Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f43af275
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f43af275
编写于
4月 08, 2022
作者:
C
chenjian
提交者:
GitHub
4月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine statistic table (#41524)
上级
14dba636
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
205 addition
and
114 deletion
+205
-114
python/paddle/fluid/tests/unittests/test_profiler_statistic.py
...n/paddle/fluid/tests/unittests/test_profiler_statistic.py
+46
-42
python/paddle/profiler/profiler_statistic.py
python/paddle/profiler/profiler_statistic.py
+159
-72
未找到文件。
python/paddle/fluid/tests/unittests/test_profiler_statistic.py
浏览文件 @
f43af275
...
...
@@ -185,20 +185,22 @@ class TestProfilerStatistic(unittest.TestCase):
profiler
.
TracerEventType
.
Communication
),
5
)
self
.
assertEqual
(
len
(
event_summary
.
items
),
2
)
self
.
assertEqual
(
len
(
event_summary
.
userdefined_items
),
1
)
self
.
assertEqual
(
len
(
event_summary
.
model_perspective_items
),
3
)
self
.
assertEqual
(
len
(
event_summary
.
model_perspective_items
),
4
)
self
.
assertEqual
(
len
(
event_summary
.
memory_manipulation_items
),
1
)
self
.
assertEqual
(
event_summary
.
items
[
'conv2d'
].
cpu_time
,
15
)
self
.
assertEqual
(
event_summary
.
items
[
'conv2d'
].
gpu_time
,
25
)
self
.
assertEqual
(
event_summary
.
items
[
'conv2d'
].
g
eneral_g
pu_time
,
25
)
self
.
assertEqual
(
event_summary
.
model_perspective_items
[
'Forward'
].
cpu_time
,
100
)
self
.
assertEqual
(
event_summary
.
model_perspective_items
[
'Forward'
].
gpu_time
,
135
)
event_summary
.
model_perspective_items
[
'Forward'
].
general_gpu_time
,
135
)
self
.
assertEqual
(
event_summary
.
model_perspective_items
[
'Backward'
].
gpu_time
,
0
)
event_summary
.
model_perspective_items
[
'Backward'
].
general_gpu_time
,
0
)
self
.
assertEqual
(
event_summary
.
memory_manipulation_items
[
'AsyncMemcpy'
].
cpu_time
,
15
)
self
.
assertEqual
(
event_summary
.
memory_manipulation_items
[
'AsyncMemcpy'
].
gpu_time
,
60
)
self
.
assertEqual
(
event_summary
.
memory_manipulation_items
[
'AsyncMemcpy'
]
.
general_
gpu_time
,
60
)
print
(
profiler
.
profiler_statistic
.
_build_table
(
statistic_data
,
...
...
@@ -226,31 +228,31 @@ class TestProfilerStatistic(unittest.TestCase):
userdefined_node
=
HostPythonNode
(
'Communication Time'
,
profiler
.
TracerEventType
.
UserDefined
,
100
,
110
,
1000
,
1001
)
reduce_all
_launchkernel0
=
HostPythonNode
(
allreduce
_launchkernel0
=
HostPythonNode
(
'cudalaunchkernel'
,
profiler
.
TracerEventType
.
CudaRuntime
,
102
,
104
,
1000
,
1001
)
nccl_
reduce_all
_kernel0
=
DevicePythonNode
(
'nccl_
reduce_all
_kernel'
,
profiler
.
TracerEventType
.
Kernel
,
105
,
120
,
nccl_
allreduce
_kernel0
=
DevicePythonNode
(
'nccl_
allreduce
_kernel'
,
profiler
.
TracerEventType
.
Kernel
,
105
,
120
,
0
,
0
,
2
)
communication_node
=
HostPythonNode
(
'Communication'
,
profiler
.
TracerEventType
.
Communication
,
105
,
110
,
1000
,
1001
)
reduce_all_op1
=
HostPythonNode
(
'reduce_all
_op1'
,
profiler
.
TracerEventType
.
Operator
,
105
,
108
,
1000
,
1001
)
reduce_all
_op1_infershape
=
HostPythonNode
(
'
reduce_all_op1::infershape'
,
profiler
.
TracerEventType
.
OperatorInner
,
105
,
106
,
1000
,
1001
)
allreduce_op1
=
HostPythonNode
(
'allreduce
_op1'
,
profiler
.
TracerEventType
.
Operator
,
105
,
108
,
1000
,
1001
)
allreduce
_op1_infershape
=
HostPythonNode
(
'
allreduce_op1::infershape'
,
profiler
.
