# cfg.program_desc.CopyFrom(program.program._get_desc())
place
=
pipeline_opt
[
"place_list"
][
i
]
place_id
=
pipeline_opt
[
"place_id_list"
][
i
]
if
isinstance
(
place
,
core
.
CPUPlace
):
cfg
.
place
=
cfg
.
CPUPlace
elif
isinstance
(
place
,
core
.
CUDAPlace
):
cfg
.
place
=
cfg
.
CUDAPlace
elif
isinstance
(
place
,
core
.
CUDAPinnedPlace
):
cfg
.
place
=
cfg
.
CUDAPinnedPlace
else
:
raise
NotImplementedError
(
"SectionWorker only supports CPUPlace, CUDAPlace and CUDAPinnedPlace now."
)
cfg
.
place_id
=
place_id
cfg
=
section_param
.
section_config
program
=
pipeline_opt
[
"section_program"
]
cfg
.
program_desc
.
ParseFromString
(
program
[
"program"
].
_get_desc
()
.
serialize_to_string
())
# TODO: why does not work
# cfg.program_desc.CopyFrom(program.program._get_desc())
place
=
pipeline_opt
[
"place"
]
place_id
=
pipeline_opt
[
"place_id"
]
assert
isinstance
(
place
,
core
.
CUDAPlace
)
cfg
.
place
=
cfg
.
CUDAPlace
cfg
.
place_id
=
place_id
class
DeviceWorkerFactory
(
object
):
...
...
python/paddle/fluid/executor.py
浏览文件 @
f77a78cd
...
...
@@ -561,6 +561,7 @@ class Executor(object):
self
.
_default_executor
=
core
.
Executor
(
p
)
self
.
_closed
=
False
self
.
pruned_program_scope_caches
=
dict
()
self
.
_prepare_to_run_called
=
False
self
.
_auto_checkpoint_name
=
unique_name
.
generate
(
"__auto_checkpoint_executor__"
)
...
...
@@ -1115,6 +1116,24 @@ class Executor(object):
use_default_main_program
=
program
is
None
if
program
is
None
:
program
=
default_main_program
()
if
fetch_list
is
not
None
:
if
isinstance
(
fetch_list
,
Variable
)
or
isinstance
(
fetch_list
,
str
)
or
isinstance
(
fetch_list
,
six
.
string_types
):
fetch_list
=
[
fetch_list
]
assert
isinstance
(
fetch_list
,
tuple
)
or
isinstance
(
fetch_list
,
list
),
\
"Currently , The fetch_list type only should be list or tuple,
\n
"
\
"but the input type is {}. For more information please refer to
\n
"
\
"the executor.run(...)."
.
format
(
type
(
fetch_list
))
else
:
fetch_list
=
[]
if
isinstance
(
program
,
Program
)
and
program
.
_pipeline_opt
:
if
"startup_program"
in
program
.
_pipeline_opt
:
program
=
program
.
_pipeline_opt
[
"startup_program"
]
else
:
return
self
.
train_from_dataset
(
program
,
fetch_list
=
fetch_list
)
if
isinstance
(
program
,
Program
)
and
\
len
(
program
.
global_block
().
ops
)
==
0
:
if
use_default_main_program
:
...
...
@@ -1131,18 +1150,6 @@ class Executor(object):
if
scope
is
None
:
scope
=
global_scope
()
if
fetch_list
is
not
None
:
if
isinstance
(
fetch_list
,
Variable
)
or
isinstance
(
fetch_list
,
str
)
or
isinstance
(
fetch_list
,
six
.
string_types
):
fetch_list
=
[
fetch_list
]
assert
isinstance
(
fetch_list
,
tuple
)
or
isinstance
(
fetch_list
,
list
),
\
"Currently , The fetch_list type only should be list or tuple,
\n
"
\
"but the input type is {}. For more information please refer to
\n
"
\
"the executor.run(...)."
.
format
(
type
(
fetch_list
))
else
:
fetch_list
=
[]
# use_prune can be overrided by putting optimize_ops in fetch_list
_origin_fetch_list
=
fetch_list
_origin_program
=
program
...
...
@@ -1449,6 +1456,25 @@ class Executor(object):
raise
RuntimeError
(
"dataset is need and should be initialized"
)
dataset
.
_prepare_to_run
()
real_fetch_list
=
[]
if
program
.
_pipeline_opt
:
real_program
=
program
.
_pipeline_opt
[
"section_program"
][
'program'
]
for
fetch_var
in
fetch_list
:
if
isinstance
(
fetch_var
,
Variable
):
fetch_var_name
=
fetch_var
.
name
else
:
fetch_var_name
=
fetch_var
if
fetch_var_name
in
real_program
.
global_block
().
vars
:
real_fetch_list
.
append
(
fetch_var
)
program
.
_pipeline_opt
[
"section_program"
][
'program'
]
=
self
.
_add_feed_fetch_ops
(
program
=
program
.
_pipeline_opt
[
"section_program"
][
'program'
],
feed
=
[],
fetch_list
=
real_fetch_list
,
feed_var_name
=
'feed'
,
fetch_var_name
=
'fetch'
)
fetch_list
=
None
scope
,
trainer
=
self
.
_prepare_trainer
(
program
=
program
,
...
...
@@ -1483,6 +1509,10 @@ class Executor(object):
dataset
.
_dynamic_adjust_after_train
()
dataset
.
_finish_to_run
()
if
real_fetch_list
:
arr
=
scope
.
find_var
(
'fetch'
).
get_fetch_list
()
tensors
=
arr
.
_move_to_list
()
return
as_numpy
(
tensors
)
return
None
...
...
python/paddle/fluid/optimizer.py
100755 → 100644
浏览文件 @
f77a78cd
...
...
@@ -3743,15 +3743,9 @@ class PipelineOptimizer(object):
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
batch_size = 1
filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
dataset = fluid.DatasetFactory().create_dataset("FileInstantDataset")
dataset.set_use_var([x,y])
dataset.set_batch_size(batch_size)
dataset.set_filelist(filelist)
data_loader.start()
exe.train_from_dataset(
fluid.default_main_program(),
dataset)
fluid.default_main_program())
data_loader.reset()
"""
...
...
@@ -3769,7 +3763,7 @@ class PipelineOptimizer(object):
"num_microbatches must be a positive value."
)
self
.
_num_microbatches
=
num_microbatches
assert
start_cpu_core_id
>=
0
,
(
"start_cpu_core_id must be
greater than or equal to 0
."
)
"start_cpu_core_id must be
a non-negative integer
."
)
self
.
_start_cpu_core_id
=
start_cpu_core_id
self
.
_place_list
=
None
op_maker
=
core
.
op_proto_and_checker_maker
...
...
@@ -3777,7 +3771,7 @@ class PipelineOptimizer(object):
self
.
_op_role_key
=
op_maker
.
kOpRoleAttrName
()
self
.
_op_role_var_key
=
op_maker
.
kOpRoleVarAttrName
()
self
.
_op_device_key
=
op_maker
.
kOpDeviceAttrName
()
self
.
_param_device_map
=
dict
()
self
.
_param_device_map
=
None
def
_create_vars
(
self
,
block
,
main_program
):
# Create vars for block, copied from main_program's global block
...
...
