Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f4c990e7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f4c990e7
编写于
1月 07, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add fused embedding ops
上级
b2716909
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
336 addition
and
0 deletion
+336
-0
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc
+194
-0
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h
+142
-0
未找到文件。
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc
0 → 100644
浏览文件 @
f4c990e7
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h"
#include "paddle/fluid/framework/var_type_inference.h"
namespace
paddle
{
namespace
operators
{
class
FusedEmbeddingSeqPoolOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"Input W of FusedEmbeddingSeqPoolOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Ids"
),
"Input Ids of FusedEmbeddingSeqPoolOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output of FusedEmbeddingSeqPoolOp should not be null."
);
auto
table_dims
=
ctx
->
GetInputDim
(
"W"
);
auto
ids_dims
=
ctx
->
GetInputDim
(
"Ids"
);
const
std
::
string
&
combiner
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"combiner"
);
PADDLE_ENFORCE_EQ
(
table_dims
.
size
(),
2
);
PADDLE_ENFORCE_GE
(
ids_dims
.
size
(),
1
,
"The dim size of the 'Ids' tensor must greater than 1."
);
PADDLE_ENFORCE_EQ
(
ids_dims
[
ids_dims
.
size
()
-
1
],
1
,
"The last dimension of the 'Ids' tensor must be 1."
);
// we only support sum now
PADDLE_ENFORCE_EQ
(
combiner
,
"sum"
);
int64_t
last_dim
=
table_dims
[
1
];
for
(
int
i
=
1
;
i
!=
ids_dims
.
size
();
++
i
)
{
last_dim
*=
ids_dims
[
i
];
}
if
(
ctx
->
IsRuntime
())
{
framework
::
Variable
*
ids_var
=
boost
::
get
<
framework
::
Variable
*>
(
ctx
->
GetInputVarPtrs
(
"Ids"
)[
0
]);
const
auto
&
ids_lod
=
ids_var
->
Get
<
LoDTensor
>
().
lod
();
// in run time, the LoD of ids must be 1
PADDLE_ENFORCE
(
ids_lod
.
size
(),
1u
,
"The LoD level of Input(Ids) must be 1"
);
PADDLE_ENFORCE_GE
(
ids_lod
[
0
].
size
(),
1u
,
"The LoD could NOT be empty"
);
int64_t
batch_size
=
ids_lod
[
0
].
size
()
-
1
;
// in run time, the shape from Ids -> output
// should be [seq_length, 1] -> [batch_size, embedding_size]
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
({
batch_size
,
last_dim
}));
}
else
{
// in compile time, the lod level of ids must be 1
framework
::
VarDesc
*
ids_desc
=
boost
::
get
<
framework
::
VarDesc
*>
(
ctx
->
GetInputVarPtrs
(
"Ids"
)[
0
]);
PADDLE_ENFORCE_EQ
(
ids_desc
->
GetLoDLevel
(),
1
);
// in compile time, the shape from Ids -> output
// should be [-1, 1] -> [-1, embedding_size]
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
({
-
1
,
last_dim
}));
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"W"
));
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
class
FusedEmbeddingSeqPoolOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"W"
,
"(Tensor) The input represents embedding tensors, "
"which is a learnable parameter."
);
AddInput
(
"Ids"
,
"An input with type int32 or int64 "
"contains the ids to be looked up in W. "
"The last dimension size must be 1."
);
AddOutput
(
"Out"
,
"The lookup results, which have the same type as W."
);
AddAttr
<
std
::
string
>
(
"combiner"
,
"(string, default sum) "
"A string specifying the reduction op. Currently sum "
"are supported, sum computes the weighted sum of the "
"embedding results for each row."
)
.
SetDefault
(
"sum"
);
// NOTE(minqiyang): grad_inplace is an temporal attribute,
// please do NOT set this attribute in python layer.
AddAttr
<
bool
>
(
"grad_inplace"
,
"(boolean, default false) "
"If the grad op reuse the input's variable."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"is_sparse"
,
"(boolean, default false) "
"Sparse update."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
FusedEmbeddingSeqPool Operator.
Computes embeddings for the given ids and weights.
This operator is used to perform lookups on the parameter W,
then computes the weighted sum of the lookups results for each row
and concatenated into a dense tensor.
The input Ids should carry the LoD (Level of Details) information.
And the output will change the LoD information with input Ids.
