Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f4623876
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f4623876
编写于
1月 24, 2022
作者:
B
Baibaifan
提交者:
GitHub
1月 24, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix sharding stage2 unittest (#39112)
上级
3c1dc6f6
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
28 addition
and
52 deletion
+28
-52
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
...optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
+5
-24
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py
...n/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py
+23
-28
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
浏览文件 @
f4623876
...
@@ -70,7 +70,7 @@ class ShardingOptimizerStage2(Optimizer):
...
@@ -70,7 +70,7 @@ class ShardingOptimizerStage2(Optimizer):
device
=
"gpu"
,
device
=
"gpu"
,
**
kw
):
**
kw
):
super
().
__init__
(
optim
.
_learning_rate
,
params
,
kw
)
#
super().__init__(optim._learning_rate, params, kw)
# Segmentation information
# Segmentation information
self
.
_dtype_rank_params
=
OrderedDict
(
self
.
_dtype_rank_params
=
OrderedDict
(
...
@@ -83,8 +83,6 @@ class ShardingOptimizerStage2(Optimizer):
...
@@ -83,8 +83,6 @@ class ShardingOptimizerStage2(Optimizer):
# Default information
# Default information
self
.
_optim_defaults
=
kw
self
.
_optim_defaults
=
kw
self
.
_optim
=
optim
self
.
_optim
=
optim
self
.
_ori_parameter_list
=
self
.
_optim
.
_parameter_list
self
.
_ori_param_groups
=
self
.
_optim
.
_param_groups
assert
hasattr
(
self
.
_optim
,
"_master_weights"
assert
hasattr
(
self
.
_optim
,
"_master_weights"
),
"Must use optimizer with _master_weights attribute"
),
"Must use optimizer with _master_weights attribute"
...
@@ -336,24 +334,11 @@ class ShardingOptimizerStage2(Optimizer):
...
@@ -336,24 +334,11 @@ class ShardingOptimizerStage2(Optimizer):
if
self
.
offload
:
if
self
.
offload
:
params_list
=
[
self
.
offload_params
.
buffer
]
params_list
=
[
self
.
offload_params
.
buffer
]
else
:
# Synchronize optimizer parameters for the current rank
params_list
=
[]
for
dtype
in
self
.
dtype_rank_params
.
keys
():
params_list
.
extend
(
self
.
dtype_rank_params
[
dtype
][
self
.
rank
])
params_name_list
=
list
(
map
(
lambda
p
:
p
.
name
,
params_list
))
#TODO(Baibaifan): Offload will support param_groups later
if
not
isinstance
(
self
.
_optim
.
_param_groups
[
0
],
dict
):
if
not
isinstance
(
self
.
_optim
.
_param_groups
[
0
],
dict
):
self
.
_optim
.
_parameter_list
=
params_list
self
.
_optim
.
_parameter_list
=
params_list
self
.
_optim
.
_param_groups
=
params_list
self
.
_optim
.
_param_groups
=
params_list
else
:
for
param_group
in
self
.
_optim
.
_param_groups
:
p_group
=
[]
for
param
in
param_group
[
'params'
]:
if
param
.
name
in
params_name_list
:
p_group
.
append
(
params_list
[
params_name_list
.
index
(
param
.
name
)])
param_group
[
'params'
]
=
p_group
# Run the optimizer of the current rank step
# Run the optimizer of the current rank step
if
self
.
offload
:
if
self
.
offload
:
...
@@ -371,10 +356,6 @@ class ShardingOptimizerStage2(Optimizer):
...
@@ -371,10 +356,6 @@ class ShardingOptimizerStage2(Optimizer):
# Synchronize all the updated shards in between the ranks
# Synchronize all the updated shards in between the ranks
self
.
_broadcast_params
()
self
.
_broadcast_params
()
# Return full parameters to optimizer parameters
self
.
_optim
.
_parameter_list
=
self
.
_ori_parameter_list
self
.
_optim
.
_param_groups
=
self
.
_ori_param_groups
def
_clear_cache
(
self
):
def
_clear_cache
(
self
):
self
.
__segment_params
.
clear
()
self
.
__segment_params
.
clear
()
self
.
_dtype_rank_params
.
clear
()
self
.
_dtype_rank_params
.
clear
()
...
...
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py
浏览文件 @
f4623876
...
@@ -29,7 +29,6 @@ from paddle.distributed.fleet.meta_parallel.sharding.sharding_stage2 import Shar
...
@@ -29,7 +29,6 @@ from paddle.distributed.fleet.meta_parallel.sharding.sharding_stage2 import Shar
seed
=
2021
seed
=
2021
epoch
=
2
epoch
=
2
batch_size
=
32
linear_size
=
1000
linear_size
=
1000
strategy
=
fleet
.
DistributedStrategy
()
strategy
=
fleet
.
DistributedStrategy
()
...
@@ -86,6 +85,7 @@ def optimizer_setting(model, use_pure_fp16, opt_group=False):
...