@@ -3793,7 +3787,10 @@ class PipelineOptimizer(object):
used_var_set
.
add
(
var
)
source_var
=
main_program
.
block
(
0
).
var
(
str
(
var
))
if
source_var
.
type
==
core
.
VarDesc
.
VarType
.
READER
:
block
.
create_var
(
name
=
var
,
type
=
core
.
VarDesc
.
VarType
.
READER
)
block
.
create_var
(
name
=
var
,
type
=
core
.
VarDesc
.
VarType
.
READER
,
persistable
=
source_var
.
persistable
)
else
:
block
.
_clone_variable
(
source_var
,
False
)
...
...
@@ -3816,28 +3813,48 @@ class PipelineOptimizer(object):
return
'Param'
in
op
.
input_names
and
'Grad'
in
op
.
input_names
and
(
"LearningRate"
in
op
.
input_names
)
def
_split_program
(
self
,
main_program
):
def
_split_program
(
self
,
main_program
,
devices
):
"""
Split a program into sections according to devices that ops run on.
The ops of the role LRSched are copied to all sections.
Args:
main_program (Program): the main program
devices: all used devices
"""
programs
=
[]
# Map from device to its corresponding section program info
device_program_map
=
dict
()
block
=
main_program
.
block
(
0
)
for
device
in
devices
:
p
=
{
'program'
:
Program
()}
device_program_map
[
device
]
=
p
block
=
main_program
.
block
(
0
)
for
op
in
block
.
ops
:
device
=
op
.
attr
(
self
.
_op_device_key
)
if
device
not
in
device_program_map
:
program
=
{
"program"
:
Program
()}
device_program_map
[
device
]
=
program
program
=
device_program_map
[
device
]
op_desc
=
op
.
desc
ap_op
=
program
[
"program"
].
block
(
0
).
desc
.
append_op
()
ap_op
.
copy_from
(
op_desc
)
op_role
=
op
.
attr
(
self
.
_op_role_key
)
if
int
(
op_role
)
&
int
(
self
.
_op_role
.
LRSched
):
# Copy ops of the role LRSched to all sections.
for
device
in
device_program_map
.
keys
():
program
=
device_program_map
[
device
]
op_desc
=
op
.
desc
ap_op
=
program
[
"program"
].
block
(
0
).
desc
.
append_op
()
ap_op
.
copy_from
(
op_desc
)
ap_op
.
_set_attr
(
self
.
_op_device_key
,
""
)
elif
op
.
type
==
"create_py_reader"
or
op
.
type
==
"read"
:
# Copy read related ops to all section to make them exit after each epoch.
for
device
in
device_program_map
.
keys
():
program
=
device_program_map
[
device
]
op_desc
=
op
.
desc
ap_op
=
program
[
"program"
].
block
(
0
).
desc
.
append_op
()
ap_op
.
copy_from
(
op_desc
)
ap_op
.
_set_attr
(
self
.
_op_device_key
,
""
)
else
:
program
=
device_program_map
[
device
]
op_desc
=
op
.
desc
ap_op
=
program
[
"program"
].
block
(
0
).
desc
.
append_op
()
ap_op
.
copy_from
(
op_desc
)
ap_op
.
_set_attr
(
self
.
_op_device_key
,
""
)
for
key
in
sorted
(
device_program_map
.
keys
()):
program
=
device_program_map
[
key
]
...
...
@@ -3846,6 +3863,24 @@ class PipelineOptimizer(object):
return
programs
def
_split_startup_program
(
self
,
startup_program
,
local_rank
):
block
=
startup_program
.
block
(
0
)
new_startup_program
=
Program
()
for
op
in
block
.
ops
:
device
=
op
.
attr
(
self
.
_op_device_key
)
if
device
:
device_index
=
int
(
device
.
split
(
":"
)[
1
])
else
:
device_index
=
None
if
device_index
is
not
None
and
device_index
!=
local_rank
:
continue
op_desc
=
op
.
desc
ap_op
=
new_startup_program
.
block
(
0
).
desc
.
append_op
()
ap_op
.
copy_from
(
op_desc
)
ap_op
.
_set_attr
(
self
.
_op_device_key
,
""
)
new_startup_program
.
_sync_with_cpp
()
self
.
_create_vars
(
new_startup_program
.
block
(
0
),
startup_program
)
return
new_startup_program
def
_find_post_op
(
self
,
ops
,
cur_op
,
var_name
):
"""
Find the real post op that has variable named var_name as input.
...
...
@@ -3867,9 +3902,8 @@ class PipelineOptimizer(object):
for
in_var_name
in
op
.
input_arg_names
:
if
in_var_name
==
var_name
:
post_op
.
append
(
op
)
break
if
post_op
:
if
not
len
(
post_op
)
==
1
:
raise
ValueError
(
"Each op can only have one post op."
)
return
post_op
[
0
]
return
None
...
...
@@ -3885,6 +3919,8 @@ class PipelineOptimizer(object):
"""
prev_op
=
[]
for
op
in
ops
:
if
op
.
type
==
'send_v2'
or
op
.
type
==
'recv_v2'
:
continue
if
op
==
cur_op
:
break
for
out_var_name
in
op
.
output_arg_names
:
...
...
@@ -3923,61 +3959,27 @@ class PipelineOptimizer(object):
def
_get_data_var_info
(
self
,
block
):
"""
Get all vars whose is_data attribute are true and then rename them.
For PipelineTrainer, all data vars are binded to
minibatch scope, so we have to feed them to the microbatch
to avoid conflicts. The vars feeded to microbatch have to
be renamed.
Get info of all vars whose is_data attribute are true.
"""
# A map from var name to the renamed name.
raw_name_new_name_map
=
dict
()
# Because we will create vars in block, it is more safe
# to get all var_names before iteration.
var_names
=
list
(
block
.
vars
.
keys
())
for
var_name
in
var_names
:
var
=
block
.
var
(
var_name
)
if
not
var
.
is_data
:
continue
assert
var_name
not
in
raw_name_new_name_map
,
(
"{} has already been processed."
.
format
(
var_name
))
new_name
=
unique_name
.
generate
(
var_name
)
raw_name_new_name_map
[
var_name
]
=
new_name
new_var
=
self
.
_create_var
(
block
,
var
,
new_name
)
new_var
.
is_data
=
False
# map of data to devices that that data on
# map of data vars to devices that that data on
data_devices_map
=
dict
()
for
op
in
block
.
ops
:
dev_spec
=
op
.
attr
(
self
.
_op_device_key
)
for
var_name
in
op
.
input_arg_names
:
if
var_name
not
in
raw_name_new_name_map
:
if
"blocking_queue"
in
var_name
:
continue
var
=
block
.
var
(
var_name
)
if
not
var
.
is_data
:
continue
if
not
var_name
in
data_devices_map
:
data_devices_map
[
var_name
]
=
[]
if
not
dev_spec
in
data_devices_map
[
var_name
]:
data_devices_map
[
var_name
].
append
(
dev_spec
)
new_name
=
raw_name_new_name_map
[
var_name
]
#self._rename_arg(op, var_name, new_name)
return
data_devices_map
,
raw_name_new_name_map
def
_rename_var_in_block
(
self
,
block
,
raw_name_new_name_map
):
"""
Rename vars whose names in raw_name_new_name_map to the corresponding
new names.
