未验证 提交 f735102e 编写于 作者: J Jiabin Yang 提交者: GitHub

add layer norm to Layers, add transformer test in imperative mode (#16092)

* add layer norm to Layers, add transformer prepare encoding

* little change

* finish encoder part

* add decoder part

* finish model part

* add test case and part of data feed

* add transformer test

* add to_parameter, add remove in set_attr

* test=develop, fix pos encoding bug, create_parameter with stantard name

* test=develop, rm dropout test in imperative

* test=develop, fix cpu error

* test=develop, fix minize bug

* test=develop, fix one hot not stop gradient

* test=develop, fix one hot not stop gradient

* test=develop, refine parameter name

* test=develop, fix transformer test in imperative mode

* test=develop, fix transformer test in imperative mode

* test=develop, fix boost and mkl download error

* test=develop, fix boost and mkl download error

* test=develop, fix ci and refine code

* test=develop, fix ci and refine code
上级 0fff666f
......@@ -315,6 +315,9 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
for (size_t i = 0; i < outputs.size(); ++i) {
framework::Variable* grad = outputs[i]->var_;
framework::Variable* orig_grad = origin_outputs[i]->var_;
VLOG(3) << "AddTo Called with orig_grad is: "
<< origin_outputs[i]->name_ << " Grad to be added is "
<< outputs[i]->name_;
AddTo(grad, orig_grad, place_);
delete grad;
}
......
......@@ -277,6 +277,7 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
VarBase* var = current_vars_map[var_it->second];
InitGrad(var, prepared_op.GetDeviceContext());
grad_out_vars.push_back(var->grads_);
VLOG(3) << "grads output var name: " << var->name_;
}
}
}
......
......@@ -15,7 +15,7 @@
WMT14 dataset.
The original WMT14 dataset is too large and a small set of data for set is
provided. This module will download dataset from
http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz and
http://paddlepaddle.bj.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz and
parse training set and test set into paddle reader creators.
"""
......
......@@ -44,7 +44,7 @@ def guard(place=None):
yield
def to_variable(value, block=None):
def to_variable(value, block=None, name=None):
if isinstance(value, np.ndarray):
assert enabled(), "to_variable could only be called in imperative mode"
......@@ -53,7 +53,7 @@ def to_variable(value, block=None):
py_var = framework.Variable(
block,
type=core.VarDesc.VarType.LOD_TENSOR,
name=None,
name=name,
shape=value.shape,
dtype=value.dtype)
var = py_var._ivar.value()
......
......@@ -105,6 +105,7 @@ class LayerObjectHelper(LayerHelperBase):
Returns dtype of the input
"""
inputs_in = inputs_in if (inputs_in is not None) else []
inputs = self._multiple_input(inputs_in)
dtype = None
for each in inputs:
......
......@@ -17,10 +17,12 @@ import contextlib
import sys
import numpy as np
import collections
import six
from .. import unique_name
from paddle.fluid import core
from .layer_object_helper import LayerObjectHelper
from paddle.fluid import framework
from ..param_attr import ParamAttr
__all__ = ['Layer', 'PyLayer']
......@@ -72,6 +74,10 @@ class Layer(core.Layer):
Returns created parameter Variable.
"""
if isinstance(attr, ParamAttr) and (attr.name is not None):
attr.name = ".".join([self._full_name, attr.name])
elif isinstance(attr, six.string_types):
attr = ".".join([self._full_name, attr])
return self._helper.create_parameter(attr, shape, dtype, is_bias,
default_initializer)
......@@ -164,6 +170,7 @@ class Layer(core.Layer):
the sublayer passed in.
"""
assert isinstance(sublayer, core.Layer)
self._sub_layers[name] = sublayer
return sublayer
......
......@@ -20,10 +20,12 @@ from .. import core
from ..layers import utils
from . import layers
from ..framework import Variable, OpProtoHolder
from ..layers import layer_function_generator
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant
__all__ = ['Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit']
__all__ = [
'Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit', 'LayerNorm'
]
class Conv2D(layers.Layer):
......@@ -438,7 +440,6 @@ class Embedding(layers.Layer):
self._size = size
self._is_sparse = is_sparse
self._is_distributed = is_distributed
self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
size[0] + padding_idx)
......@@ -471,6 +472,131 @@ class Embedding(layers.Layer):
return out
class LayerNorm(layers.Layer):
def __init__(self,
name_scope,
scale=True,
shift=True,
begin_norm_axis=1,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
act=None):
"""
${comment}
The formula is as follows:
.. math::
\\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i
\\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}
h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)
* :math:`a`: the vector representation of the summed inputs to the neurons
in that layer.
* :math:`H`: the number of hidden units in a layers
* :math:`g`: the trainable scale parameter.
* :math:`b`: the trainable bias parameter.
Args:
input(Variable): The input tensor variable.
scale(bool): Whether to learn the adaptive gain :math:`g` after
normalization. Default True.
