提交 f4c990e7 编写于 作者: M minqiyang

Add fused embedding ops

上级 b2716909
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h"
#include "paddle/fluid/framework/var_type_inference.h"
namespace paddle {
namespace operators {
class FusedEmbeddingSeqPoolOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("W"),
"Input W of FusedEmbeddingSeqPoolOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Ids"),
"Input Ids of FusedEmbeddingSeqPoolOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output of FusedEmbeddingSeqPoolOp should not be null.");
auto table_dims = ctx->GetInputDim("W");
auto ids_dims = ctx->GetInputDim("Ids");
const std::string& combiner = ctx->Attrs().Get<std::string>("combiner");
PADDLE_ENFORCE_EQ(table_dims.size(), 2);
PADDLE_ENFORCE_GE(ids_dims.size(), 1,
"The dim size of the 'Ids' tensor must greater than 1.");
PADDLE_ENFORCE_EQ(ids_dims[ids_dims.size() - 1], 1,
"The last dimension of the 'Ids' tensor must be 1.");
// we only support sum now
PADDLE_ENFORCE_EQ(combiner, "sum");
int64_t last_dim = table_dims[1];
for (int i = 1; i != ids_dims.size(); ++i) {
last_dim *= ids_dims[i];
}
if (ctx->IsRuntime()) {
framework::Variable* ids_var =
boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Ids")[0]);
const auto& ids_lod = ids_var->Get<LoDTensor>().lod();
// in run time, the LoD of ids must be 1
PADDLE_ENFORCE(ids_lod.size(), 1u,
"The LoD level of Input(Ids) must be 1");
PADDLE_ENFORCE_GE(ids_lod[0].size(), 1u, "The LoD could NOT be empty");
int64_t batch_size = ids_lod[0].size() - 1;
// in run time, the shape from Ids -> output
// should be [seq_length, 1] -> [batch_size, embedding_size]
ctx->SetOutputDim("Out", framework::make_ddim({batch_size, last_dim}));
} else {
// in compile time, the lod level of ids must be 1
framework::VarDesc* ids_desc =
boost::get<framework::VarDesc*>(ctx->GetInputVarPtrs("Ids")[0]);
PADDLE_ENFORCE_EQ(ids_desc->GetLoDLevel(), 1);
// in compile time, the shape from Ids -> output
// should be [-1, 1] -> [-1, embedding_size]
ctx->SetOutputDim("Out", framework::make_ddim({-1, last_dim}));
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
return framework::OpKernelType(data_type, ctx.device_context());
}
};
class FusedEmbeddingSeqPoolOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("W",
"(Tensor) The input represents embedding tensors, "
"which is a learnable parameter.");
AddInput("Ids",
"An input with type int32 or int64 "
"contains the ids to be looked up in W. "
"The last dimension size must be 1.");
AddOutput("Out", "The lookup results, which have the same type as W.");
AddAttr<std::string>("combiner",
"(string, default sum) "
"A string specifying the reduction op. Currently sum "
"are supported, sum computes the weighted sum of the "
"embedding results for each row.")
.SetDefault("sum");
// NOTE(minqiyang): grad_inplace is an temporal attribute,
// please do NOT set this attribute in python layer.
AddAttr<bool>("grad_inplace",
"(boolean, default false) "
"If the grad op reuse the input's variable.")
.SetDefault(false);
AddAttr<bool>("is_sparse",
"(boolean, default false) "
"Sparse update.")
.SetDefault(false);
AddComment(R"DOC(
FusedEmbeddingSeqPool Operator.
Computes embeddings for the given ids and weights.
This operator is used to perform lookups on the parameter W,
then computes the weighted sum of the lookups results for each row
and concatenated into a dense tensor.
The input Ids should carry the LoD (Level of Details) information.
And the output will change the LoD information with input Ids.