"""
for
op
in
block
.
ops
:
if
op
.
type
==
"enqueue"
or
op
.
type
==
"dequeue"
:
continue
for
var_name
in
op
.
input_arg_names
:
if
var_name
in
raw_name_new_name_map
:
new_name
=
raw_name_new_name_map
[
var_name
]
self
.
_rename_arg
(
op
,
var_name
,
new_name
)
return
data_devices_map
def
_insert_
enq_deq
_for_data_var
(
self
,
main_block
,
programs
,
startup
,
devices
):
def
_insert_
sendrecv
_for_data_var
(
self
,
main_block
,
programs
,
startup
,
devices
):
"""
Insert
enqueue and dequeue ops for data var
Insert
send and recv ops for data var that on other devices.
Args:
main_block (Block): Global block for main program
...
...
@@ -3986,48 +3988,34 @@ class PipelineOptimizer(object):
devices (list): List of devices in the format (dev:dev_index)
"""
main_program
=
main_block
.
program
data_devices_map
,
raw_name_new_name_map
=
self
.
_get_data_var_info
(
main_block
)
data_devices_map
=
self
.
_get_data_var_info
(
main_block
)
first_prog
=
programs
[
0
][
'program'
]
first_block
=
first_prog
.
block
(
0
)
enqueue_index
=
0
if
first_block
.
ops
[
0
].
type
==
"create_py_reader"
or
(
first_block
.
ops
[
1
].
type
==
"create_py_reader"
):
for
op
in
first_block
.
ops
:
if
op
.
type
==
"read"
:
enqueue_index
+=
1
break
enqueue_index
+=
1
insert_index
=
0
for
op
in
first_block
.
ops
:
insert_index
+=
1
if
op
.
type
==
"read"
:
break
first_dev_spec
=
devices
[
0
]
first_dev_index
=
int
(
first_dev_spec
.
split
(
':'
)[
1
])
for
var_name
in
data_devices_map
.
keys
():
for
device
in
data_devices_map
[
var_name
]:
# step1: generate queue for each pair of data var and device
# that that data on
queue_name
=
var_name
+
"_blocking_queue"
queue_name
=
unique_name
.
generate
(
queue_name
)
queue_var
=
startup
.
block
(
0
).
create_var
(
name
=
queue_name
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
startup
.
block
(
0
).
append_op
(
type
=
'queue_generator'
,
attrs
=
{
'names'
:
[
queue_name
],
'capacity'
:
self
.
_num_microbatches
})
if
device
==
first_dev_spec
:
continue
main_var
=
main_block
.
var
(
var_name
)
assert
main_var
.
is_data
if
not
var_name
in
first_block
.
vars
:
self
.
_create_var
(
first_block
,
main_var
,
var_name
)
dev_index
=
int
(
device
.
split
(
':'
)[
1
])
first_block
.
_insert_op
(
index
=
enqueue
_index
,
type
=
'
enqueue
'
,
index
=
insert
_index
,
type
=
'
send_v2
'
,
inputs
=
{
'X'
:
first_block
.
var
(
var_name
)},
attrs
=
{
'queue_name'
:
queue_name
,
self
.
_op_device_key
:
first_dev_spec
,
self
.
_op_role_key
:
self
.
_op_role
.
Forward
self
.
_op_role_key
:
self
.
_op_role
.
Forward
,
'use_calc_stream'
:
True
,
'peer'
:
dev_index
,
})
# Get the device that that data on
assert
device
in
devices
...
...
@@ -4035,21 +4023,24 @@ class PipelineOptimizer(object):
prog
=
programs
[
prog_index
][
'program'
]
block
=
prog
.
block
(
0
)
index
=
0
if
device
==
first_dev_spec
:
index
=
enqueue_index
+
1
new_name
=
raw_name_new_name_map
[
var_name
]
for
op
in
block
.
ops
:
index
+=
1
if
op
.
type
==
"read"
:
break
source_var
=
main_program
.
block
(
0
).
var
(
var_name
)
new_var
=
self
.
_create_var
(
block
,
source_var
,
new
_name
)
new_var
=
self
.
_create_var
(
block
,
source_var
,
var
_name
)
block
.
_insert_op
(
index
=
index
,
type
=
'
dequeue
'
,
type
=
'
recv_v2
'
,
outputs
=
{
'Out'
:
[
new_var
]},
attrs
=
{
'out_shape'
:
new_var
.
shape
,
'dtype'
:
new_var
.
dtype
,
self
.
_op_device_key
:
device
,
self
.
_op_role_key
:
self
.
_op_role
.
Forward
,
'queue_name'
:
queue_name
,
'peer'
:
first_dev_index
,
'use_calc_stream'
:
True
,
})
self
.
_rename_var_in_block
(
block
,
raw_name_new_name_map
)
def
_strip_grad_suffix
(
self
,
name
):
"""
...
...
@@ -4064,18 +4055,6 @@ class PipelineOptimizer(object):
"""
return
name
+
core
.
grad_var_suffix
()
def
_update_param_device_map
(
self
,
params_grads
,
block
):
for
param_grad
in
params_grads
:
if
not
param_grad
[
0
].
trainable
:
continue
param_name
=
param_grad
[
0
].
name
ops
=
block
.
ops
for
op
in
ops
:
input_arg_names
=
op
.
input_arg_names
if
param_name
in
input_arg_names
:
self
.
_param_device_map
[
param_name
]
=
op
.
attr
(
self
.
_op_device_key
)
break
def
_add_opdevice_attr_for_regularization_clip
(
self
,
block
):
"""
Add op_device attribute for regulization and clip ops.
...
...
@@ -4090,7 +4069,7 @@ class PipelineOptimizer(object):
assert
self
.
_op_role_var_key
in
op
.
attr_names
op_role_var
=
op
.
all_attrs
()[
self
.
_op_role_var_key
]
assert
len
(
op_role_var
)
==
2
param_name
=
block
.
vars
[
op_role_var
[
0
]].
name
param_name
=
op_role_var
[
0
]
device
=
self
.
_param_device_map
[
param_name
]
op
.
_set_attr
(
self
.
_op_device_key
,
device
)
...
...
@@ -4159,32 +4138,37 @@ class PipelineOptimizer(object):
"{} has not been set."
.
format
(
op
.
type
))
if
not
dev_spec
in
device_specs
:
device_specs
.
append
(
dev_spec
)
sorted_device_specs
=
sorted
(
device_specs
)
assert
sorted_device_specs
==
device_specs
return
device_specs
def
_insert_enq_deq_ops_for_boundaries
(
self
,
block
,
origin_block
,
startup_program
):
def
_insert_sendrecv_ops_for_boundaries
(
self
,
block
):
"""
Insert a pair of
enqueue and dequeue
ops for every two
Insert a pair of
send and recv
ops for every two
consecutive ops on different devices.
"""
startup_block
=
startup_program
.
global_block
()
extra_index
=
0
# A map from var to device spec where op takes it as input,
# avoiding multiple
enqueue and dequeue
ops.
# avoiding multiple
send and recv
ops.
var_devspec
=
dict
()
for
index
,
op
in
list
(
enumerate
(
origin_block
.
ops
)):
for
index
,
op
in
enumerate
(
list
(
block
.
ops
)):
# skips lr-related ops and vars, as we will process them later.
if
int
(
op
.
attr
(
self
.