shift(bool): Whether to learn the adaptive bias :math:`b` after
normalization. Default True.
begin_norm_axis(int): The normalization will be performed along
dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
Default 1.
epsilon(float): The small value added to the variance to prevent
division by zero. Default 1e-05.
param_attr(ParamAttr|None): The parameter attribute for the learnable
gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
a default :code:`ParamAttr` would be added as scale. The
:attr:`param_attr` is initialized as 1 if it is added. Default None.
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
a default :code:`ParamAttr` would be added as bias. The
:attr:`bias_attr` is initialized as 0 if it is added. Default None.
act(str): Activation to be applied to the output of layer normalizaiton.
Default None.
Returns:
${y_comment}
Examples:
>>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
>>> dtype='float32')
>>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
"""
super(LayerNorm, self).__init__(name_scope)
self._scale = scale
self._shift = shift
self._begin_norm_axis = begin_norm_axis
self._epsilon = epsilon
self._param_attr = param_attr
self._bias_attr = bias_attr
self._act = act
def _build_once(self, input):
self._dtype = self._helper.input_dtype(input)
input_shape = input.shape
param_shape = [
reduce(lambda x, y: x * y, input_shape[self._begin_norm_axis:])
]
if self._scale:
self._scale_w = self.create_parameter(
attr=self._param_attr,
shape=param_shape,
dtype=self._dtype,
default_initializer=Constant(1.0))
if self._shift:
assert self._bias_attr is not False
self._bias_w = self.create_parameter(
attr=self._bias_attr,
shape=param_shape,
dtype=self._dtype,
is_bias=True)
def forward(self, input):
inputs = dict()
inputs['X'] = input
if self._scale:
inputs['Scale'] = self._scale_w
if self._shift:
inputs['Bias'] = self._bias_w
# create output
mean_out = self._helper.create_variable_for_type_inference(
dtype=self._dtype, stop_gradient=True)
variance_out = self._helper.create_variable_for_type_inference(
dtype=self._dtype, stop_gradient=True)
layer_norm_out = self._helper.create_variable_for_type_inference(
self._dtype)
self._helper.append_op(
type="layer_norm",
inputs=inputs,
outputs={
"Y": layer_norm_out,
"Mean": mean_out,
"Variance": variance_out,
},
attrs={
"epsilon": self._epsilon,
"begin_norm_axis": self._begin_norm_axis
})
return self._helper.append_activation(layer_norm_out)
class GRUUnit(layers.Layer):
"""
**GRU unit layer**
......
......@@ -268,11 +268,9 @@ class LayerHelperBase(object):
"""
# Deepcopy the attr so that parameters can be shared in program
attr = copy.deepcopy(attr)
if attr is None:
attr = ParamAttr._to_attr(attr)
if not attr:
return None
assert isinstance(attr, ParamAttr)
suffix = 'b' if is_bias else 'w'
if attr.name is None:
......
......@@ -6206,7 +6206,8 @@ def one_hot(input, depth):
type="one_hot",
inputs={'X': input},
attrs={'depth': depth},
outputs={'Out': one_hot_out})
outputs={'Out': one_hot_out},
stop_gradient=True)
return one_hot_out
......
......@@ -397,6 +397,7 @@ class Optimizer(object):
for param in parameters:
if not param.trainable:
continue
if param._ivar._grad_ivar() is not None:
# create gradient variable
grad_var = Variable(
block=loss.block,
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
from paddle.fluid.imperative import Embedding, LayerNorm, FC, to_variable, Layer, guard
from test_imperative_base import new_program_scope
from paddle.fluid import core
import numpy as np
import six
np.set_printoptions(suppress=True)
# Copy from models
class TrainTaskConfig(object):
# support both CPU and GPU now.
use_gpu = True
# the epoch number to train.
pass_num = 30
# the number of sequences contained in a mini-batch.
# deprecated, set batch_size in args.
batch_size = 32
# the hyper parameters for Adam optimizer.
# This static learning_rate will be multiplied to the LearningRateScheduler
# derived learning rate the to get the final learning rate.
learning_rate = 2.0
beta1 = 0.9
beta2 = 0.997
eps = 1e-9
# the parameters for learning rate scheduling.
warmup_steps = 8000
# the weight used to mix up the ground-truth distribution and the fixed
# uniform distribution in label smoothing when training.
# Set this as zero if label smoothing is not wanted.
label_smooth_eps = 0.1
# the directory for saving trained models.
model_dir = "trained_models"
# the directory for saving checkpoints.
ckpt_dir = "trained_ckpts"
# the directory for loading checkpoint.
# If provided, continue training from the checkpoint.
ckpt_path = None
# the parameter to initialize the learning rate scheduler.
# It should be provided if use checkpoints, since the checkpoint doesn't
# include the training step counter currently.
start_step = 0
# the frequency to save trained models.
save_freq = 10000
class InferTaskConfig(object):
use_gpu = True
# the number of examples in one run for sequence generation.
batch_size = 10
# the parameters for beam search.
beam_size = 5
max_out_len = 256
# the number of decoded sentences to output.
n_best = 1
# the flags indicating whether to output the special tokens.
output_bos = False