)DOC");
}
};
class FusedEmbeddingSeqPoolOpGradDescMaker
: public framework::DefaultGradOpDescMaker<true> {
using ::paddle::framework::DefaultGradOpDescMaker<
true>::DefaultGradOpDescMaker;
protected:
virtual std::string GradOpType() const {
return "fused_embedding_seq_pool_grad";
}
};
class FusedEmbeddingSeqPoolOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
auto table_dims = ctx->GetInputDim("W");
ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
return framework::OpKernelType(data_type, ctx.device_context());
}
};
class FusedEmbeddingSeqPoolOpGradVarTypeInference
: public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
auto attr = op_desc.GetAttr("is_sparse");
bool is_sparse = boost::get<bool>(attr);
if (is_sparse) {
VLOG(3) << "fused_embedding_seq_pool_grad op "
<< framework::GradVarName("W") << " is set to SelectedRows";
block->Var(out_var_name)
->SetType(framework::proto::VarType::SELECTED_ROWS);
} else {
VLOG(3) << "fused_embedding_seq_pool_grad op "
<< framework::GradVarName("W") << " is set to LoDTensor";
block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
}
block->Var(out_var_name)->SetDataType(block->Var("W")->GetDataType());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(fused_embedding_seq_pool, ops::FusedEmbeddingSeqPoolOp,
ops::FusedEmbeddingSeqPoolOpGradDescMaker,
ops::FusedEmbeddingSeqPoolOpMaker);
REGISTER_OPERATOR(fused_embedding_seq_pool_grad,
ops::FusedEmbeddingSeqPoolOpGrad,
ops::FusedEmbeddingSeqPoolOpGradVarTypeInference);
REGISTER_OP_CPU_KERNEL(fused_embedding_seq_pool,
ops::FusedEmbeddingSeqPoolKernel<float>,
ops::FusedEmbeddingSeqPoolKernel<double>);
REGISTER_OP_CPU_KERNEL(fused_embedding_seq_pool_grad,
ops::FusedEmbeddingSeqPoolGradKernel<float>,
ops::FusedEmbeddingSeqPoolGradKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/blas.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;
template <typename T>
struct EmbeddingVSumFunctor {
void operator()(const framework::ExecutionContext &context,
const LoDTensor *table_t, const LoDTensor *ids_t,
LoDTensor *output_t) {
auto *table = table_t->data<T>();
int64_t row_number = table_t->dims()[0];
int64_t row_width = table_t->dims()[1];
int64_t last_dim = output_t->dims()[1];
int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
auto ids_lod = ids_t->lod()[0];
int64_t ids_count = ids_t->numel() / ids_lod.back();
auto *output = output_t->mutable_data<T>(context.GetPlace());
auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
for (int64_t i = 0; i != ids_lod.size() - 1; ++i) {
size_t begin = ids_lod[i] * ids_count;
for (int64_t j = 0; j != ids_count; ++j) {
PADDLE_ENFORCE_LT(ids[begin], row_number);
PADDLE_ENFORCE_GE(ids[begin], 0, "ids %d", i);
blas.VCOPY(row_width, table + ids[begin + j] * row_width,
output + i * last_dim + j * row_width);
}
for (int64_t r = (ids_lod[i] + 1) * ids_count;
r < ids_lod[i + 1] * ids_count; ++r) {
PADDLE_ENFORCE_LT(ids[r], row_number);
PADDLE_ENFORCE_GE(ids[r], 0, "ids %d", i);
blas.AXPY(row_width, 1., table + ids[r] * row_width,
output + i * last_dim + (r % ids_count) * row_width);
}
}
}
};
template <typename T>
class FusedEmbeddingSeqPoolKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
const LoDTensor *ids_t = context.Input<LoDTensor>("Ids"); // int tensor
LoDTensor *output_t = context.Output<LoDTensor>("Out"); // float tensor
const LoDTensor *table_var = context.Input<LoDTensor>("W");
const std::string &combiner_type = context.Attr<std::string>("combiner");
if (combiner_type == "sum") {
EmbeddingVSumFunctor<T> functor;
functor(context, table_var, ids_t, output_t);
}
}
};
template <typename T>
class FusedEmbeddingSeqPoolGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto *table_var = context.InputVar("W");
DDim table_dim;
if (table_var->IsType<LoDTensor>()) {
table_dim = context.Input<LoDTensor>("W")->dims();
} else if (table_var->IsType<SelectedRows>()) {
auto *table_t = context.Input<SelectedRows>("W");
table_dim = table_t->value().dims();
} else {
PADDLE_THROW(
"The parameter W of a LookupTable "
"must be either LoDTensor or SelectedRows");
}
bool is_sparse = context.Attr<bool>("is_sparse");
// Since paddings are not trainable and fixed in forward, the gradient of
// paddings makes no sense and we don't deal with it in backward.
if (is_sparse) {
auto *ids = context.Input<LoDTensor>("Ids");
auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
auto *ids_data = ids->data<int64_t>();
int64_t ids_num = ids->numel();
auto lod = ids->lod()[0];
int64_t row_width = d_output->dims()[1];
framework::Vector<int64_t> *new_rows = d_table->mutable_rows();
new_rows->resize(ids_num);
std::memcpy(&(*new_rows)[0], ids_data, ids_num * sizeof(int64_t));
auto *d_table_value = d_table->mutable_value();
d_table_value->Resize({ids_num, table_dim[1]});
T *d_table_data = d_table_value->mutable_data<T>(context.GetPlace());
const T *d_output_data = d_output->data<T>();
auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
int64_t in_offset = lod[i] * row_width;
const T *out_pos = d_output_data + i * row_width;
T *in_pos = d_table_data + in_offset;
for (int r = 0; r != h; ++r) {
blas.VCOPY(row_width, out_pos, in_pos + r * row_width);
}
}
} else {
LOG(ERROR) << "Dense is not supported in fused_embedding_seq_pool_op now";
}
}
};
} // namespace operators
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册