_op_role_key
))
&
int
(
self
.
_op_role
.
LRSched
):
continue
# skips update ops and vars, as we will process them later.
if
self
.
_is_update_op
(
op
):
continue
cur_device_spec
=
op
.
attr
(
self
.
_op_device_key
)
for
var_name
in
op
.
input_arg_names
:
# i.e., lod_tensor_blocking_queue created by DataLoader,
# which only exists in startup program.
if
not
var_name
in
origin_
block
.
vars
:
continue
if
not
var_name
in
block
.
vars
:
continue
var
=
block
.
var
(
var_name
)
# skip data, because we will process it later
if
var
.
is_data
:
continue
prev_op
=
self
.
_find_real_prev_op
(
origin_block
.
ops
,
op
,
var_name
)
prev_op
=
self
.
_find_real_prev_op
(
block
.
ops
,
op
,
var_name
)
if
prev_op
is
None
:
continue
prev_device_spec
=
prev_op
.
attr
(
self
.
_op_device_key
)
...
...
@@ -4195,118 +4179,64 @@ class PipelineOptimizer(object):
if
cur_device_spec
in
var_devspec
[
var_name
]:
continue
var_devspec
[
var_name
].
append
(
cur_device_spec
)
queue_name
=
var_name
+
"_blocking_queue"
queue_name
=
unique_name
.
generate
(
queue_name
)
queue_var
=
startup_block
.
create_var
(
name
=
queue_name
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
startup_block
.
append_op
(
type
=
'queue_generator'
,
attrs
=
{
'names'
:
[
queue_name
],
'capacity'
:
self
.
_num_microbatches
})
op_role
=
op
.
all_attrs
()[
self
.
_op_role_key
]
var
=
block
.
vars
[
var_name
]
prev_device_index
=
int
(
prev_device_spec
.
split
(
':'
)[
1
])
cur_device_index
=
int
(
cur_device_spec
.
split
(
':'
)[
1
])
block
.
_insert_op
(
index
=
index
+
extra_index
,
type
=
'
enqueue
'
,
type
=
'
send_v2
'
,
inputs
=
{
'X'
:
var
},
attrs
=
{
'queue_name'
:
queue_name
,
self
.
_op_device_key
:
prev_device_spec
,
self
.
_op_role_key
:
op_role
self
.
_op_role_key
:
op_role
,
'use_calc_stream'
:
True
,
'peer'
:
cur_device_index
,
})
extra_index
+=
1
block
.
_insert_op
(
index
=
index
+
extra_index
,
type
=
'
dequeue
'
,
type
=
'
recv_v2
'
,
outputs
=
{
'Out'
:
[
var
]},
attrs
=
{
'out_shape'
:
var
.
shape
,
'dtype'
:
var
.
dtype
,
self
.
_op_device_key
:
cur_device_spec
,
'queue_name'
:
queue_name
,
self
.
_op_role_key
:
op_role
self
.
_op_role_key
:
op_role
,
'use_calc_stream'
:
True
,
'peer'
:
prev_device_index
,
})
extra_index
+=
1
def
_add_dequeue_ops_for_optimize
(
self
,
block
,
startup_program
):
startup_block
=
startup_program
.
global_block
()
grad_queue_map
=
dict
()
grad_device_map
=
dict
()
optimize_index
=
None
grad_names_to_dequeue
=
[]
for
index
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
device
=
op
.
attr
(
self
.
_op_device_key
)
# Optimizer pass
if
not
self
.
_is_optimize_op
(
op
):
optimize_index
=
index
+
1
break
if
not
self
.
_is_update_op
(
op
):
continue
assert
self
.
_op_role_var_key
in
op
.
attr_names
op_role_var
=
op
.
all_attrs
()[
self
.
_op_role_var_key
]
assert
len
(
op_role_var
)
==
2
grad_name
=
op_role_var
[
1
]
assert
grad_name
not
in
grad_device_map
assert
grad_name
not
in
grad_names_to_dequeue
grad_device_map
[
grad_name
]
=
device
grad_names_to_dequeue
.
append
(
grad_name
)
for
grad_name
in
grad_names_to_dequeue
:
device
=
grad_device_map
[
grad_name
]
grad_names
=
[]
grads
=
[]
queue_name
=
grad_name
+
"_blocking_queue"
queue_name
=
unique_name
.
generate
(
queue_name
)
grad_queue_map
[
grad_name
]
=
queue_name
ref_var
=
block
.
vars
[
grad_name
]
queue_var
=
startup_block
.
create_var
(
name
=
queue_name
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
startup_block
.
append_op
(
type
=
'queue_generator'
,
attrs
=
{
'names'
:
[
queue_name
],
'capacity'
:
self
.
_num_microbatches
})
orig_var_name
=
self
.
_strip_grad_suffix
(
grad_name
)
for
_
in
range
(
self
.
_num_microbatches
):
u_name
=
unique_name
.
generate
(
orig_var_name
)
u_grad_name
=
self
.
_append_grad_suffix
(
u_name
)
grad_var
=
self
.
_create_var
(
block
,
ref_var
,
u_grad_name
)
grad_names
.
append
(
u_grad_name
)
grads
.
append
(
grad_var
)
block
.
_insert_op
(
index
=
optimize_index
,
type
=
'dequeue'
,
outputs
=
{
'Out'
:
grads
},
attrs
=
{
self
.
_op_device_key
:
device
,
'queue_name'
:
queue_name
,
self
.
_op_role_key
:
self
.
_op_role
.
Optimize
})
block
.
_insert_op
(
index
=
optimize_index
+
1
,
type
=
'sum'
,
inputs
=
{
'X'
:
grad_names
},
outputs
=
{
'Out'
:
ref_var
},
def
_clear_gradients
(
self
,
main_block
,
dev_spec
):
"""
Clear gradients at the begining of each run of a minibatch.
"""
for
param_name
in
self
.
_param_device_map
:
device
=
self
.
_param_device_map
[
param_name
]
if
device
!=
dev_spec
:
continue
grad_name
=
self
.
_append_grad_suffix
(
param_name
)
grad_var
=
main_block
.
vars
[
grad_name
]
main_block
.
_insert_op
(
index
=
0
,
type
=
'fill_constant'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
grad_var
]},
attrs
=
{
'shape'
:
grad_var
.
shape
,
'dtype'
:
grad_var
.
dtype
,
'value'
:
float
(
0
),
self
.
_op_device_key
:
device
,
self
.
_op_role_key
:
self
.
_op_role
.
Optimize
# a trick to run this op once per mini-batch
self
.
_op_role_key
:
self
.
_op_role
.
Optimize
.
LRSched
,
})
return
grad_queue_map
def
_
insert_enq_deq_ops_for_update
(
self
,
block
,
startup_program
):
def
_
accumulate_gradients
(
self
,
block
):
"""
Insert enqueue and dequeue ops for gradients of parameters.
Accumulate the gradients generated in microbatch to the one in mini-batch.
We also scale the loss corresponding to number of micro-batches as well.
"""
startup_block
=
startup_program
.
global_block
()
grad_queue_map
=
self
.
_add_dequeue_ops_for_optimize
(
block
,
startup_program
)
for
index
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
for
index
,
op
in
reversed
(
tuple
(
enumerate
(
list
(
block
.
ops
)))):
offset
=
index
device
=
op
.
attr
(
self
.