output_eos = False
output_unk = True
# the directory for loading the trained model.
model_path = "trained_models/pass_1.infer.model"
class ModelHyperParams(object):
# These following five vocabularies related configurations will be set
# automatically according to the passed vocabulary path and special tokens.
# size of source word dictionary.
src_vocab_size = 10000
# size of target word dictionay
trg_vocab_size = 10000
# index for <bos> token
bos_idx = 0
# index for <eos> token
eos_idx = 1
# index for <unk> token
unk_idx = 2
# max length of sequences deciding the size of position encoding table.
max_length = 4
# the dimension for word embeddings, which is also the last dimension of
# the input and output of multi-head attention, position-wise feed-forward
# networks, encoder and decoder.
d_model = 512
# size of the hidden layer in position-wise feed-forward networks.
d_inner_hid = 2048
# the dimension that keys are projected to for dot-product attention.
d_key = 64
# the dimension that values are projected to for dot-product attention.
d_value = 64
# number of head used in multi-head attention.
n_head = 8
# number of sub-layers to be stacked in the encoder and decoder.
n_layer = 6
# dropout rates of different modules.
prepostprocess_dropout = 0.1
attention_dropout = 0.1
relu_dropout = 0.1
# to process before each sub-layer
preprocess_cmd = "n" # layer normalization
# to process after each sub-layer
postprocess_cmd = "da" # dropout + residual connection
# random seed used in dropout for CE.
dropout_seed = 1
# the flag indicating whether to share embedding and softmax weights.
# vocabularies in source and target should be same for weight sharing.
weight_sharing = True
def merge_cfg_from_list(cfg_list, g_cfgs):
"""
Set the above global configurations using the cfg_list.
"""
assert len(cfg_list) % 2 == 0
for key, value in zip(cfg_list[0::2], cfg_list[1::2]):
for g_cfg in g_cfgs:
if hasattr(g_cfg, key):
try:
value = eval(value)
except Exception: # for file path
pass
setattr(g_cfg, key, value)
break
def position_encoding_init(n_position, d_pos_vec):
"""
Generate the initial values for the sinusoid position encoding table.
"""
channels = d_pos_vec
position = np.arange(n_position)
num_timescales = channels // 2
log_timescale_increment = (np.log(float(1e4) / float(1)) /
(num_timescales - 1))
inv_timescales = np.exp(np.arange(
num_timescales)) * -log_timescale_increment
scaled_time = np.expand_dims(position, 1) * np.expand_dims(inv_timescales,
0)
signal = np.concatenate([np.sin(scaled_time), np.cos(scaled_time)], axis=1)
signal = np.pad(signal, [[0, 0], [0, np.mod(channels, 2)]], 'constant')
position_enc = signal
return position_enc.astype("float32")
def create_data(is_static=False):
if is_static:
return [
src_word_np, src_pos_np, src_slf_attn_bias_np, trg_word_np,
trg_pos_np, trg_slf_attn_bias_np, trg_src_attn_bias_np, lbl_word_np,
lbl_weight_np
]
else:
enc_inputs = [
to_variable(src_word_np), to_variable(src_pos_np),
to_variable(src_slf_attn_bias_np)
]
dec_inputs = [
to_variable(trg_word_np), to_variable(trg_pos_np),
to_variable(trg_slf_attn_bias_np), to_variable(trg_src_attn_bias_np)
]
label = to_variable(lbl_word_np)
weight = to_variable(lbl_weight_np)
return enc_inputs, dec_inputs, label, weight
def create_feed_dict_list(data, init=False):
if init:
data_input_names = encoder_data_input_fields + \
decoder_data_input_fields[:-1] + label_data_input_fields + pos_enc_param_names
else:
data_input_names = encoder_data_input_fields + \
decoder_data_input_fields[:-1] + label_data_input_fields
feed_dict_list = dict()
for i in range(len(data_input_names)):
feed_dict_list[data_input_names[i]] = data[i]
return feed_dict_list
def make_all_inputs(input_fields):
"""
Define the input data layers for the transformer model.
"""
inputs = []
for input_field in input_fields:
input_var = fluid.layers.data(
name=input_field,
shape=input_descs[input_field][0],
dtype=input_descs[input_field][1],
lod_level=input_descs[input_field][2]
if len(input_descs[input_field]) == 3 else 0,
append_batch_size=False)
inputs.append(input_var)
return inputs
# The placeholder for batch_size in compile time. Must be -1 currently to be
# consistent with some ops' infer-shape output in compile time, such as the
# sequence_expand op used in beamsearch decoder.
batch_size = 32
# The placeholder for squence length in compile time.
seq_len = ModelHyperParams.max_length
# Here list the data shapes and data types of all inputs.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
input_descs = {
# The actual data shape of src_word is:
# [batch_size, max_src_len_in_batch, 1]
"src_word": [(batch_size, seq_len, 1), "int64", 2],
# The actual data shape of src_pos is:
# [batch_size, max_src_len_in_batch, 1]
"src_pos": [(batch_size, seq_len, 1), "int64"],
# This input is used to remove attention weights on paddings in the
# encoder.
# The actual data shape of src_slf_attn_bias is:
# [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch]
"src_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
seq_len), "float32"],
