Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f66c17b6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f66c17b6
编写于
12月 26, 2017
作者:
C
chengduo
提交者:
GitHub
12月 26, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #6913 from chengduoZH/profiling/sgd_op
Refine sgd-op
上级
a0e88941
02fda711
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
94 addition
and
83 deletion
+94
-83
paddle/operators/sgd_op.cc
paddle/operators/sgd_op.cc
+1
-35
paddle/operators/sgd_op.cu
paddle/operators/sgd_op.cu
+69
-31
paddle/operators/sgd_op.h
paddle/operators/sgd_op.h
+24
-17
未找到文件。
paddle/operators/sgd_op.cc
浏览文件 @
f66c17b6
...
...
@@ -61,43 +61,9 @@ $$param\_out = param - learning\_rate * grad$$
}
};
template
<
typename
T
>
struct
SparseSGDFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
SelectedRows
&
input
,
const
framework
::
Tensor
&
learning_rate
,
framework
::
Tensor
*
output
)
{
auto
in_height
=
input
.
height
();
auto
out_dims
=
output
->
dims
();
PADDLE_ENFORCE_EQ
(
in_height
,
out_dims
[
0
]);
auto
&
in_value
=
input
.
value
();
auto
&
in_rows
=
input
.
rows
();
int64_t
in_row_numel
=
in_value
.
numel
()
/
in_rows
.
size
();
PADDLE_ENFORCE_EQ
(
in_row_numel
,
output
->
numel
()
/
in_height
);
auto
*
in_data
=
in_value
.
data
<
T
>
();
auto
*
out_data
=
output
->
data
<
T
>
();
auto
*
lr
=
learning_rate
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
in_rows
.
size
();
i
++
)
{
for
(
int64_t
j
=
0
;
j
<
in_row_numel
;
j
++
)
{
out_data
[
in_rows
[
i
]
*
in_row_numel
+
j
]
-=
lr
[
0
]
*
in_data
[
i
*
in_row_numel
+
j
];
}
}
}
};
template
struct
SparseSGDFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
SparseSGDFunctor
<
platform
::
CPUDeviceContext
,
double
>;
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
sgd
,
ops
::
SGDOp
,
ops
::
SGDOpMaker
);
REGISTER_OP_CPU_KERNEL
(
sgd
,
ops
::
SGDOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SGDOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
sgd
,
ops
::
SGDOpKernel
<
float
>
,
ops
::
SGDOpKernel
<
double
>
);
paddle/operators/sgd_op.cu
浏览文件 @
f66c17b6
...
...
@@ -20,6 +20,19 @@ namespace paddle {
namespace
operators
{
namespace
{
template
<
typename
T
>
__global__
void
SGDKernel
(
const
T
*
g
,
const
T
*
p
,
const
T
*
learning_rate
,
const
int
num
,
T
*
p_out
)
{
T
lr
=
learning_rate
[
0
];
int
grid_size
=
blockDim
.
x
*
gridDim
.
x
;
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
num
;
i
+=
grid_size
)
{
T
g_data
=
g
[
i
];
T
p_data
=
p
[
i
];
p_out
[
i
]
=
p_data
-
lr
*
g_data
;
}
}
template
<
typename
T
,
int
block_size
>
__global__
void
SparseSGDFunctorKernel
(
const
T
*
selected_rows
,
const
int64_t
*
rows
,
...
...
@@ -41,40 +54,65 @@ __global__ void SparseSGDFunctorKernel(const T* selected_rows,
}
// namespace
template
<
typename
T
>
struct
SparseSGDFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
SelectedRows
&
input
,
const
framework
::
Tensor
&
learning_rate
,
framework
::
Tensor
*
output
)
{
auto
in_height
=
input
.
height
();
auto
out_dims
=
output
->
dims
();
class
SGDOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
*
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
// Actually, all tensors are LoDTensor except SelectedRows.
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
auto
*
grad_data
=
grad
->
data
<
T
>
();
auto
*
param_data
=
param
->
data
<
T
>
();
auto
*
param_out_data
=
param_out
->
data
<
T
>
();
int
block
=
512
;
int
grid
=
(
param
->
numel
()
+
block
-
1
)
/
block
;
SGDKernel
<
T
><<<
grid
,
block
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
grad_data
,
param_data
,
learning_rate
->
data
<
T
>
(),
param
->
numel
(),
param_out_data
);
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
// This manual optimization brings difficulty to track data dependency.