TracerEventType
.
OperatorInner
,
105
,
106
,
1000
,
1001
)
reduce_all
_launchkernel1
=
HostPythonNode
(
allreduce
_launchkernel1
=
HostPythonNode
(
'cudalaunchkernel'
,
profiler
.
TracerEventType
.
CudaRuntime
,
106
,
107
,
1000
,
1001
)
nccl_
reduce_all
_kernel1
=
DevicePythonNode
(
'nccl_
reduce_all
_kernel'
,
profiler
.
TracerEventType
.
Kernel
,
130
,
150
,
nccl_
allreduce
_kernel1
=
DevicePythonNode
(
'nccl_
allreduce
_kernel'
,
profiler
.
TracerEventType
.
Kernel
,
130
,
150
,
0
,
0
,
2
)
backward_node
=
HostPythonNode
(
'Gradient Backward'
,
...
...
@@ -305,19 +307,19 @@ class TestProfilerStatistic(unittest.TestCase):
'sync_batch_norm_memcpy'
,
profiler
.
TracerEventType
.
Memcpy
,
150
,
200
,
0
,
0
,
1
)
reduce_all_node2
=
HostPythonNode
(
'reduce_all
'
,
profiler
.
TracerEventType
.
Operator
,
230
,
250
,
1000
,
1001
)
allreduce_node2
=
HostPythonNode
(
'allreduce
'
,
profiler
.
TracerEventType
.
Operator
,
230
,
250
,
1000
,
1001
)
reduce_all
_node2_infershape
=
HostPythonNode
(
'
reduce_all
_node2::infershape'
,
allreduce
_node2_infershape
=
HostPythonNode
(
'
allreduce
_node2::infershape'
,
profiler
.
TracerEventType
.
OperatorInner
,
231
,
232
,
1000
,
1001
)
reduce_all
_launchkernel2
=
HostPythonNode
(
allreduce
_launchkernel2
=
HostPythonNode
(
'cudalaunchkernel'
,
profiler
.
TracerEventType
.
CudaRuntime
,
235
,
240
,
1000
,
1001
)
nccl_
reduce_all
_kernel2
=
DevicePythonNode
(
'nccl_
reduce_all
_kernel'
,
profiler
.
TracerEventType
.
Kernel
,
250
,
280
,
nccl_
allreduce
_kernel2
=
DevicePythonNode
(
'nccl_
allreduce
_kernel'
,
profiler
.
TracerEventType
.
Kernel
,
250
,
280
,
0
,
0
,
2
)
root_node
.
children_node
.
append
(
profilerstep_node
)
...
...
@@ -329,12 +331,12 @@ class TestProfilerStatistic(unittest.TestCase):
yolonet_node
.
children_node
.
extend
(
[
sync_batch_norm_node
,
userdefined_node
])
userdefined_node
.
children_node
.
append
(
communication_node
)
userdefined_node
.
runtime_node
.
append
(
reduce_all
_launchkernel0
)
reduce_all_launchkernel0
.
device_node
.
append
(
nccl_reduce_all
_kernel0
)
communication_node
.
children_node
.
append
(
reduce_all
_op1
)
reduce_all_op1
.
children_node
.
append
(
reduce_all
_op1_infershape
)
reduce_all_op1
.
runtime_node
.
append
(
reduce_all
_launchkernel1
)
reduce_all_launchkernel1
.
device_node
.
append
(
nccl_reduce_all
_kernel1
)
userdefined_node
.
runtime_node
.
append
(
allreduce
_launchkernel0
)
allreduce_launchkernel0
.
device_node
.
append
(
nccl_allreduce
_kernel0
)
communication_node
.
children_node
.
append
(
allreduce
_op1
)
allreduce_op1
.
children_node
.
append
(
allreduce
_op1_infershape
)
allreduce_op1
.
runtime_node
.
append
(
allreduce
_launchkernel1
)
allreduce_launchkernel1
.
device_node
.
append
(
nccl_allreduce
_kernel1
)
conv2d_node
.
children_node
.
extend
(
[
conv2d_infer_shape
,
conv2d_compute
,
conv2d_MemCpy
])
conv2d_compute
.
runtime_node
.
append
(
conv2d_launchkernel
)
...
...