_op_device_key
)
...
...
@@ -4332,19 +4262,23 @@ class PipelineOptimizer(object):
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
offset
=
index
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
grad_name
=
op_role_var
[
i
+
1
]
grad_var
=
block
.
vars
[
grad_name
]
assert
grad_name
in
grad_queue_map
queue_name
=
grad_queue_map
[
grad_name
]
new_grad_var_name
=
unique_name
.
generate
(
grad_name
)
new_var
=
self
.
_create_var
(
block
,
grad_var
,
new_grad_var_name
)
self
.
_rename_arg
(
op
,
grad_name
,
new_grad_var_name
)
block
.
_insert_op
(
index
=
offset
+
1
,
type
=
'enqueue'
,
inputs
=
{
'X'
:
block
.
vars
[
grad_name
]},
type
=
'sum'
,
inputs
=
{
'X'
:
[
grad_var
,
new_var
]},
outputs
=
{
'Out'
:
grad_var
},
attrs
=
{
'queue_name'
:
queue_name
,
self
.
_op_device_key
:
device
,
self
.
_op_role_key
:
self
.
_op_role
.
Backward
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
self
.
_op_role_var_key
:
op_role_var
})
offset
+=
1
...
...
@@ -4401,7 +4335,9 @@ class PipelineOptimizer(object):
for
prog
in
var_info
[
var_name
]:
block
=
prog
.
block
(
0
)
for
op
in
block
.
ops
:
if
op
.
type
==
"dequeue"
:
continue
if
op
.
type
==
"recv_v2"
or
op
.
type
==
"create_py_reader"
or
\
op
.
type
==
"read"
:
continue
# We have processed lr related vars
if
op
.
attr
(
self
.
_op_role_key
)
==
int
(
self
.
_op_role
.
Optimize
.
LRSched
):
...
...
@@ -4421,45 +4357,39 @@ class PipelineOptimizer(object):
write_prog
=
write_info
[
var_name
]
write_block
=
write_prog
.
block
(
0
)
write_device
=
self
.
_get_device_info
(
write_block
)
write_dev_index
=
int
(
write_device
.
split
(
':'
)[
1
])
all_progs
=
var_info
[
var_name
]
for
prog
in
all_progs
:
if
prog
==
write_prog
:
continue
read_block
=
prog
.
block
(
0
)
read_device
=
self
.
_get_device_info
(
read_block
)
read_dev_index
=
int
(
read_device
.
split
(
':'
)[
1
])
queue_name
=
var_name
+
"_blocking_queue"
queue_name
=
unique_name
.
generate
(
queue_name
)
queue_var
=
startup_prog
.
block
(
0
).
create_var
(
name
=
queue_name
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
startup_prog
.
block
(
0
).
append_op
(
type
=
'queue_generator'
,
attrs
=
{
'names'
:
[
queue_name
],
'capacity'
:
self
.
_num_microbatches
})
write_block
.
_insert_op
(
index
=
0
,
type
=
'
enqueue
'
,
type
=
'
send_v2
'
,
inputs
=
{
'X'
:
write_block
.
var
(
var_name
),
},
attrs
=
{
'queue_name'
:
queue_name
,
self
.
_op_device_key
:
write_device
,
'use_calc_stream'
:
True
,
# A trick to make the role LRSched to avoid copy every
# microbatch
self
.
_op_role_key
:
self
.
_op_role
.
LRSched
self
.
_op_role_key
:
self
.
_op_role
.
LRSched
,
'peer'
:
read_dev_index
,
})
read_block
=
prog
.
block
(
0
)
read_device
=
self
.
_get_device_info
(
read_block
)
read_block
.
_insert_op
(
index
=
0
,
type
=
'
dequeue
'
,
type
=
'
recv_v2
'
,
outputs
=
{
'Out'
:
[
read_block
.
var
(
var_name
)]},
attrs
=
{
'out_shape'
:
read_block
.
var
(
var_name
).
shape
,
'dtype'
:
read_block
.
var
(
var_name
).
dtype
,
self
.
_op_device_key
:
read_device
,
'use_calc_stream'
:
True
,
# A trick to make the role LRSched to avoid copy every
# microbatch
self
.
_op_role_key
:
self
.
_op_role
.
LRSched
,
'
queue_name'
:
queue_name
,
'
peer'
:
write_dev_index
})
def
minimize
(
self
,
...
...
@@ -4472,26 +4402,21 @@ class PipelineOptimizer(object):
startup_program
=
default_startup_program
()
optimize_ops
,
params_grads
=
self
.
_optimizer
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
self
.
_
update_param_device_map
(
params_grads
,
main_block
)
self
.
_
param_device_map
=
self
.
_optimizer
.
_param_device_map
# Step1: add default op_device attribute for regulization and clip ops
self
.
_add_opdevice_attr_for_regularization_clip
(
main_block
)
# Step2: add default op_device attribute for ops whose op_device
# attribute have not been set yet.
# attribute have not been set yet. Then check all ops have the
# op_device attribute.
self
.
_add_default_opdevice_attr
(
main_block
)
device_specs
=
self
.
_check_validation
(
main_block
)
# Step3: add enqueue and dequeue ops between section boundaries
origin_prog
=
main_block
.
program
.
clone
(
for_test
=
False
)
origin_main_block
=
origin_prog
.
global_block
()
self
.
_insert_enq_deq_ops_for_boundaries
(
main_block
,
origin_main_block
,
startup_program
)
device_specs
=
self
.
_check_validation
(
main_block
)
assert
len
(
device_specs
)
>
1
# Step4: add a pair of enqueue and dequeueN for parameter gradients
self
.
_insert_enq_deq_ops_for_update
(
main_block
,
startup_program
)
main_program
=
main_block
.
program
# Step3: add send and recv ops between section boundaries
self
.
_insert_sendrecv_ops_for_boundaries
(
main_block
)
place_list
=
[]
place_id_list
=
[]
...
...
@@ -4506,37 +4431,56 @@ class PipelineOptimizer(object):
else
:
raise
ValueError
(
"Unknown device type: %s"
,
dev_spec
)
# Step5: split program into sections and add pairs of
# enqueue and dequeue ops for data var.
if
len
(
place_list
)
==
0
:
program_list
=
[]
ptmp
=
{
"program"
:
main_program
,
"input_set"
:
set
(),
"output_set"
:
set
()
}
program_list
.
append
(
ptmp
)
else
:
program_list
=
self
.
_split_program
(
main_program
)
for
p
in
program_list
:
self
.
_create_vars
(
p
[
"program"
].
block
(
0
),
main_program
)
self
.
_insert_enq_deq_for_data_var
(
main_block
,
program_list
,
startup_program
,
device_specs
)
# Step4: split program into sections and add pairs of
# send and recv ops for data var.
main_program
=
main_block
.
program
program_list
=
self
.
_split_program
(
main_program
,
device_specs
)
for
p
in
program_list
:
self
.
_create_vars
(
p
[
"program"
].
block
(
0
),
main_program
)
self
.
_insert_sendrecv_for_data_var
(
main_block
,
program_list
,
startup_program
,
device_specs
)
# Step
6
: Special Case: process persistable vars that exist in
# Step
5
: Special Case: process persistable vars that exist in
# multiple sections
self
.
