未验证 提交 f488e3fd 编写于 作者: Z zhangyuqin1998 提交者: GitHub

move reduce raw kernels to legacy (#53961)

上级 48f5af99
......@@ -166,6 +166,7 @@ if(WITH_MKLDNN)
"cpu/*.cc"
"legacy/*.cc"
"legacy/cpu/*.cc"
"legacy/onednn/*.cc"
"selected_rows/*.cc"
"selected_rows/cpu/*.cc"
"sparse/*.cc"
......
......@@ -22,13 +22,12 @@
namespace phi {
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
void MaxKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
reduce_all = recompute_reduce_all(x, dims, reduce_all);
bool reduce_all = recompute_reduce_all(x, dims);
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MaxFunctor>(
dev_ctx, x, reduce_all, dims.GetData(), keep_dim, out_dtype, out);
......@@ -37,4 +36,4 @@ void MaxRawKernel(const Context& dev_ctx,
} // namespace phi
PD_REGISTER_KERNEL(
max_raw, CPU, ALL_LAYOUT, phi::MaxRawKernel, float, double, int, int64_t) {}
max, CPU, ALL_LAYOUT, phi::MaxKernel, float, double, int, int64_t) {}
......@@ -19,13 +19,12 @@
namespace phi {
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
void MaxKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
reduce_all = recompute_reduce_all(x, dims, reduce_all);
bool reduce_all = recompute_reduce_all(x, dims);
auto out_dtype = x.dtype();
phi::Reduce<T, kps::MaxFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims.GetData(), keep_dim, out_dtype, out);
......@@ -34,12 +33,12 @@ void MaxRawKernel(const Context& dev_ctx,
} // namespace phi
#ifdef PADDLE_WITH_XPU_KP
PD_REGISTER_KERNEL(max_raw, KPS, ALL_LAYOUT, phi::MaxRawKernel, float) {}
PD_REGISTER_KERNEL(max, KPS, ALL_LAYOUT, phi::MaxKernel, float) {}
#else
PD_REGISTER_KERNEL(max_raw,
PD_REGISTER_KERNEL(max,
KPS,
ALL_LAYOUT,
phi::MaxRawKernel,
phi::MaxKernel,
float,
double,
int,
......
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
namespace phi {
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
reduce_all = recompute_reduce_all(x, dims, reduce_all);
auto out_dtype = x.dtype();
phi::Reduce<CPUContext, T, phi::funcs::MaxFunctor>(
dev_ctx, x, reduce_all, dims.GetData(), keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
max_raw, CPU, ALL_LAYOUT, phi::MaxRawKernel, float, double, int, int64_t) {}
......@@ -13,32 +13,33 @@
// limitations under the License.
#include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace phi {
template <typename T, typename Context>
void MaxKernel(const Context& dev_ctx,
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
bool reduce_all = recompute_reduce_all(x, dims);
MaxRawKernel<T>(dev_ctx, x, dims, keep_dim, reduce_all, out);
reduce_all = recompute_reduce_all(x, dims, reduce_all);
auto out_dtype = x.dtype();
phi::Reduce<T, kps::MaxFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims.GetData(), keep_dim, out_dtype, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
max, CPU, ALL_LAYOUT, phi::MaxKernel, float, double, int, int64_t) {}
#if defined(PADDLE_WITH_CUDA)
PD_REGISTER_KERNEL(max,
GPU,
#ifdef PADDLE_WITH_XPU_KP
PD_REGISTER_KERNEL(max_raw, KPS, ALL_LAYOUT, phi::MaxRawKernel, float) {}
#else
PD_REGISTER_KERNEL(max_raw,
KPS,
ALL_LAYOUT,
phi::MaxKernel,
phi::MaxRawKernel,
float,
double,
int,
......@@ -46,21 +47,3 @@ PD_REGISTER_KERNEL(max,
phi::dtype::float16,
phi::dtype::bfloat16) {}
#endif
#if defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(
max, GPU, ALL_LAYOUT, phi::MaxKernel, float, double, int, int64_t) {}