# The actual data shape of trg_word is:
# [batch_size, max_trg_len_in_batch, 1]
"trg_word": [(batch_size, seq_len, 1), "int64",
2], # lod_level is only used in fast decoder.
# The actual data shape of trg_pos is:
# [batch_size, max_trg_len_in_batch, 1]
"trg_pos": [(batch_size, seq_len, 1), "int64"],
# This input is used to remove attention weights on paddings and
# subsequent words in the decoder.
# The actual data shape of trg_slf_attn_bias is:
# [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch]
"trg_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
seq_len), "float32"],
# This input is used to remove attention weights on paddings of the source
# input in the encoder-decoder attention.
# The actual data shape of trg_src_attn_bias is:
# [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch]
"trg_src_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
seq_len), "float32"],
# This input is used in independent decoder program for inference.
# The actual data shape of enc_output is:
# [batch_size, max_src_len_in_batch, d_model]
"enc_output": [(batch_size, seq_len, ModelHyperParams.d_model), "float32"],
# The actual data shape of label_word is:
# [batch_size * max_trg_len_in_batch, 1]
"lbl_word": [(batch_size * seq_len, 1), "int64"],
# This input is used to mask out the loss of paddding tokens.
# The actual data shape of label_weight is:
# [batch_size * max_trg_len_in_batch, 1]
"lbl_weight": [(batch_size * seq_len, 1), "float32"],
# This input is used in beam-search decoder.
"init_score": [(batch_size, 1), "float32", 2],
# This input is used in beam-search decoder for the first gather
# (cell states updation)
"init_idx": [(batch_size, ), "int32"],
}
# Names of word embedding table which might be reused for weight sharing.
word_emb_param_names = (
"src_word_emb_table",
"trg_word_emb_table", )
# Names of position encoding table which will be initialized externally.
pos_enc_param_names = (
"src_pos_enc_table",
"trg_pos_enc_table", )
# separated inputs for different usages.
encoder_data_input_fields = (
"src_word",
"src_pos",
"src_slf_attn_bias", )
decoder_data_input_fields = (
"trg_word",
"trg_pos",
"trg_slf_attn_bias",
"trg_src_attn_bias",
"enc_output", )
label_data_input_fields = (
"lbl_word",
"lbl_weight", )
# In fast decoder, trg_pos (only containing the current time step) is generated
# by ops and trg_slf_attn_bias is not needed.
fast_decoder_data_input_fields = (
"trg_word",
"init_score",
"init_idx",
"trg_src_attn_bias", )
# if we use py_reader
use_py_reader = False
# if we run sync mode
sync = False
# how many batches we use
batch_num = 2
np.random.seed = 1
src_word_np = np.random.randint(
1,
ModelHyperParams.src_vocab_size - 1,
size=(batch_size, seq_len, 1),
dtype='int64')
src_pos_np = np.random.randint(
1, seq_len, size=(batch_size, seq_len, 1), dtype='int64')
src_slf_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
seq_len, seq_len).astype('float32')
trg_word_np = np.random.randint(
1,
ModelHyperParams.src_vocab_size - 1,
size=(batch_size, seq_len, 1),
dtype='int64')
trg_pos_np = np.random.randint(
1, seq_len, size=(batch_size, seq_len, 1), dtype='int64')
trg_slf_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
seq_len, seq_len).astype('float32')
trg_src_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
seq_len, seq_len).astype('float32')
lbl_word_np = np.random.randint(
1,
ModelHyperParams.src_vocab_size - 1,
size=(batch_size * seq_len, 1),
dtype='int64')
lbl_weight_np = np.random.randn(batch_size * seq_len, 1).astype('float32')
# np.random.seed = 1
# src_word_np = np.arange(0, 10).reshape([batch_size, seq_len, 1]).astype('int64')
# src_pos_np = np.random.randint(
# 1, seq_len, size=(batch_size, seq_len, 1), dtype='int64')
# src_slf_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
# seq_len, seq_len).astype('float32')
#
# trg_word_np = np.arange(0, 10).reshape([batch_size, seq_len, 1]).astype('int64')
# trg_pos_np = np.random.randint(
# 1, seq_len, size=(batch_size, seq_len, 1), dtype='int64')
# trg_slf_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
# seq_len, seq_len).astype('float32')
# trg_src_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
# seq_len, seq_len).astype('float32')
#
# lbl_word_np = np.arange(0, 10).reshape([batch_size * seq_len, 1]).astype('int64')
# lbl_weight_np = np.random.randn(batch_size * seq_len, 1).astype('float32')
#
pos_inp1 = position_encoding_init(ModelHyperParams.max_length,
ModelHyperParams.d_model)
pos_inp2 = position_encoding_init(ModelHyperParams.max_length,
ModelHyperParams.d_model)
class PrePostProcessLayer(Layer):
def __init__(self, name_scope, process_cmd, shape_len=None):
super(PrePostProcessLayer, self).__init__(name_scope)
for cmd in process_cmd:
if cmd == "n":
self._layer_norm = LayerNorm(
name_scope=self.full_name(),
begin_norm_axis=shape_len - 1,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(0.)))
def forward(self, prev_out, out, process_cmd, dropout_rate=0.):
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out = self._layer_norm(out)
elif cmd == "d": # add dropout
if dropout_rate:
out = fluid.layers.dropout(
out,
dropout_prob=dropout_rate,