@@ -350,10 +352,10 @@ class TestProfilerStatistic(unittest.TestCase):
sync_batch_norm_MemCpy
.
runtime_node
.
append
(
sync_batch_norm_cudaMemCpy
)
sync_batch_norm_launchkernel
.
device_node
.
append
(
sync_batch_norm_kernel
)
sync_batch_norm_cudaMemCpy
.
device_node
.
append
(
sync_batch_norm_memcpy
)
optimization_node
.
children_node
.
append
(
reduce_all
_node2
)
reduce_all_node2
.
children_node
.
append
(
reduce_all
_node2_infershape
)
reduce_all_node2
.
runtime_node
.
append
(
reduce_all
_launchkernel2
)
reduce_all_launchkernel2
.
device_node
.
append
(
nccl_reduce_all
_kernel2
)
optimization_node
.
children_node
.
append
(
allreduce
_node2
)
allreduce_node2
.
children_node
.
append
(
allreduce
_node2_infershape
)
allreduce_node2
.
runtime_node
.
append
(
allreduce
_launchkernel2
)
allreduce_launchkernel2
.
device_node
.
append
(
nccl_allreduce
_kernel2
)
thread_tree
=
{
'thread1001'
:
root_node
}
extra_info
=
{
'Process Cpu Utilization'
:
'1.02'
,
...
...
@@ -415,20 +417,22 @@ class TestProfilerStatistic(unittest.TestCase):
distributed_summary
.
overlap_range
),
85
)
self
.
assertEqual
(
len
(
event_summary
.
items
),
4
)
self
.
assertEqual
(
len
(
event_summary
.
userdefined_items
),
1
)
self
.
assertEqual
(
len
(
event_summary
.
model_perspective_items
),
3
)
self
.
assertEqual
(
len
(
event_summary
.
model_perspective_items
),
4
)
self
.
assertEqual
(
len
(
event_summary
.
memory_manipulation_items
),
1
)
self
.
assertEqual
(
event_summary
.
items
[
'conv2d'
].
cpu_time
,
15
)
self
.
assertEqual
(
event_summary
.
items
[
'conv2d'
].
gpu_time
,
25
)
self
.
assertEqual
(
event_summary
.
items
[
'conv2d'
].
g
eneral_g
pu_time
,
25
)
self
.
assertEqual
(
event_summary
.
model_perspective_items
[
'Forward'
].
cpu_time
,
100
)
self
.
assertEqual
(
event_summary
.
model_perspective_items
[
'Forward'
].
gpu_time
,
315
)
event_summary
.
model_perspective_items
[
'Forward'
].
general_gpu_time
,
315
)
self
.
assertEqual
(
event_summary
.
model_perspective_items
[
'Backward'
].
gpu_time
,
0
)
event_summary
.
model_perspective_items
[
'Backward'
].
general_gpu_time
,
0
)
self
.
assertEqual
(
event_summary
.
memory_manipulation_items
[
'AsyncMemcpy'
].
cpu_time
,
15
)
self
.
assertEqual
(
event_summary
.
memory_manipulation_items
[
'AsyncMemcpy'
].
gpu_time
,
60
)
self
.
assertEqual
(
event_summary
.
memory_manipulation_items
[
'AsyncMemcpy'
]
.
general_
gpu_time
,
60
)
print
(
profiler
.
profiler_statistic
.
_build_table
(
statistic_data
,
...
...
python/paddle/profiler/profiler_statistic.py
浏览文件 @
f43af275
...
...
@@ -28,7 +28,7 @@ _AllTracerEventType = [
TracerEventType
.
PythonOp
,
TracerEventType
.
PythonUserDefined
]
_CommunicationOpName
=
[
'reduce'
,
'broadcast'
,
'rpc'
]
_CommunicationOpName
=
[
'
all
reduce'
,
'broadcast'
,
'rpc'
]
class
SortedKeys
(
Enum
):
...
...
@@ -74,8 +74,10 @@ class HostStatisticNode:
self
.
runtime_node
=
[]
self
.
cpu_time
=
0
self
.
self_cpu_time
=
0
self
.
gpu_time
=
0
self
.
gpu_time
=
0
# kernel time
self
.
self_gpu_time
=
0
self
.
general_gpu_time
=
0
# besides kernel, include time of gpu events like memcpy and memset
self
.
self_general_gpu_time
=
0
def
cal_statistic
(
self
):
for
child
in
self
.
children_node
:
...
...