#endif
#if defined(PADDLE_WITH_XPU_KP) && !defined(PADDLE_WITH_XPU)
PD_REGISTER_KERNEL(max, KPS, ALL_LAYOUT, phi::MaxKernel, float) {}
#endif
#if defined(PADDLE_WITH_MKLDNN)
PD_REGISTER_KERNEL(
max, OneDNN, ONEDNN, phi::MaxKernel, float, phi::dtype::bfloat16) {}
#endif
#if defined(PADDLE_WITH_XPU)
PD_REGISTER_KERNEL(max, XPU, ALL_LAYOUT, phi::MaxKernel, float, int) {}
#endif
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/onednn/reduce_kernel_impl.h"
namespace phi {
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
reduce_all = recompute_reduce_all(x, dims, reduce_all);
ReduceKernel<T, Context>(dev_ctx,
x,
dims,
keep_dim,
reduce_all,
out,
dnnl::algorithm::reduction_max);
}
} // namespace phi
PD_REGISTER_KERNEL(
max_raw, OneDNN, ONEDNN, phi::MaxRawKernel, float, phi::dtype::bfloat16) {}
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
} // namespace phi
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/xpu/reduce.h"
namespace phi {
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
reduce_all = recompute_reduce_all(x, dims, reduce_all);
using XPUType = typename XPUTypeTrait<T>::Type;
auto f = [](xpu::Context* ctx,
const T* x,
T* y,
const std::vector<int>& xdims,
const std::vector<int>& reduce_dims) {
return xpu::reduce_max<XPUType>(ctx,
reinterpret_cast<const XPUType*>(x),
reinterpret_cast<XPUType*>(y),
xdims,
reduce_dims);
};
int r = XPUReduce<Context, T>(
dev_ctx, x, dims.GetData(), keep_dim, reduce_all, out, f);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "reduce_max");
}
} // namespace phi
PD_REGISTER_KERNEL(max_raw, XPU, ALL_LAYOUT, phi::MaxRawKernel, float, int) {}
......@@ -18,13 +18,12 @@ limitations under the License. */
namespace phi {
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
void MaxKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
reduce_all = recompute_reduce_all(x, dims, reduce_all);
bool reduce_all = recompute_reduce_all(x, dims);
ReduceKernel<T, Context>(dev_ctx,
x,
dims,
......@@ -36,4 +35,4 @@ void MaxRawKernel(const Context& dev_ctx,
} // namespace phi
PD_REGISTER_KERNEL(
max_raw, OneDNN, ONEDNN, phi::MaxRawKernel, float, phi::dtype::bfloat16) {}
max, OneDNN, ONEDNN, phi::MaxKernel, float, phi::dtype::bfloat16) {}
......@@ -18,14 +18,6 @@
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out);
template <typename T, typename Context>
void MaxKernel(const Context& dev_ctx,
const DenseTensor& x,
......
......@@ -22,13 +22,12 @@
namespace phi {
template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
void MaxKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* out) {
reduce_all = recompute_reduce_all(x, dims, reduce_all);
bool reduce_all = recompute_reduce_all(x, dims);
using XPUType = typename XPUTypeTrait<T>::Type;
auto f = [](xpu::Context* ctx,
const T* x,
......@@ -49,4 +48,4 @@ void MaxRawKernel(const Context& dev_ctx,
} // namespace phi
PD_REGISTER_KERNEL(max_raw, XPU, ALL_LAYOUT, phi::MaxRawKernel, float, int) {}
PD_REGISTER_KERNEL(max, XPU, ALL_LAYOUT, phi::MaxKernel, float, int) {}
......@@ -34,7 +34,7 @@
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/kernels/fused_adam_kernel.h"
#include "paddle/phi/kernels/gaussian_kernel.h"
#include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/kernels/legacy/reduce_max_kernel.h"
namespace phi {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册