seed=ModelHyperParams.dropout_seed,
is_test=False)
return out
class PositionwiseFeedForwardLayer(Layer):
def __init__(self, name_scope, d_inner_hid, d_hid, dropout_rate):
super(PositionwiseFeedForwardLayer, self).__init__(name_scope)
self._i2h = FC(name_scope=self.full_name(),
size=d_inner_hid,
num_flatten_dims=2,
act="relu")
self._h2o = FC(name_scope=self.full_name(),
size=d_hid,
num_flatten_dims=2)
self._dropout_rate = dropout_rate
def forward(self, x):
hidden = self._i2h(x)
if self._dropout_rate:
hidden = fluid.layers.dropout(
hidden,
dropout_prob=self._dropout_rate,
seed=ModelHyperParams.dropout_seed,
is_test=False)
out = self._h2o(hidden)
return out
class MultiHeadAttentionLayer(Layer):
def __init__(self,
name_scope,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
gather_idx=None,
static_kv=False):
super(MultiHeadAttentionLayer, self).__init__(name_scope)
self._n_head = n_head
self._d_key = d_key
self._d_value = d_value
self._d_model = d_model
self._dropout_rate = dropout_rate
self._q_fc = FC(name_scope=self.full_name(),
size=d_key * n_head,
bias_attr=False,
num_flatten_dims=2)
self._k_fc = FC(name_scope=self.full_name(),
size=d_key * n_head,
bias_attr=False,
num_flatten_dims=2)
self._v_fc = FC(name_scope=self.full_name(),
size=d_value * n_head,
bias_attr=False,
num_flatten_dims=2)
self._proj_fc = FC(name_scope=self.full_name(),
size=self._d_model,
bias_attr=False,
num_flatten_dims=2)
def forward(self, queries, keys, values, attn_bias):
# compute q ,k ,v
keys = queries if keys is None else keys
values = keys if values is None else values
q = self._q_fc(queries)
k = self._k_fc(keys)
v = self._v_fc(values)
# split head
reshaped_q = fluid.layers.reshape(
x=q, shape=[0, 0, self._n_head, self._d_key], inplace=False)
transpose_q = fluid.layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3])
reshaped_k = fluid.layers.reshape(
x=k, shape=[0, 0, self._n_head, self._d_key], inplace=False)
transpose_k = fluid.layers.transpose(x=reshaped_k, perm=[0, 2, 1, 3])
reshaped_v = fluid.layers.reshape(
x=v, shape=[0, 0, self._n_head, self._d_value], inplace=False)
transpose_v = fluid.layers.transpose(x=reshaped_v, perm=[0, 2, 1, 3])
#scale dot product attention
product = fluid.layers.matmul(
x=transpose_q,
y=transpose_k,
transpose_y=True,
alpha=self._d_model**-0.5)
if attn_bias:
product += attn_bias
weights = fluid.layers.softmax(product)
if self._dropout_rate:
weights_droped = fluid.layers.dropout(
weights,
dropout_prob=self._dropout_rate,
seed=ModelHyperParams.dropout_seed,
is_test=False)
out = fluid.layers.matmul(weights_droped, transpose_v)
else:
out = fluid.layers.matmul(weights, transpose_v)
# combine heads
if len(out.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = fluid.layers.transpose(out, perm=[0, 2, 1, 3])
final_out = fluid.layers.reshape(
x=trans_x,
shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
inplace=False)
# fc to output
proj_out = self._proj_fc(final_out)
return proj_out
class EncoderSubLayer(Layer):
def __init__(self,
name_scope,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd="n",
postprocess_cmd="da"):
super(EncoderSubLayer, self).__init__(name_scope)
self._preprocess_cmd = preprocess_cmd
self._postprocess_cmd = postprocess_cmd
self._prepostprocess_dropout = prepostprocess_dropout
self._preprocess_layer = PrePostProcessLayer(self.full_name(),
self._preprocess_cmd, 3)
self._multihead_attention_layer = MultiHeadAttentionLayer(
self.full_name(), d_key, d_value, d_model, n_head,
attention_dropout)
self._postprocess_layer = PrePostProcessLayer(
self.full_name(), self._postprocess_cmd, None)
self._preprocess_layer2 = PrePostProcessLayer(self.full_name(),
self._preprocess_cmd, 3)
self._positionwise_feed_forward = PositionwiseFeedForwardLayer(
self.full_name(), d_inner_hid, d_model, relu_dropout)
self._postprocess_layer2 = PrePostProcessLayer(
self.full_name(), self._postprocess_cmd, None)
def forward(self, enc_input, attn_bias):
pre_process_multihead = self._preprocess_layer(
None, enc_input, self._preprocess_cmd, self._prepostprocess_dropout)
attn_output = self._multihead_attention_layer(pre_process_multihead,
None, None, attn_bias)
attn_output = self._postprocess_layer(enc_input, attn_output,
self._postprocess_cmd,
self._prepostprocess_dropout)
pre_process2_output = self._preprocess_layer2(
None, attn_output, self._preprocess_cmd,
self._prepostprocess_dropout)
ffd_output = self._positionwise_feed_forward(pre_process2_output)
return self._postprocess_layer2(attn_output, ffd_output,
self._postprocess_cmd,
self._prepostprocess_dropout)
class EncoderLayer(Layer):
def __init__(self,
name_scope,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd="n",
postprocess_cmd="da"):
super(EncoderLayer, self).__init__(name_scope)
self._preprocess_cmd = preprocess_cmd
self._encoder_sublayers = list()
self._prepostprocess_dropout = prepostprocess_dropout
self._n_layer = n_layer
self._preprocess_layer = PrePostProcessLayer(self.full_name(),
self._preprocess_cmd, 3)
for i in range(n_layer):
self._encoder_sublayers.append(
self.add_sublayer(
'esl_%d' % i,
EncoderSubLayer(
self.full_name(), n_head, d_key, d_value, d_model,