_process_persistable_vars_in_multi_sections
(
main_program
,
startup_program
,
program_list
)
# Step
7
: Add sub blocks for section programs
# Step
6
: Add sub blocks for section programs
self
.
_add_sub_blocks
(
main_block
,
program_list
)
assert
(
main_program
.
_pipeline_opt
and
isinstance
(
main_program
.
_pipeline_opt
,
dict
)
and
'local_rank'
in
main_program
.
_pipeline_opt
),
\
"You must use pipeline with fleet"
local_rank
=
main_program
.
_pipeline_opt
[
'local_rank'
]
# Step7: Split startup program
new_startup_program
=
self
.
_split_startup_program
(
startup_program
,
local_rank
)
# Step8: clear gradients before each mini-batch and
# accumulate gradients during backward
self
.
_clear_gradients
(
program_list
[
local_rank
][
'program'
].
global_block
(),
dev_spec
=
device_specs
[
local_rank
])
self
.
_accumulate_gradients
(
program_list
[
local_rank
][
'program'
]
.
global_block
())
with
open
(
"startup_prog_%d"
%
local_rank
,
'w'
)
as
f
:
f
.
writelines
(
str
(
new_startup_program
))
with
open
(
"main_prog_%d"
%
local_rank
,
'w'
)
as
f
:
f
.
writelines
(
str
(
program_list
[
local_rank
][
'program'
]))
startup_program
.
_pipeline_opt
=
{
"startup_program"
:
new_startup_program
,
}
main_program
.
_pipeline_opt
=
{
"trainer"
:
"PipelineTrainer"
,
"device_worker"
:
"Section"
,
"section_program_list"
:
program_list
,
"place_list"
:
place_list
,
"place_id_list"
:
place_id_list
,
"inner_parallelism"
:
len
(
device_specs
),
"section_program"
:
program_list
[
local_rank
],
"place"
:
place_list
[
local_rank
],
"place_id"
:
place_id_list
[
local_rank
],
"sync_steps"
:
-
1
,
"num_microbatches"
:
self
.
_num_microbatches
,
"start_cpu_core_id"
:
self
.
_start_cpu_core_id
,
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
f77a78cd
...
...
@@ -10,10 +10,12 @@ if(NOT WITH_NCCL)
endif
()
string
(
REPLACE
".py"
""
DIST_TEST_OPS
"
${
DIST_TEST_OPS
}
"
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_mnist
)
list
(
APPEND DIST_TEST_OPS test_pipeline
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_se_resnext
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_sparse_embedding
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_sparse_embedding_over_height
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_transformer
)
list
(
APPEND DIST_TEST_OPS test_fleet_pipeline_meta_optimizer
)
list
(
APPEND DIST_TEST_OPS test_listen_and_serv_op
)
list
(
APPEND DIST_TEST_OPS test_fleet_graph_execution_meta_optimizer
)
set
(
MIXED_DIST_TEST_OPS
${
DIST_TEST_OPS
}
)
...
...
@@ -146,7 +148,6 @@ if (WITH_NCCL)
endif
()
if
(
NOT WITH_GPU OR WIN32
)
LIST
(
REMOVE_ITEM TEST_OPS test_pipeline
)
LIST
(
REMOVE_ITEM TEST_OPS test_boxps
)
endif
()
list
(
REMOVE_ITEM TEST_OPS test_seq_concat_op
)
# FIXME(helin): https://github.com/PaddlePaddle/Paddle/issues/8290
...
...
@@ -469,7 +470,6 @@ if(WITH_DISTRIBUTE)
py_test_modules
(
test_fleet_sharding_meta_optimizer MODULES test_fleet_sharding_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_amp_meta_optimizer MODULES test_fleet_amp_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_fp16_allreduce_meta_optimizer MODULES test_fleet_fp16_allreduce_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_pipeline_meta_optimizer MODULES test_fleet_pipeline_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_private_function MODULES test_fleet_private_function ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_meta_optimizer_base MODULES test_fleet_meta_optimizer_base ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_distributed_strategy MODULES test_fleet_distributed_strategy
)
...
...
python/paddle/fluid/tests/unittests/pipeline_mnist.py
0 → 100644
浏览文件 @
f77a78cd
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
from
functools
import
reduce
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
import
paddle.distributed.fleet
as
fleet
paddle
.
enable_static
()
DTYPE
=
"float32"
paddle
.
dataset
.
mnist
.
fetch
()
# Fix seed for test
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
def
cnn_model
(
data
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
data
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
)))
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
)))
SIZE
=
10
input_shape
=
conv_pool_2
.
shape
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
1
:],
1
)]
+
[
SIZE
]
scale
=
(
2.0
/
(
param_shape
[
0
]
**
2
*
SIZE
))
**
0.5
predict
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
SIZE
,
act
=
"softmax"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
)))
return
predict
class
TestDistMnist2x2
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
,
use_dgc
=
False
,
dist_strategy
=
None
):
# Input data
with
fluid
.
device_guard
(
"gpu:0"
):
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
if
dist_strategy
:
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
images
,
label
],
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
# Train program
predict
=
cnn_model
(
images
)
with
fluid
.
device_guard
(
"gpu:1"
):
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Evaluator
with
fluid
.
device_guard
(
"gpu:1"
):
batch_size_tensor
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size_tensor
)
inference_program
=
fluid
.
default_main_program
().
clone
()
base_lr
=
self
.
lr
passes
=
[
30
,
60
,
80
,
90
]
steps_per_pass
=
10
bd
=
[
steps_per_pass
*
p
for
p
in
passes
]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
lr_val
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
)
opt
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
lr_val
,
momentum
=
0.9
)
# Reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
if
dist_strategy
:
fleet
.
init
(
is_collective
=
True
)
strategy
=
fleet
.
DistributedStrategy
()
strategy
.
pipeline
=
True
dist_opt
=
fleet
.
distributed_optimizer
(
optimizer
=
opt
,
strategy
=
strategy
)
dist_opt
.
minimize
(
avg_cost
)
else
:
opt
.
minimize
(
avg_cost
)
if
dist_strategy
:
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
,
data_loader
else
:
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
if
__name__
==
"__main__"
:
runtime_main
(
TestDistMnist2x2
)
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
f77a78cd
...
...
@@ -124,6 +124,67 @@ class TestDistRunnerBase(object):
exe
.
run
(
pserver_prog
)
print_to_err
(
type
(
self
).
__name__
,
"run pserver main program done."
)
def
run_pipeline_trainer
(
self
,
args
):
self
.
lr
=
args
.
lr
dist_strategy
=
DistributedStrategy
()
test_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
,
data_loader
=
\
self
.
get_model
(
batch_size
=
args
.
batch_size
,
dist_strategy
=
dist_strategy
)
device_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
,
"0"
))
eprint
(
type
(
self
).
__name__
,
"device_id: %d."
%
device_id
)
place
=
fluid
.
CUDAPlace
(
device_id
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
eprint
(
type
(
self
).
__name__
,
"run worker startup program done."
)
data_loader
.
set_sample_list_generator
(
train_reader
,
place
)
data_loader
.
start
()
print_to_err
(
type
(
self
).