@@ -86,14 +88,20 @@ class HostStatisticNode:
self
.
cpu_time
=
self
.
hostnode
.
end_ns
-
self
.
hostnode
.
start_ns
for
child
in
self
.
children_node
:
self
.
gpu_time
+=
child
.
gpu_time
self
.
general_gpu_time
+=
child
.
general_gpu_time
self
.
self_cpu_time
-=
(
child
.
end_ns
-
child
.
start_ns
)
for
rt
in
self
.
runtime_node
:
self
.
self_cpu_time
-=
(
rt
.
end_ns
-
rt
.
start_ns
)
self
.
gpu_time
+=
rt
.
gpu_time
self
.
self_gpu_time
+=
rt
.
gpu_time
self
.
general_gpu_time
+=
rt
.
general_gpu_time
self
.
self_general_gpu_time
+=
rt
.
general_gpu_time
for
device
in
self
.
hostnode
.
device_node
:
self
.
gpu_time
+=
(
device
.
end_ns
-
device
.
start_ns
)
self
.
self_gpu_time
+=
(
device
.
end_ns
-
device
.
start_ns
)
if
device
.
type
==
TracerEventType
.
Kernel
:
self
.
gpu_time
+=
(
device
.
end_ns
-
device
.
start_ns
)
self
.
self_gpu_time
+=
(
device
.
end_ns
-
device
.
start_ns
)
self
.
general_gpu_time
+=
(
device
.
end_ns
-
device
.
start_ns
)
self
.
self_general_gpu_time
+=
(
device
.
end_ns
-
device
.
start_ns
)
@
property
def
end_ns
(
self
):
...
...
@@ -258,6 +266,8 @@ class DistributedSummary:
self
.
communication_range
=
[]
self
.
computation_range
=
[]
self
.
overlap_range
=
[]
self
.
cpu_calls
=
0
self
.
gpu_calls
=
0
def
parse
(
self
,
nodetrees
):
'''
...
...
@@ -300,6 +310,8 @@ class DistributedSummary:
else
:
self
.
computation_range
.
append
((
devicenode
.
start_ns
,
devicenode
.
end_ns
))
self
.
cpu_calls
=
len
(
set
(
self
.
cpu_communication_range
))
self
.
gpu_calls
=
len
(
set
(
self
.
gpu_communication_range
))
self
.
cpu_communication_range
=
merge_self_ranges
(
self
.
cpu_communication_range
,
is_sorted
=
False
)
self
.
gpu_communication_range
=
merge_self_ranges
(
...
...
@@ -354,6 +366,9 @@ class EventSummary:
self
.
min_gpu_time
=
float
(
'inf'
)
self
.
devices
=
{}
self
.
operator_inners
=
{}
self
.
general_gpu_time
=
0
self
.
min_general_gpu_time
=
float
(
'inf'
)
self
.
max_general_gpu_time
=
0
@
property
def
avg_cpu_time
(
self
):
...
...
@@ -363,6 +378,10 @@ class EventSummary:
def
avg_gpu_time
(
self
):
return
self
.
gpu_time
/
self
.
call
@
property
def
avg_general_gpu_time
(
self
):
return
self
.
general_gpu_time
/
self
.
call
def
add_cpu_time
(
self
,
time
):
if
time
>
self
.
max_cpu_time
:
self
.
max_cpu_time
=
time
...
...
@@ -377,6 +396,13 @@ class EventSummary:
self
.
min_gpu_time
=
time
self
.
gpu_time
+=
time
def
add_general_gpu_time
(
self
,
time
):
if
time
>
self
.
max_general_gpu_time
:
self
.
max_general_gpu_time
=
time
if
time
<
self
.
min_general_gpu_time
:
self
.
min_general_gpu_time
=
time
self
.
general_gpu_time
+=
time
def
add_call
(
self
):
self
.
call
+=
1
...
...
@@ -384,6 +410,7 @@ class EventSummary:
self
.
add_call
()
self
.
add_cpu_time
(
node
.
cpu_time
)
self
.
add_gpu_time
(
node
.
gpu_time
)
self
.
add_general_gpu_time
(
node
.
general_gpu_time
)
for
child
in
node
.
children_node
:
if
child
.
name
not
in
self
.
operator_inners
:
self
.
operator_inners
[
...
...
@@ -407,6 +434,9 @@ class EventSummary:
self
.
gpu_time
=
0
self
.
max_gpu_time
=
0
self
.
min_gpu_time
=
float
(
'inf'
)
self
.
general_gpu_time
=
0
self
.
min_general_gpu_time
=
float
(
'inf'
)
self
.
max_general_gpu_time
=
0
@
property
def
avg_cpu_time
(
self
):
...
...
@@ -416,6 +446,10 @@ class EventSummary:
def
avg_gpu_time
(
self
):
return
self
.
gpu_time
/
self
.
call
@
property
def
avg_general_gpu_time
(
self
):
return
self
.
general_gpu_time
/
self
.
call
def
add_cpu_time
(
self
,
time
):
if
time
>
self
.
max_cpu_time
:
self
.
max_cpu_time
=
time
...