d_inner_hid, prepostprocess_dropout, attention_dropout,
relu_dropout, preprocess_cmd, postprocess_cmd)))
def forward(self, enc_input, attn_bias):
for i in range(self._n_layer):
enc_output = self._encoder_sublayers[i](enc_input, attn_bias)
enc_input = enc_output
return self._preprocess_layer(None, enc_output, self._preprocess_cmd,
self._prepostprocess_dropout)
class PrepareEncoderDecoderLayer(Layer):
def __init__(self,
name_scope,
src_vocab_size,
src_emb_dim,
src_max_len,
dropout_rate,
word_emb_param_name=None,
pos_enc_param_name=None):
super(PrepareEncoderDecoderLayer, self).__init__(name_scope)
self._src_max_len = src_max_len
self._src_emb_dim = src_emb_dim
self._src_vocab_size = src_vocab_size
self._dropout_rate = dropout_rate
self._input_emb = Embedding(
name_scope=self.full_name(),
size=[src_vocab_size, src_emb_dim],
padding_idx=0,
param_attr=fluid.ParamAttr(
name=word_emb_param_name,
initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5)))
if pos_enc_param_name is pos_enc_param_names[0]:
pos_inp = pos_inp1
else:
pos_inp = pos_inp2
self._pos_emb = Embedding(
name_scope=self.full_name(),
size=[self._src_max_len, src_emb_dim],
param_attr=fluid.ParamAttr(
name=pos_enc_param_name,
initializer=fluid.initializer.NumpyArrayInitializer(pos_inp),
trainable=False))
# use in imperative_mode to fit different length batch
# self._pos_emb._w = to_variable(
# position_encoding_init(self._src_max_len, self._src_emb_dim))
def forward(self, src_word, src_pos):
src_word_emb = self._input_emb(src_word)
src_word_emb = fluid.layers.scale(
x=src_word_emb, scale=self._src_emb_dim**0.5)
# # TODO change this to fit dynamic length input
src_pos_emb = self._pos_emb(src_pos)
src_pos_emb.stop_gradient = True
enc_input = src_word_emb + src_pos_emb
return fluid.layers.dropout(
enc_input,
dropout_prob=self._dropout_rate,
seed=ModelHyperParams.dropout_seed,
is_test=False) if self._dropout_rate else enc_input
class WrapEncoderLayer(Layer):
def __init__(self, name_cope, src_vocab_size, max_length, n_layer, n_head,
d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout,
attention_dropout, relu_dropout, preprocess_cmd,
postprocess_cmd, weight_sharing):
"""
The wrapper assembles together all needed layers for the encoder.
"""
super(WrapEncoderLayer, self).__init__(name_cope)
self._prepare_encoder_layer = PrepareEncoderDecoderLayer(
self.full_name(),
src_vocab_size,
d_model,
max_length,
prepostprocess_dropout,
word_emb_param_name=word_emb_param_names[0],
pos_enc_param_name=pos_enc_param_names[0])
self._encoder = EncoderLayer(
self.full_name(), n_layer, n_head, d_key, d_value, d_model,
d_inner_hid, prepostprocess_dropout, attention_dropout,
relu_dropout, preprocess_cmd, postprocess_cmd)
def forward(self, enc_inputs):
src_word, src_pos, src_slf_attn_bias = enc_inputs
enc_input = self._prepare_encoder_layer(src_word, src_pos)
enc_output = self._encoder(enc_input, src_slf_attn_bias)
return enc_output
class DecoderSubLayer(Layer):
def __init__(self,
name_scope,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
cache=None,
gather_idx=None):
super(DecoderSubLayer, self).__init__(name_scope)
self._postprocess_cmd = postprocess_cmd
self._preprocess_cmd = preprocess_cmd
self._prepostprcess_dropout = prepostprocess_dropout
self._pre_process_layer = PrePostProcessLayer(self.full_name(),
preprocess_cmd, 3)
self._multihead_attention_layer = MultiHeadAttentionLayer(
self.full_name(),
d_key,
d_value,
d_model,
n_head,
attention_dropout,
cache=cache,
gather_idx=gather_idx)
self._post_process_layer = PrePostProcessLayer(self.full_name(),
postprocess_cmd, None)
self._pre_process_layer2 = PrePostProcessLayer(self.full_name(),
preprocess_cmd, 3)
self._multihead_attention_layer2 = MultiHeadAttentionLayer(
self.full_name(),
d_key,
d_value,
d_model,
n_head,
attention_dropout,
cache=cache,
gather_idx=gather_idx,
static_kv=True)
self._post_process_layer2 = PrePostProcessLayer(self.full_name(),
postprocess_cmd, None)
self._pre_process_layer3 = PrePostProcessLayer(self.full_name(),
preprocess_cmd, 3)
self._positionwise_feed_forward_layer = PositionwiseFeedForwardLayer(
self.full_name(), d_inner_hid, d_model, relu_dropout)
self._post_process_layer3 = PrePostProcessLayer(self.full_name(),
postprocess_cmd, None)
def forward(self, dec_input, enc_output, slf_attn_bias, dec_enc_attn_bias):
pre_process_rlt = self._pre_process_layer(
None, dec_input, self._preprocess_cmd, self._prepostprcess_dropout)
slf_attn_output = self._multihead_attention_layer(pre_process_rlt, None,
None, slf_attn_bias)
slf_attn_output_pp = self._post_process_layer(
dec_input, slf_attn_output, self._postprocess_cmd,
self._prepostprcess_dropout)
pre_process_rlt2 = self._pre_process_layer2(None, slf_attn_output_pp,
self._preprocess_cmd,
self._prepostprcess_dropout)
enc_attn_output_pp = self._multihead_attention_layer2(
pre_process_rlt2, enc_output, enc_output, dec_enc_attn_bias)
enc_attn_output = self._post_process_layer2(
slf_attn_output, enc_attn_output_pp, self._postprocess_cmd,
self._prepostprcess_dropout)
pre_process_rlt3 = self._pre_process_layer3(None, enc_attn_output,