)DOC"
);
}
};
class
FusedEmbeddingSeqPoolOpGradDescMaker
:
public
framework
::
DefaultGradOpDescMaker
<
true
>
{
using
::
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>::
DefaultGradOpDescMaker
;
protected:
virtual
std
::
string
GradOpType
()
const
{
return
"fused_embedding_seq_pool_grad"
;
}
};
class
FusedEmbeddingSeqPoolOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
auto
table_dims
=
ctx
->
GetInputDim
(
"W"
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
table_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"W"
));
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
class
FusedEmbeddingSeqPoolOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
3
)
<<
"fused_embedding_seq_pool_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
out_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
3
)
<<
"fused_embedding_seq_pool_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
out_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
out_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
fused_embedding_seq_pool
,
ops
::
FusedEmbeddingSeqPoolOp
,
ops
::
FusedEmbeddingSeqPoolOpGradDescMaker
,
ops
::
FusedEmbeddingSeqPoolOpMaker
);
REGISTER_OPERATOR
(
fused_embedding_seq_pool_grad
,
ops
::
FusedEmbeddingSeqPoolOpGrad
,
ops
::
FusedEmbeddingSeqPoolOpGradVarTypeInference
);
REGISTER_OP_CPU_KERNEL
(
fused_embedding_seq_pool
,
ops
::
FusedEmbeddingSeqPoolKernel
<
float
>
,
ops
::
FusedEmbeddingSeqPoolKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
fused_embedding_seq_pool_grad
,
ops
::
FusedEmbeddingSeqPoolGradKernel
<
float
>
,
ops
::
FusedEmbeddingSeqPoolGradKernel
<
double
>
);
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h
0 → 100644
浏览文件 @
f4c990e7
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
SelectedRows
=
framework
::
SelectedRows
;
using
DDim
=
framework
::
DDim
;
template
<
typename
T
>
struct
EmbeddingVSumFunctor
{
void
operator
()(
const
framework
::
ExecutionContext
&
context
,
const
LoDTensor
*
table_t
,
const
LoDTensor
*
ids_t
,
LoDTensor
*
output_t
)
{
auto
*
table
=
table_t
->
data
<
T
>
();
int64_t
row_number
=
table_t
->
dims
()[
0
];
int64_t
row_width
=
table_t
->
dims
()[
1
];
int64_t
last_dim
=
output_t
->
dims
()[
1
];
int64_t
*
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
auto
ids_lod
=
ids_t
->
lod
()[
0
];
int64_t
ids_count
=
ids_t
->
numel
()
/
ids_lod
.
back
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
!=
ids_lod
.
size
()
-
1
;
++
i
)
{
size_t
begin
=
ids_lod
[
i
]
*
ids_count
;
for
(
int64_t
j
=
0
;
j
!=
ids_count
;
++
j
)
{
PADDLE_ENFORCE_LT
(
ids
[
begin
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
begin
],
0
,
"ids %d"
,
i
);
blas
.
VCOPY
(
row_width
,
table
+
ids
[
begin
+
j
]
*
row_width
,
output
+
i
*
last_dim
+
j
*
row_width
);
}
for
(
int64_t
r
=
(
ids_lod
[
i
]
+
1
)
*
ids_count
;
r
<
ids_lod
[
i
+
1
]
*
ids_count
;
++
r
)
{
PADDLE_ENFORCE_LT
(
ids
[
r
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
r
],
0
,
"ids %d"
,
i
);
blas
.
AXPY
(
row_width
,
1.
,
table
+
ids
[
r
]
*
row_width
,
output
+
i
*
last_dim
+
(
r
%
ids_count
)
*
row_width
);
}
}
}
};
template
<
typename
T
>
class
FusedEmbeddingSeqPoolKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
LoDTensor
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
LoDTensor
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
const
LoDTensor
*
table_var
=
context
.
Input
<
LoDTensor
>
(
"W"
);
const
std
::
string
&
combiner_type
=
context
.
Attr
<
std
::
string
>
(
"combiner"
);
if
(
combiner_type
==
"sum"
)
{
EmbeddingVSumFunctor
<
T
>
functor
;
functor
(
context
,
table_var
,
ids_t
,
output_t
);
}
}
};
template
<
typename
T
>
class
FusedEmbeddingSeqPoolGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
table_var
=
context
.
InputVar
(
"W"
);
DDim
table_dim
;
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
table_dim
=
context
.
Input
<
LoDTensor
>
(
"W"
)
->
dims
();
}
else
if
(
table_var
->
IsType
<
SelectedRows
>
())
{
auto
*
table_t
=
context
.
Input
<
SelectedRows
>
(
"W"
);
table_dim
=
table_t
->
value
().
dims
();
}
else
{
PADDLE_THROW
(
"The parameter W of a LookupTable "
"must be either LoDTensor or SelectedRows"
);
}
bool
is_sparse
=
context
.
Attr
<
bool
>
(
"is_sparse"
);
// Since paddings are not trainable and fixed in forward, the gradient of
// paddings makes no sense and we don't deal with it in backward.
if
(
is_sparse
)
{
auto
*
ids
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
d_output
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_table
=
context
.
Output
<
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
int64_t
ids_num
=
ids
->
numel
();
auto
lod
=
ids
->
lod
()[
0
];
int64_t
row_width
=
d_output
->
dims
()[
1
];
framework
::
Vector
<
int64_t
>
*
new_rows
=
d_table
->
mutable_rows
();
new_rows
->
resize
(
ids_num
);
std
::
memcpy
(
&
(
*
new_rows
)[
0
],
ids_data
,
ids_num
*
sizeof
(
int64_t
));
auto
*
d_table_value
=
d_table
->
mutable_value
();
d_table_value
->
Resize
({
ids_num
,
table_dim
[
1
]});
T
*
d_table_data
=
d_table_value
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
d_output_data
=
d_output
->
data
<
T
>
();
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
i
+
1
]
-
lod
[
i
]);
int64_t
in_offset
=
lod
[
i
]
*
row_width
;
const
T
*
out_pos
=
d_output_data
+
i
*
row_width
;
T
*
in_pos
=
d_table_data
+
in_offset
;
for
(
int
r
=
0
;
r
!=
h
;
++
r
)
{
blas
.
VCOPY
(
row_width
,
out_pos
,
in_pos
+
r
*
row_width
);
}
}
}
else
{
LOG
(
ERROR
)
<<
"Dense is not supported in fused_embedding_seq_pool_op now"
;
}
}
};
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录