...
@@ -430,6 +464,13 @@ class EventSummary:
self
.
min_gpu_time
=
time
self
.
gpu_time
+=
time
def
add_general_gpu_time
(
self
,
time
):
if
time
>
self
.
max_general_gpu_time
:
self
.
max_general_gpu_time
=
time
if
time
<
self
.
min_general_gpu_time
:
self
.
min_general_gpu_time
=
time
self
.
general_gpu_time
+=
time
def
add_call
(
self
):
self
.
call
+=
1
...
...
@@ -437,6 +478,7 @@ class EventSummary:
self
.
add_call
()
self
.
add_cpu_time
(
node
.
cpu_time
)
self
.
add_gpu_time
(
node
.
gpu_time
)
self
.
add_general_gpu_time
(
node
.
general_gpu_time
)
def
__init__
(
self
):
self
.
items
=
{}
# for operator summary
...
...
@@ -478,6 +520,8 @@ class EventSummary:
self
.
add_model_perspective_item
(
child
)
#find first model perspective node
else
:
if
child
.
type
==
TracerEventType
.
ProfileStep
:
self
.
add_model_perspective_item
(
child
)
deque
.
append
(
child
)
def
add_operator_item
(
self
,
operator_node
):
...
...
@@ -533,6 +577,8 @@ class EventSummary:
name
=
'Optimization'
elif
model_perspective_node
.
type
==
TracerEventType
.
Dataloader
:
name
=
'Dataloader'
elif
model_perspective_node
.
type
==
TracerEventType
.
ProfileStep
:
name
=
'ProfileStep'
else
:
return
if
name
not
in
self
.
model_perspective_items
:
...
...
@@ -626,7 +672,6 @@ def _build_table(statistic_data,
# construct table string
append
(
add_title
(
line_length
,
"Device Summary"
))
append
(
'Time unit: {}'
.
format
(
time_unit
))
append
(
header_sep
)
append
(
row_format
.
format
(
*
headers
))
append
(
header_sep
)
...
...
@@ -661,7 +706,7 @@ def _build_table(statistic_data,
return
''
.
join
(
result
)
###### Print Overview Summary ######
headers
=
[
'Event Type'
,
'CPU Time'
,
'Ratio (%)'
]
headers
=
[
'Event Type'
,
'C
alls'
,
'C
PU Time'
,
'Ratio (%)'
]
row_format_list
=
[
""
]
header_sep_list
=
[
""
]
line_length_list
=
[
-
SPACING_SIZE
]
...
...
@@ -680,13 +725,13 @@ def _build_table(statistic_data,
append
(
header_sep
)
append
(
row_format
.
format
(
*
headers
))
append
(
header_sep
)
row_values
=
[
'Total Time'
,
format_time
(
total_time
,
unit
=
time_unit
),
format_ratio
(
1
)
]
append
(
row_format
.
format
(
*
row_values
))
cpu_type_time
=
collections
.
defaultdict
(
int
)
gpu_type_time
=
collections
.
defaultdict
(
int
)
cpu_call_times
=
collections
.
defaultdict
(
int
)
gpu_call_times
=
collections
.
defaultdict
(
int
)
cpu_call_times
.
update
(
statistic_data
.
time_range_summary
.
call_times
)
gpu_call_times
.
update
(
statistic_data
.
time_range_summary
.
call_times
)
for
event_type
,
value
in
statistic_data
.
time_range_summary
.
CPUTimeRangeSum
.
items
(
):
if
event_type
!=
TracerEventType
.
Communication
:
...
...
@@ -694,6 +739,9 @@ def _build_table(statistic_data,
if
statistic_data
.
distributed_summary
.
cpu_communication_range
:
cpu_type_time
[
TracerEventType
.
Communication
]
=
sum_ranges
(
statistic_data
.
distributed_summary
.
cpu_communication_range
)
cpu_call_times
[
TracerEventType
.
Communication
]
=
statistic_data
.
distributed_summary
.
cpu_calls
gpu_time_range
=
collections
.
defaultdict
(
list
)
for
device_id
,
device_time_ranges
in
statistic_data
.
time_range_summary
.
GPUTimeRange
.
items
(
...
...
@@ -706,22 +754,34 @@ def _build_table(statistic_data,
if
statistic_data
.
distributed_summary
.
gpu_communication_range
:
gpu_type_time
[
TracerEventType
.