self._preprocess_cmd,
self._prepostprcess_dropout)
ffd_output = self._positionwise_feed_forward_layer(pre_process_rlt3)
dec_output = self._post_process_layer3(enc_attn_output, ffd_output,
self._postprocess_cmd,
self._prepostprcess_dropout)
return dec_output
class DecoderLayer(Layer):
def __init__(self,
name_scope,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
caches=None,
gather_idx=None):
super(DecoderLayer, self).__init__(name_scope)
self._pre_process_layer = PrePostProcessLayer(self.full_name(),
preprocess_cmd, 3)
self._decoder_sub_layers = list()
self._n_layer = n_layer
self._preprocess_cmd = preprocess_cmd
self._prepostprocess_dropout = prepostprocess_dropout
for i in range(n_layer):
self._decoder_sub_layers.append(
self.add_sublayer(
'dsl_%d' % i,
DecoderSubLayer(
self.full_name(),
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
cache=None if caches is None else caches[i],
gather_idx=gather_idx)))
def forward(self, dec_input, enc_output, dec_slf_attn_bias,
dec_enc_attn_bias):
for i in range(self._n_layer):
tmp_dec_output = self._decoder_sub_layers[i](
dec_input, enc_output, dec_slf_attn_bias, dec_enc_attn_bias)
dec_input = tmp_dec_output
dec_output = self._pre_process_layer(None, tmp_dec_output,
self._preprocess_cmd,
self._prepostprocess_dropout)
return dec_output
class WrapDecoderLayer(Layer):
def __init__(self,
name_scope,
trg_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
weight_sharing,
caches=None,
gather_idx=None):
"""
The wrapper assembles together all needed layers for the encoder.
"""
super(WrapDecoderLayer, self).__init__(name_scope)
self._prepare_decoder_layer = PrepareEncoderDecoderLayer(
self.full_name(),
trg_vocab_size,
d_model,
max_length,
prepostprocess_dropout,
word_emb_param_name=word_emb_param_names[1],
pos_enc_param_name=pos_enc_param_names[1])
self._decoder_layer = DecoderLayer(
self.full_name(),
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
caches=caches,
gather_idx=gather_idx)
self._weight_sharing = weight_sharing
if not weight_sharing:
self._fc = FC(self.full_name(),
size=trg_vocab_size,
bias_attr=False)
def forward(self, dec_inputs=None, enc_output=None):
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs
dec_input = self._prepare_decoder_layer(trg_word, trg_pos)
dec_output = self._decoder_layer(dec_input, enc_output,
trg_slf_attn_bias, trg_src_attn_bias)
dec_output_reshape = fluid.layers.reshape(
dec_output, shape=[-1, dec_output.shape[-1]], inplace=False)
if self._weight_sharing:
predict = fluid.layers.matmul(
x=dec_output_reshape,
y=self._prepare_decoder_layer._input_emb._w,
transpose_y=True)
else:
predict = self._fc(dec_output_reshape)
if dec_inputs is None:
# Return probs for independent decoder program.
predict_out = fluid.layers.softmax(predict)
return predict_out
return predict
class TransFormer(Layer):
def __init__(self,
name_scope,
src_vocab_size,
trg_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
weight_sharing,
label_smooth_eps,
use_py_reader=False,
is_test=False):
super(TransFormer, self).__init__(name_scope)
self._label_smooth_eps = label_smooth_eps
self._trg_vocab_size = trg_vocab_size
if weight_sharing:
assert src_vocab_size == trg_vocab_size, (
"Vocabularies in source and target should be same for weight sharing."
)
self._wrap_encoder_layer = WrapEncoderLayer(
self.full_name(), src_vocab_size, max_length, n_layer, n_head,
d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout,
attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd,
weight_sharing)
self._wrap_decoder_layer = WrapDecoderLayer(
self.full_name(), trg_vocab_size, max_length, n_layer, n_head,
d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout,
attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd,
weight_sharing)
if weight_sharing:
self._wrap_decoder_layer._prepare_decoder_layer._input_emb._w = self._wrap_encoder_layer._prepare_encoder_layer._input_emb._w
def forward(self, enc_inputs, dec_inputs, label, weights):
enc_output = self._wrap_encoder_layer(enc_inputs)
predict = self._wrap_decoder_layer(dec_inputs, enc_output)
if self._label_smooth_eps:
label_out = fluid.layers.label_smooth(
label=fluid.layers.one_hot(
input=label, depth=self._trg_vocab_size),
epsilon=self._label_smooth_eps)
cost = fluid.layers.softmax_with_cross_entropy(
logits=predict,
label=label_out,
soft_label=True if self._label_smooth_eps else False)
weighted_cost = cost * weights
sum_cost = fluid.layers.reduce_sum(weighted_cost)
token_num = fluid.layers.reduce_sum(weights)
token_num.stop_gradient = True
avg_cost = sum_cost / token_num
return sum_cost, avg_cost, predict, token_num
class TestImperativeTransformer(unittest.TestCase):
def test_transformer_float32(self):
seed = 90
with guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
transformer = TransFormer(
'transformer',
ModelHyperParams.src_vocab_size,
ModelHyperParams.trg_vocab_size,
ModelHyperParams.max_length + 1,
ModelHyperParams.n_layer,
ModelHyperParams.n_head,
ModelHyperParams.d_key,
ModelHyperParams.d_value,
ModelHyperParams.d_model,
ModelHyperParams.d_inner_hid,
ModelHyperParams.prepostprocess_dropout,
ModelHyperParams.attention_dropout,