// It's better to find a more elegant solution.
PADDLE_ENFORCE_EQ
(
param
,
param_out
);
auto
*
grad
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
);
auto
in_height
=
grad
->
height
();
auto
out_dims
=
param_out
->
dims
();
PADDLE_ENFORCE_EQ
(
in_height
,
out_dims
[
0
]);
auto
&
in_value
=
input
.
value
();
auto
&
in_rows
=
input
.
rows
();
auto
&
in_value
=
grad
->
value
();
auto
&
in_rows
=
grad
->
rows
();
int64_t
in_row_numel
=
in_value
.
numel
()
/
in_rows
.
size
();
PADDLE_ENFORCE_EQ
(
in_row_numel
,
outp
ut
->
numel
()
/
in_height
);
PADDLE_ENFORCE_EQ
(
in_row_numel
,
param_o
ut
->
numel
()
/
in_height
);
auto
*
in_data
=
in_value
.
data
<
T
>
();
auto
*
out_data
=
outp
ut
->
data
<
T
>
();
auto
*
out_data
=
param_o
ut
->
data
<
T
>
();
const
int
block_size
=
256
;
dim3
threads
(
block_size
,
1
);
dim3
grid
(
1
,
in_rows
.
size
());
SparseSGDFunctorKernel
<
T
,
256
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
in_data
,
in_rows
.
data
(),
learning_rate
.
data
<
T
>
(),
out_data
,
SparseSGDFunctorKernel
<
T
,
256
><<<
grid
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
in_data
,
in_rows
.
data
(),
learning_rate
->
data
<
T
>
(),
out_data
,
in_row_numel
);
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
}
}
};
template
struct
SparseSGDFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
SparseSGDFunctor
<
platform
::
CUDADeviceContext
,
double
>;
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
sgd
,
ops
::
SGDOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SGDOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
sgd
,
ops
::
SGDOpCUDAKernel
<
float
>
,
ops
::
SGDOpCUDAKernel
<
double
>
);
paddle/operators/sgd_op.h
浏览文件 @
f66c17b6
...
...
@@ -20,15 +20,7 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
struct
SparseSGDFunctor
{
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
SelectedRows
&
input
,
const
framework
::
Tensor
&
learning_rate
,
framework
::
Tensor
*
output
);
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
SGDOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -45,21 +37,36 @@ class SGDOpKernel : public framework::OpKernel<T> {
auto
p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
o
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
lr
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
learning_rate
);
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
*
lr
=
learning_rate
->
data
<
T
>
();
Eigen
::
DSizes
<
int
,
1
>
grad_dsize
(
grad
->
numel
());
o
.
device
(
place
)
=
p
-
lr
.
broadcast
(
grad_dsize
)
*
g
;
o
=
p
-
lr
[
0
]
*
g
;
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
// This manual optimization brings difficulty to track data dependency.
// It's better to find a more elegant solution.
PADDLE_ENFORCE_EQ
(
param
,
param_out
);
auto
*
grad
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
);
SparseSGDFunctor
<
DeviceContext
,
T
>
functor
;
functor
(
ctx
.
template
device_context
<
DeviceContext
>(),
*
grad
,
*
learning_rate
,
param_out
);
auto
in_height
=
grad
->
height
();
auto
out_dims
=
param_out
->
dims
();
PADDLE_ENFORCE_EQ
(
in_height
,
out_dims
[
0
]);
auto
&
in_value
=
grad
->
value
();
auto
&
in_rows
=
grad
->
rows
();
int64_t
in_row_numel
=
in_value
.
numel
()
/
in_rows
.
size
();
PADDLE_ENFORCE_EQ
(
in_row_numel
,
param_out
->
numel
()
/
in_height
);
auto
*
in_data
=
in_value
.
data
<
T
>
();
auto
*
out_data
=
param_out
->
data
<
T
>
();
auto
*
lr
=
learning_rate
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
in_rows
.
size
();
i
++
)
{
for
(
int64_t
j
=
0
;
j
<
in_row_numel
;
j
++
)
{
out_data
[
in_rows
[
i
]
*
in_row_numel
+
j
]
-=
lr
[
0
]
*
in_data
[
i
*
in_row_numel
+
j
];
}
}
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录