@@ -86,6 +85,7 @@ def optimizer_setting(model, use_pure_fp16, opt_group=False):
def
train_mlp
(
model
,
def
train_mlp
(
model
,
sharding_stage
,
sharding_stage
,
batch_size
=
100
,
use_pure_fp16
=
False
,
use_pure_fp16
=
False
,
accumulate_grad
=
False
,
accumulate_grad
=
False
,
opt_group
=
False
):
opt_group
=
False
):
...
@@ -103,16 +103,13 @@ def train_mlp(model,
...
@@ -103,16 +103,13 @@ def train_mlp(model,
if
sharding_stage
==
2
:
if
sharding_stage
==
2
:
optimizer
=
ShardingOptimizerStage2
(
optimizer
=
ShardingOptimizerStage2
(
params
=
model
.
parameters
(),
optim
=
optimizer
,
group
=
group
)
params
=
model
.
parameters
(),
optim
=
optimizer
,
group
=
group
)
if
accumulate_grad
:
model
=
ShardingStage2
(
model
=
ShardingStage2
(
model
,
model
,
optimizer
,
optimizer
,
group
=
group
,
group
=
group
,
buffer_max_size
=
2
**
21
,
buffer_max_size
=
2
**
21
,
accumulate_grads
=
accumulate_grad
)
accumulate_grads
=
batch_size
==
20
)
else
:
model
=
ShardingStage2
(
model
,
optimizer
,
group
=
group
,
buffer_max_size
=
2
**
21
)
else
:
else
:
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
model
=
fleet
.
distributed_model
(
model
)
model
=
fleet
.
distributed_model
(
model
)
...
@@ -145,12 +142,13 @@ def train_mlp(model,
...
@@ -145,12 +142,13 @@ def train_mlp(model,
avg_loss
=
paddle
.
mean
(
x
=
loss
.
cast
(
dtype
=
paddle
.
float32
))
avg_loss
=
paddle
.
mean
(
x
=
loss
.
cast
(
dtype
=
paddle
.
float32
))
avg_loss
.
backward
()
avg_loss
.
backward
()
if
not
accumulate_grad
:
optimizer
.
step
()
optimizer
.
step
()
optimizer
.
clear_grad
()
optimizer
.
clear_grad
()
if
accumulate_grad
and
batch_id
==
2
:
if
accumulate_grad
:
return
model
.
parameters
()
optimizer
.
step
()
optimizer
.
clear_grad
()
return
model
.
parameters
()
return
model
.
parameters
()
...
@@ -166,25 +164,22 @@ def test_dp_stage2():
...
@@ -166,25 +164,22 @@ def test_dp_stage2():
mlp3
.
set_state_dict
(
state_dict
)
mlp3
.
set_state_dict
(
state_dict
)
mlp4
.
set_state_dict
(
state_dict
)
mlp4
.
set_state_dict
(
state_dict
)
dp_params
=
train_mlp
(
dp_params
=
train_mlp
(
mlp1
,
sharding_stage
=
"dp"
,
use_pure_fp16
=
False
,
opt_group
=
Tru
e
)
mlp1
,
sharding_stage
=
"dp"
,
use_pure_fp16
=
False
,
opt_group
=
Fals
e
)
stage2_params
=
train_mlp
(
stage2_params
=
train_mlp
(
mlp2
,
sharding_stage
=
2
,
use_pure_fp16
=
False
,
opt_group
=
Tru
e
)
mlp2
,
sharding_stage
=
2
,
use_pure_fp16
=
False
,
opt_group
=
Fals
e
)
for
i
in
range
(
len
(
dp_params
)):
for
i
in
range
(
len
(
dp_params
)):
for
j
in
range
(
len
(
stage2_params
)):
if
dp_params
[
i
].
name
==
stage2_params
[
j
].
name
:
np
.
testing
.
assert_allclose
(
np
.
testing
.
assert_allclose
(
dp_params
[
i
].
numpy
(),
stage2_params
[
j
].
numpy
(),
rtol
=
1e-6
)
dp_params
[
i
].
numpy
(),
stage2_params
[
i
].
numpy
(),
rtol
=
1e-6
)
stage2_params
=
train_mlp
(
mlp3
,
sharding_stage
=
2
)
stage2_params
=
train_mlp
(
mlp3
,
sharding_stage
=
2
)
stage2_accumulate_grad
=
train_mlp
(
stage2_accumulate_grad
=
train_mlp
(
mlp4
,
sharding_stage
=
2
,
accumulate_grad
=
True
)
mlp4
,
sharding_stage
=
2
,
batch_size
=
20
,
accumulate_grad
=
True
)
for
i
in
range
(
len
(
stage2_params
)):
for
i
in
range
(
len
(
stage2_params
)):
for
j
in
range
(
len
(
stage2_accumulate_grad
)):
if
stage2_params
[
i
].
name
==
stage2_accumulate_grad
[
j
].
name
:
np
.
testing
.
assert_allclose
(
np
.
testing
.
assert_allclose
(
stage2_params
[
i
].
numpy
(),
stage2_params
[
i
].
numpy
(),
stage2_accumulate_grad
[
j
].
numpy
(),
stage2_accumulate_grad
[
i
].
numpy
(),
rtol
=
1e-6
)
rtol
=
1e-5
,
atol
=
1e-5
)
return
return
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录