ModelHyperParams.relu_dropout,
ModelHyperParams.preprocess_cmd,
ModelHyperParams.postprocess_cmd,
ModelHyperParams.weight_sharing,
TrainTaskConfig.label_smooth_eps,
use_py_reader=use_py_reader,
is_test=False)
if sync:
lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(
ModelHyperParams.d_model, TrainTaskConfig.warmup_steps)
with fluid.default_main_program()._lr_schedule_guard():
learning_rate = lr_decay * TrainTaskConfig.learning_rate
optimizer = fluid.optimizer.Adam(
learning_rate=learning_rate,
beta1=TrainTaskConfig.beta1,
beta2=TrainTaskConfig.beta2,
epsilon=TrainTaskConfig.eps)
else:
optimizer = fluid.optimizer.SGD(learning_rate=0.003)
dy_param_init = dict()
dy_param_updated = dict()
for i in range(batch_num):
enc_inputs, dec_inputs, label, weights = create_data()
dy_sum_cost, dy_avg_cost, dy_predict, dy_token_num = transformer(
enc_inputs, dec_inputs, label, weights)
if i == 0:
for param in transformer.parameters():
dy_param_init[param.name] = param._numpy()
dy_avg_cost._backward()
optimizer.minimize(dy_avg_cost)
transformer.clear_gradients()
if i == batch_num - 1:
for param in transformer.parameters():
dy_param_updated[param.name] = param._numpy()
with new_program_scope():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
transformer = TransFormer(
'transformer',
ModelHyperParams.src_vocab_size,
ModelHyperParams.trg_vocab_size,
ModelHyperParams.max_length + 1,
ModelHyperParams.n_layer,
ModelHyperParams.n_head,
ModelHyperParams.d_key,
ModelHyperParams.d_value,
ModelHyperParams.d_model,
ModelHyperParams.d_inner_hid,
ModelHyperParams.prepostprocess_dropout,
ModelHyperParams.attention_dropout,
ModelHyperParams.relu_dropout,
ModelHyperParams.preprocess_cmd,
ModelHyperParams.postprocess_cmd,
ModelHyperParams.weight_sharing,
TrainTaskConfig.label_smooth_eps,
use_py_reader=use_py_reader,
is_test=False)
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
optimizer = fluid.optimizer.SGD(learning_rate=0.003)
data_input_names = encoder_data_input_fields + decoder_data_input_fields[:
-1] + label_data_input_fields
all_inputs = make_all_inputs(data_input_names)
enc_inputs_len = len(encoder_data_input_fields)
dec_inputs_len = len(decoder_data_input_fields[:-1])
enc_inputs = all_inputs[0:enc_inputs_len]
dec_inputs = all_inputs[enc_inputs_len:enc_inputs_len +
dec_inputs_len]
label = all_inputs[-2]
weights = all_inputs[-1]
static_param_updated = dict()
static_param_init = dict()
static_param_name_list = list()
static_sum_cost, static_avg_cost, static_predict, static_token_num = transformer(
enc_inputs, dec_inputs, label, weights)
optimizer.minimize(static_avg_cost)
for param in transformer.parameters():
static_param_name_list.append(param.name)
out = exe.run(fluid.default_startup_program(),
fetch_list=static_param_name_list)
for i in range(len(static_param_name_list)):
static_param_init[static_param_name_list[i]] = out[i]
static_sum_cost_value = None
static_avg_cost_value = None
static_predict_value = None
static_token_num_value = None
for i in range(batch_num):
feed_dict = create_feed_dict_list(create_data(True))
fetch_list = [
static_sum_cost, static_avg_cost, static_predict,
static_token_num
]
fetch_list.extend(static_param_name_list)
out = exe.run(fluid.default_main_program(),
feed=feed_dict,
fetch_list=fetch_list)
static_sum_cost_value = out[0]
static_avg_cost_value = out[1]
static_predict_value = out[2]
static_token_num_value = out[3]
if i == batch_num - 1:
for k in range(4, len(out)):
static_param_updated[static_param_name_list[k -
4]] = out[k]
self.assertTrue(
np.allclose(static_avg_cost_value, dy_avg_cost._numpy()))
self.assertTrue(
np.allclose(static_sum_cost_value, dy_sum_cost._numpy()))
self.assertTrue(
np.allclose(
static_predict_value, dy_predict._numpy(), atol=1e-5))
self.assertTrue(
np.allclose(static_token_num_value, dy_token_num._numpy()))
for key, value in six.iteritems(static_param_init):
self.assertTrue(np.allclose(value, dy_param_init[key]))
for key, value in six.iteritems(static_param_updated):
self.assertTrue(
np.allclose(
value, dy_param_updated[key], atol=1e-4))
if __name__ == '__main__':
unittest.main()
......@@ -70,6 +70,34 @@ class LayerTest(unittest.TestCase):
class TestLayer(LayerTest):
def test_layer_norm(self):
inp = np.ones([3, 32, 32], dtype='float32')
with self.static_graph():
t = layers.data(
name='data',
shape=[3, 32, 32],
dtype='float32',
append_batch_size=False)
ret = layers.layer_norm(t)
static_ret = self.get_static_graph_result(
feed={'data': inp}, fetch_list=[ret])[0]
with self.static_graph():
t = layers.data(
name='data',
shape=[3, 32, 32],
dtype='float32',
append_batch_size=False)
lm = nn.LayerNorm('layer_norm')
ret = lm(t)
static_ret2 = self.get_static_graph_result(
feed={'data': inp}, fetch_list=[ret])[0]
with self.dynamic_graph():
lm = nn.LayerNorm('layer_norm')
dy_ret = lm(base.to_variable(inp))
self.assertTrue(np.allclose(static_ret, static_ret2))
self.assertTrue(np.allclose(dy_ret._numpy(), static_ret2))
def test_relu(self):
with self.static_graph():
t = layers.data(name='t', shape=[3, 3], dtype='float32')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册