Communication
]
=
sum_ranges
(
statistic_data
.
distributed_summary
.
gpu_communication_range
)
gpu_call_times
[
TracerEventType
.
Communication
]
=
statistic_data
.
distributed_summary
.
gpu_calls
sorted_items
=
sorted
(
cpu_type_time
.
items
(),
key
=
lambda
x
:
x
[
1
],
reverse
=
True
)
for
event_type
,
time
in
sorted_items
:
event_type
,
time
=
sorted_items
[
0
]
row_values
=
[
'{}'
.
format
(
str
(
event_type
).
split
(
'.'
)[
1
]),
cpu_call_times
[
event_type
],
format_time
(
time
,
unit
=
time_unit
),
format_ratio
(
float
(
time
)
/
total_time
)
]
append
(
row_format
.
format
(
*
row_values
))
for
event_type
,
time
in
sorted_items
[
1
:]:
row_values
=
[
' {}'
.
format
(
str
(
event_type
).
split
(
'.'
)[
1
]),
format_time
(
' {}'
.
format
(
str
(
event_type
).
split
(
'.'
)[
1
]),
cpu_call_times
[
event_type
],
format_time
(
time
,
unit
=
time_unit
),
format_ratio
(
float
(
time
)
/
total_time
)
]
append
(
row_format
.
format
(
*
row_values
))
append
(
header_sep
)
headers
=
[
''
,
'GPU Time'
,
'Ratio (%)'
]
headers
=
[
''
,
'
Calls'
,
'
GPU Time'
,
'Ratio (%)'
]
append
(
row_format
.
format
(
*
headers
))
append
(
header_sep
)
for
event_type
,
time
in
gpu_type_time
.
items
():
row_values
=
[
' {}'
.
format
(
str
(
event_type
).
split
(
'.'
)[
1
]),
format_time
(
' {}'
.
format
(
str
(
event_type
).
split
(
'.'
)[
1
]),
gpu_call_times
[
event_type
],
format_time
(
time
,
unit
=
time_unit
),
format_ratio
(
float
(
time
)
/
total_time
)
]
append
(
row_format
.
format
(
*
row_values
))
...
...
@@ -730,7 +790,7 @@ def _build_table(statistic_data,
append
(
"Note:
\n
In this table, We sum up all collected events in terms of event type.
\n
"
"The time of events collected on host are presented as CPU Time, and as GPU Time if on device.
\n
"
"
Ratio = CPU(GPU) Time / Total Time.
\n
"
"
The time with ratio 100% is the base time for calculating ratio.
\n
"
"Events with different types may overlap or inclusion, e.g. Operator includes OperatorInner, so the sum of ratios is not 100%.
\n
"
"The time of events in the same type with overlap will not calculate twice, and all time is summed after merged.
\n
"
"Example:
\n
"
...
...
@@ -746,21 +806,21 @@ def _build_table(statistic_data,
###### Print Model Summary Report ######
model_perspective_items
=
statistic_data
.
event_summary
.
model_perspective_items
if
model_perspective_items
:
if
len
(
model_perspective_items
)
>
1
:
all_row_values
=
[]
row_values
=
[
'Total Time'
,
'-'
,
'{} / - / - / - / {}'
.
format
(
format_time
(
total_time
,
unit
=
time_unit
),
format_ratio
(
1
)),
'- / - / - / -/ -'
]
all_row_values
.
append
(
row_values
)
accmulation_time
=
0
for
name
in
[
'Dataloader'
,
'Forward'
,
'Backward'
,
'Optimization'
]:
gpu_accmulation_time
=
0
gpu_total_time
=
0
for
name
in
[
'ProfileStep'
,
'Dataloader'
,
'Forward'
,
'Backward'
,
'Optimization'
]:
if
name
in
model_perspective_items
:
item
=
model_perspective_items
[
name
]
name
=
'{}'
.
format
(
name
)
if
'ProfileStep'
in
name
else
' {}'
.
format
(
name
)
row_values
=
[
'
{}'
.
format
(
name
),
item
.
call
,
'{}'
.
format
(
name
),
item
.
call
,
'{} / {} / {} / {} / {}'
.
format
(
format_time
(
item
.
cpu_time
,
unit
=
time_unit
),
...
...