__name__
,
"begin to train on trainer"
)
out_losses
=
[]
for
i
in
six
.
moves
.
xrange
(
RUN_STEP
):
loss
=
exe
.
run
(
fluid
.
default_main_program
(),
fetch_list
=
[
avg_cost
])
loss
=
loss
[
0
]
if
loss
else
None
out_losses
.
append
(
loss
)
print_to_err
(
type
(
self
).
__name__
,
"run step %d finished"
%
i
)
print_to_err
(
type
(
self
).
__name__
,
"trainer run finished"
)
if
six
.
PY2
:
print
(
pickle
.
dumps
(
out_losses
))
else
:
sys
.
stdout
.
buffer
.
write
(
pickle
.
dumps
(
out_losses
))
if
args
.
save_model
:
model_save_dir
=
"/tmp"
if
fleet
.
worker_index
()
==
0
:
model_save_dir_fluid
=
os
.
path
.
join
(
model_save_dir
,
"fluid_persistables"
)
model_save_dir_fleet
=
os
.
path
.
join
(
model_save_dir
,
"fleet_persistables"
)
infer_save_dir_fluid
=
os
.
path
.
join
(
model_save_dir
,
"fluid_infer"
)
infer_save_dir_fleet
=
os
.
path
.
join
(
model_save_dir
,
"fleet_infer"
)
else
:
model_save_dir_fluid
=
os
.
path
.
join
(
model_save_dir
,
"fluid_persistables_2"
)
model_save_dir_fleet
=
os
.
path
.
join
(
model_save_dir
,
"fleet_persistables_2"
)
infer_save_dir_fluid
=
os
.
path
.
join
(
model_save_dir
,
"fluid_infer_2"
)
infer_save_dir_fleet
=
os
.
path
.
join
(
model_save_dir
,
"fleet_infer_2"
)
fluid
.
io
.
save_persistables
(
exe
,
model_save_dir_fluid
,
fleet
.
_origin_program
)
fleet
.
save_persistables
(
executor
=
exe
,
dirname
=
model_save_dir_fleet
)
feeded_var_names
=
[
var
.
name
for
var
in
feed_var_list
]
fluid
.
io
.
save_inference_model
(
infer_save_dir_fluid
,
feeded_var_names
,
[
avg_cost
],
exe
,
fleet
.
_origin_program
)
fleet
.
save_inference_model
(
exe
,
infer_save_dir_fleet
,
feeded_var_names
,
[
avg_cost
])
def
run_gpu_fleet_api_trainer
(
self
,
args
):
assert
args
.
update_method
==
"nccl2"
...
...
@@ -532,6 +593,7 @@ def runtime_main(test_class):
parser
.
add_argument
(
'--nccl_comm_num'
,
type
=
int
,
required
=
False
,
default
=
1
)
parser
.
add_argument
(
'--enable_backward_deps'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--use_hallreduce'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--use_pipeline'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--gpu_fleet_api'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--use_local_sgd'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--ut4grad_allreduce'
,
action
=
'store_true'
)
...
...
@@ -566,6 +628,8 @@ def runtime_main(test_class):
model
.
run_pserver
(
args
)
elif
args
.
gpu_fleet_api
:
model
.
run_gpu_fleet_api_trainer
(
args
)
elif
args
.
use_pipeline
:
model
.
run_pipeline_trainer
(
args
)
else
:
model
.
run_trainer
(
args
)
...
...
@@ -607,6 +671,7 @@ class TestDistBase(unittest.TestCase):
self
.
_dc_asgd
=
False
# must use with async mode
self
.
_use_reader_alloc
=
True
self
.
_nccl2_mode
=
False
self
.
_pipeline_mode
=
False
self
.
_mp_mode
=
False
# FIXME(typhoonzero): I added this stupid argument to enable
# testing allreduce layers, which users can call layers.allreduce
...
...
@@ -892,6 +957,8 @@ class TestDistBase(unittest.TestCase):
if
self
.
_use_dgc
:
tr_cmd
+=
" --use_dgc"
if
self
.
_pipeline_mode
:
tr_cmd
+=
" --use_pipeline"
if
self
.
_mp_mode
:
env
=
{
"FLAGS_selected_gpus"
:
"{}"
.
format
(
trainer_id
%
2
)}
...
...
@@ -978,6 +1045,51 @@ class TestDistBase(unittest.TestCase):
print
(
"outs[1]:"
,
outs
[
1
])
return
pickle
.
loads
(
outs
[
0
]),
pickle
.
loads
(
outs
[
1
])
def
_run_pipeline
(
self
,
model
,
envs
,
check_error_log
,
log_name
):
# NOTE: we reuse ps_endpoints as nccl2 worker endpoints
worker_endpoints
=
self
.
_ps_endpoints
.
split
(
","
)
update_method
=
"nccl2"
trainer_num
=
len
(
worker_endpoints
)
procs
=
[]
pipes
=
[]
for
i
in
range
(
0
,
trainer_num
):
tr_cmd
,
tr_env
=
self
.
_get_nccl2_trainer_cmd
(
model
,
worker_endpoints
[
i
],
update_method
,
i
,
trainer_num
)
tr_env
.
update
(
envs
)
tr_env
[
'CUDA_VISIBLE_DEVICES'
]
=
"0,1"
tr_env
[
'NCCL_SHM_DISABLE'
]
=
'1'
tr_env
[
'FLAGS_selected_gpus'
]
=
str
(
i
)
tr_env
[
'FLAGS_cudnn_deterministic'
]
=
'0'
print
(
"tr_cmd:{}, env: {}"
.
format
(
tr_cmd
,
tr_env
))
tr_pipe
=
open
(
"/tmp/"
+
"tr{}_err.log"
.
format
(
i
),
"wb"
)
print_to_err
(
type
(
self
).
__name__
,
"going to start process {} with nccl2"
.
format
(
i
))
tr_proc
=
subprocess
.
Popen
(
tr_cmd
.
strip
().
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
tr_pipe
,
env
=
tr_env
)
procs
.
append
(
tr_proc
)
pipes
.
append
(
tr_pipe
)
outs
=
[]
for
i
in
range
(
0
,
trainer_num
):
tr_out
,
tr_err
=
procs
[
i
].
communicate
()
outs
.
append
(
tr_out
)
pipes
[
i
].
close
()
sys
.
stderr
.
write
(
'trainer {} stderr: {}
\n
'
.
format
(
i
,
tr_err
))
if
check_error_log
:
print
(
"outs[0]:"
,
outs
[
0
])
print
(
"outs[1]:"
,
outs
[
1
])
return
pickle
.
loads
(
outs
[
0
]),
pickle
.
loads
(
outs
[
1
])
def
_get_required_envs
(
self
,
check_error_log
=
False
,
need_envs
=
{}):
# TODO(typhoonzero): should auto adapt GPU count on the machine.
required_envs
=
{
...
...
@@ -1032,6 +1144,9 @@ class TestDistBase(unittest.TestCase):
False
,
check_error_log
,
log_name
=
log_name
)
elif
self
.
_pipeline_mode
:
tr0_losses
,
tr1_losses
=
self
.
_run_pipeline
(
model_file
,
required_envs
,
check_error_log
,
log_name
=
log_name
)
else
:
tr0_losses
,
tr1_losses
=
self
.
_run_cluster
(
model_file
,
required_envs
,
check_error_log
,
log_name
=
log_name
)
...
...
