@@ -39,7 +39,6 @@ from paddle import _C_ops, _legacy_C_ops
...
@@ -39,7 +39,6 @@ from paddle import _C_ops, _legacy_C_ops
from..frameworkimportin_dygraph_mode
from..frameworkimportin_dygraph_mode
__all__=[
__all__=[
'prior_box',
'density_prior_box',
'density_prior_box',
'multi_box_head',
'multi_box_head',
'anchor_generator',
'anchor_generator',
...
@@ -58,135 +57,6 @@ __all__ = [
...
@@ -58,135 +57,6 @@ __all__ = [
]
]
defprior_box(
input,
image,
min_sizes,
max_sizes=None,
aspect_ratios=[1.0],
variance=[0.1,0.1,0.2,0.2],
flip=False,
clip=False,
steps=[0.0,0.0],
offset=0.5,
name=None,
min_max_aspect_ratios_order=False,
):
"""
This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by
the count of min_sizes, max_sizes and aspect_ratios, The size of the
box is in range(min_size, max_size) interval, which is generated in
sequence according to the aspect_ratios.
Parameters:
input(Variable): 4-D tensor(NCHW), the data type should be float32 or float64.
image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
the data type should be float32 or float64.
min_sizes(list|tuple|float): the min sizes of generated prior boxes.
max_sizes(list|tuple|None): the max sizes of generated prior boxes.
Default: None.
aspect_ratios(list|tuple|float): the aspect ratios of generated
prior boxes. Default: [1.].
variance(list|tuple): the variances to be encoded in prior boxes.
Default:[0.1, 0.1, 0.2, 0.2].
flip(bool): Whether to flip aspect ratios. Default:False.
clip(bool): Whether to clip out-of-boundary boxes. Default: False.
step(list|tuple): Prior boxes step across width and height, If
step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
height or weight of the input will be automatically calculated.
Default: [0., 0.]
offset(float): Prior boxes center offset. Default: 0.5
min_max_aspect_ratios_order(bool): If set True, the output prior box is
in order of [min, max, aspect_ratios], which is consistent with
Caffe. Please note, this order affects the weights order of
convolution layer followed by and does not affect the final
detection results. Default: False.
name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tuple: A tuple with two Variable (boxes, variances)
boxes(Variable): the output prior boxes of PriorBox.
4-D tensor, the layout is [H, W, num_priors, 4].
H is the height of input, W is the width of input,
num_priors is the total box count of each position of input.
variances(Variable): the expanded variances of PriorBox.
4-D tensor, the layput is [H, W, num_priors, 4].
H is the height of input, W is the width of input
num_priors is the total box count of each position of input