@@ -783,15 +843,23 @@ def _build_table(statistic_data,
format_ratio
(
float
(
item
.
gpu_time
)
/
total_time
))
]
all_row_values
.
append
(
row_values
)
accmulation_time
+=
item
.
cpu_time
if
'ProfileStep'
not
in
name
:
accmulation_time
+=
item
.
cpu_time
gpu_accmulation_time
+=
item
.
gpu_time
else
:
gpu_total_time
=
item
.
gpu_time
other_time
=
total_time
-
accmulation_time
other_gpu_time
=
gpu_total_time
-
gpu_accmulation_time
row_values
=
[
' Others'
,
'-'
,
'{} / - / - / - / {}'
.
format
(
format_time
(
other_time
,
unit
=
time_unit
),
format_ratio
(
float
(
other_time
)
/
total_time
)),
'- / - / - / - / -'
'{} / - / - / - / {}'
.
format
(
format_time
(
other_gpu_time
,
unit
=
time_unit
),
format_ratio
(
float
(
other_gpu_time
)
/
gpu_total_time
))
]
all_row_values
.
append
(
row_values
)
# Calculate the column width
...
...
@@ -835,6 +903,7 @@ def _build_table(statistic_data,
append
(
"Note:
\n
In this table, GPU time is the sum of all device(GPU) events called in the phase.
\n
"
"Unlike overview summary, if two device(GPU) events execute on different streams with overlap time, we sum them directly here.
\n
"
"The time with ratio 100% is the base time for calculating ratio.
\n
"
)
append
(
'-'
*
line_length
)
append
(
''
)
...
...
@@ -872,21 +941,27 @@ def _build_table(statistic_data,
overlap_time
=
sum_ranges
(
statistic_data
.
distributed_summary
.
overlap_range
)
row_values
=
[
'Communication'
,
format_time
(
'ProfileStep'
,
format_time
(
total_time
,
unit
=
time_unit
),
format_ratio
(
float
(
total_time
)
/
total_time
)
]
append
(
row_format
.
format
(
*
row_values
))
row_values
=
[
' Communication'
,
format_time
(
communication_time
,
unit
=
time_unit
),
format_ratio
(
float
(
communication_time
)
/
total_time
)
]
append
(
row_format
.
format
(
*
row_values
))
row_values
=
[
'Computation'
,
format_time
(
'
Computation'
,
format_time
(
computation_time
,
unit
=
time_unit
),
format_ratio
(
float
(
computation_time
)
/
total_time
)
]
append
(
row_format
.
format
(
*
row_values
))
row_values
=
[
'Overlap'
,
format_time
(
'
Overlap'
,
format_time
(
overlap_time
,
unit
=
time_unit
),
format_ratio
(
float
(
overlap_time
)
/
total_time
)
]
...
...
@@ -896,6 +971,7 @@ def _build_table(statistic_data,
"Note:
\n
Communication time: Communication Event time, Communication Op time and its kernel time on gpu.
\n
"
"Computation time: Kernel time, except kernels belong to communication(nccl kernels).
\n
"
"Overlap time: Communication time intersects with computation time.
\n
"
"The time with ratio 100% is the base time for calculating ratio.
\n
"
"Example:
\n
"
"Communication:
\n
"
" CPU: |_________________|
\n
"
...
...
@@ -938,20 +1014,22 @@ def _build_table(statistic_data,
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
min_cpu_time
)
elif
sorted_by
==
SortedKeys
.
GPUTotal
:
sorted_items
=
sorted
(
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
gpu_time
,
reverse
=
True
)
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
general_gpu_time
,
reverse
=
True
)
elif
sorted_by
==
SortedKeys
.
GPUAvg
:
sorted_items
=
sorted
(
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
avg_gpu_time
,
key
=
lambda
x
:
x
[
1
].
avg_g
eneral_g
pu_time
,
reverse
=
True
)
elif
sorted_by
==
SortedKeys
.
GPUMax
:
sorted_items
=
sorted
(
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
max_gpu_time
,
key
=
lambda
x
:
x
[
1
].
max_g
eneral_g
pu_time
,
reverse
=
True
)
elif
sorted_by
==
SortedKeys
.
GPUMin
:
sorted_items
=
sorted
(
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
min_gpu_time
)
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
min_g
eneral_g
pu_time
)
for
name
,
item
in
sorted_items
:
row_values
=
[
...
...