@@ -1040,7 +1155,10 @@ class TestDistBase(unittest.TestCase):
local_loss
=
local_losses
[
step_id
]
tr0_loss
=
tr0_losses
[
step_id
]
tr1_loss
=
tr1_losses
[
step_id
]
dist_loss
=
(
np
.
array
([
tr0_loss
])
+
np
.
array
([
tr1_loss
]))
/
2
if
self
.
_pipeline_mode
:
dist_loss
=
np
.
array
([
tr1_loss
])
else
:
dist_loss
=
(
np
.
array
([
tr0_loss
])
+
np
.
array
([
tr1_loss
]))
/
2
print
(
"======="
,
local_loss
,
":"
,
dist_loss
[
0
],
"======="
)
self
.
assertAlmostEqual
(
local_loss
,
dist_loss
[
0
],
delta
=
delta
)
...
...
python/paddle/fluid/tests/unittests/test_fleet_pipeline_meta_optimizer.py
浏览文件 @
f77a78cd
...
...
@@ -16,6 +16,8 @@ import unittest
import
paddle
import
os
paddle
.
enable_static
()
class
TestFleetMetaOptimizer
(
unittest
.
TestCase
):
def
setUp
(
self
):
...
...
@@ -28,19 +30,14 @@ class TestFleetMetaOptimizer(unittest.TestCase):
import
paddle.distributed.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
with
paddle
.
fluid
.
device_guard
(
"
cpu
"
):
with
paddle
.
fluid
.
device_guard
(
"
gpu:0
"
):
input_x
=
paddle
.
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
1
],
dtype
=
'int64'
)
data_loader
=
paddle
.
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
input_x
,
input_y
],
capacity
=
64
,
use_double_buffer
=
True
,
iterable
=
False
)
fc_1
=
paddle
.
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
with
paddle
.
fluid
.
device_guard
(
"gpu:
0
"
):
with
paddle
.
fluid
.
device_guard
(
"gpu:
1
"
):
fc_2
=
paddle
.
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
64
,
act
=
'tanh'
)
prediction
=
paddle
.
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
2
,
...
...
python/paddle/fluid/tests/unittests/test_pipeline.py
浏览文件 @
f77a78cd
...
...
@@ -13,212 +13,32 @@
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
numpy
as
np
import
os
import
shutil
import
unittest
import
math
def
conv_bn_layer
(
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
)
def
shortcut
(
input
,
ch_out
,
stride
,
is_first
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
or
is_first
==
True
:
return
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
)
else
:
return
input
def
bottleneck_block
(
input
,
num_filters
,
stride
):
conv0
=
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
conv1
=
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
conv2
=
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
short
=
shortcut
(
input
,
num_filters
*
4
,
stride
,
is_first
=
False
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
basic_block
(
input
,
num_filters
,
stride
,
is_first
):
conv0
=
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
3
,
act
=
'relu'
,
stride
=
stride
)
conv1
=
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
act
=
None
)
short
=
shortcut
(
input
,
num_filters
,
stride
,
is_first
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
)
from
test_dist_base
import
TestDistBase
def
build_network
(
input
,
layers
=
50
,
class_dim
=
1000
):
supported_layers
=
[
18
,
34
,
50
,
101
,
152
]
assert
layers
in
supported_layers
depth
=
None
if
layers
==
18
:
depth
=
[
2
,
2
,
2
,
2
]
elif
layers
==
34
or
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
64
,
128
,
256
,
512
]
with
fluid
.
device_guard
(
"cpu"
):
conv
=
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
if
layers
>=
50
:
for
block
in
range
(
len
(
depth
)):
with
fluid
.
device_guard
(
"gpu:0"
):
for
i
in
range
(
depth
[
block
]):
conv
=
bottleneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
)
with
fluid
.
device_guard
(
"gpu:0"
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
else
:
for
block
in
range
(
len
(
depth
)):
with
fluid
.
device_guard
(
"gpu:0"
):
for
i
in
range
(
depth
[
block
]):
conv
=
basic_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
is_first
=
block
==
i
==
0
)
with
fluid
.
device_guard
(
"gpu:0"
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
return
out
class
TestPipeline
(
unittest
.
TestCase
):
""" TestCases for Pipeline Training. """
def
_run
(
self
,
debug
):
main_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
with
fluid
.
device_guard
(
"cpu"
):
image
=
fluid
.
layers
.
data
(
name
=
"image"
,
shape
=
[
3
,
224
,
224
],
dtype
=
"float32"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
image
,
label
],
capacity
=
64
,
use_double_buffer
=
True
,
iterable
=
False
)
fc
=
build_network
(
image
,
layers
=
50
)
with
fluid
.
device_guard
(
"gpu:0"
):
out
,
prob
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
fc
,
label
=
label
,
return_softmax
=
True
)
loss
=
fluid
.
layers
.
mean
(
out
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
prob
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
prob
,
label
=
label
,
k
=
5
)
base_lr
=
0.1
passes
=
[
30
,
60
,
80
,
90
]
total_images
=
1281167
steps_per_pass
=
total_images
//
128
bd
=
[
steps_per_pass
*
p
for
p
in
passes
]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
lr_val
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
)
optimizer
=
fluid
.
optimizer
.
MomentumOptimizer
(
lr_val
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
optimizer
=
fluid
.
optimizer
.
PipelineOptimizer
(
optimizer
,
num_microbatches
=
2
)
optimizer
.
minimize
(
loss
)
def
train_reader
():
for
_
in
range
(
4
):
img
=
np
.
random
.
random
(
size
=
[
3
,
224
,
224
]).
astype
(
'float32'
)
label
=
np
.
random
.
random
(
size
=
[
1
]).
astype
(
'int64'
)
yield
img
,
label
data_loader
.
set_sample_generator
(
train_reader
,
batch_size
=
1
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
data_loader
.
start
()
exe
.
train_from_dataset
(
main_prog
,
debug
=
debug
)
def
test_pipeline
(
self
):
self
.
_run
(
False
)
self
.
_run
(
True
)
def
test_pipeline_noneoptimizer
(
self
):
with
fluid
.
device_guard
(
"gpu:0"
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
0
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
0
)
emb_x
=
layers
.
embedding
(
input
=
x
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"embx"
),
size
=
[
10
,
2
],
is_sparse
=
False
)
fc
=
layers
.
fc
(
input
=
emb_x
,
name
=
"fc"
,
size
=
1
,
num_flatten_dims
=
1
,
bias_attr
=
False
)
loss
=
layers
.
reduce_mean
(
fc
)
import
os
import
paddle
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.5
)
with
self
.
assertRaises
(
ValueError
):
optimizer
=
fluid
.
optimizer
.
PipelineOptimizer
(
dict
(),
num_microbatches
=
2
)
paddle
.
enable_static
()
flag_name
=
os
.
path
.
splitext
(
__file__
)[
0
]
class
TestPipeline
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_use_reduce
=
False
self
.
_use_reader_alloc
=
False
self
.
_pipeline_mode
=
True
self
.
_nccl_comm_num
=
1
def
test_dist_train
(
self
):
import
paddle.fluid
as
fluid
if
fluid
.
core
.
is_compiled_with_cuda
():
self
.
check_with_place
(
"pipeline_mnist.py"
,
delta
=
1e-5
,
check_error_log
=
True
,
log_name
=
flag_name
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录