@@ -967,14 +1045,15 @@ def _build_table(statistic_data,
format_ratio
(
float
(
item
.
cpu_time
)
/
total_time
)),
'{} / {} / {} / {} / {}'
.
format
(
format_time
(
item
.
gpu_time
,
unit
=
time_unit
),
item
.
g
eneral_g
pu_time
,
unit
=
time_unit
),
format_time
(
item
.
avg_gpu_time
,
unit
=
time_unit
),
item
.
avg_g
eneral_g
pu_time
,
unit
=
time_unit
),
format_time
(
item
.
max_gpu_time
,
unit
=
time_unit
),
item
.
max_g
eneral_g
pu_time
,
unit
=
time_unit
),
format_time
(
item
.
min_gpu_time
,
unit
=
time_unit
),
format_ratio
(
float
(
item
.
gpu_time
)
/
total_time
))
item
.
min_general_gpu_time
,
unit
=
time_unit
),
format_ratio
(
float
(
item
.
general_gpu_time
)
/
total_time
))
]
all_row_values
.
append
(
row_values
)
if
op_detail
:
...
...
@@ -998,18 +1077,23 @@ def _build_table(statistic_data,
float
(
innerop_node
.
cpu_time
)
/
total_time
)),
'{} / {} / {} / {} / {}'
.
format
(
format_time
(
innerop_node
.
gpu_time
,
unit
=
time_unit
),
innerop_node
.
general_gpu_time
,
unit
=
time_unit
),
format_time
(
innerop_node
.
avg_gpu_time
,
unit
=
time_unit
),
innerop_node
.
avg_general_gpu_time
,
unit
=
time_unit
),
format_time
(
innerop_node
.
max_gpu_time
,
unit
=
time_unit
),
innerop_node
.
max_general_gpu_time
,
unit
=
time_unit
),
format_time
(
innerop_node
.
min_gpu_time
,
unit
=
time_unit
),
innerop_node
.
min_general_gpu_time
,
unit
=
time_unit
),
format_ratio
(
float
(
innerop_node
.
gpu_time
)
/
total_time
))
float
(
innerop_node
.
general_gpu_time
)
/
total_time
))
]
all_row_values
.
append
(
row_values
)
for
device_node_name
,
devicenode
in
innerop_node
.
devices
.
items
(
for
device_node_name
,
device
_
node
in
innerop_node
.
devices
.
items
(
):
if
len
(
device_node_name
)
+
4
>
name_column_width
:
device_node_name
=
device_node_name
[:
...
...
@@ -1018,21 +1102,21 @@ def _build_table(statistic_data,
device_node_name
+=
"..."
row_values
=
[
' {}'
.
format
(
device_node_name
),
devicenode
.
call
,
'- / - / - / - / -'
,
device
_
node
.
call
,
'- / - / - / - / -'
,
'{} / {} / {} / {} / {}'
.
format
(
format_time
(
devicenode
.
gpu_time
,
unit
=
time_unit
),
device
_
node
.
gpu_time
,
unit
=
time_unit
),
format_time
(
devicenode
.
avg_gpu_time
,
device
_
node
.
avg_gpu_time
,
unit
=
time_unit
),
format_time
(
devicenode
.
max_gpu_time
,
device
_
node
.
max_gpu_time
,
unit
=
time_unit
),
format_time
(
devicenode
.
min_gpu_time
,
device
_
node
.
min_gpu_time
,
unit
=
time_unit
),
format_ratio
(
float
(
devicenode
.
gpu_time
)
/
float
(
device
_
node
.
gpu_time
)
/
total_time
))
]
all_row_values
.
append
(
row_values
)
...
...
@@ -1043,19 +1127,19 @@ def _build_table(statistic_data,
-
5
]
device_node_name
+=
"..."
row_values
=
[
' {}'
.
format
(
device_node_name
),
devicenode
.
call
,
' {}'
.
format
(
device_node_name
),
device
_
node
.
call
,
'- / - / - / - / -'
,
'{} / {} / {} / {} / {}'
.
format
(
format_time
(
devicenode
.
gpu_time
,
unit
=
time_unit
),
device
_
node
.
gpu_time
,
unit
=
time_unit
),
format_time
(
devicenode
.
avg_gpu_time
,
unit
=
time_unit
),
device
_
node
.
avg_gpu_time
,
unit
=
time_unit
),
format_time
(
devicenode
.
max_gpu_time
,
unit
=
time_unit
),
device
_
node
.
max_gpu_time
,
unit
=
time_unit
),
format_time
(
devicenode
.
min_gpu_time
,
unit
=
time_unit
),
device
_
node
.
min_gpu_time
,
unit
=
time_unit
),
format_ratio
(
float
(
devicenode
.
gpu_time
)
/
total_time
))
float
(
device
_
node
.
gpu_time
)
/
total_time
))
]
all_row_values
.
append
(
row_values
)
# Calculate the column width
...
...
@@ -1123,14 +1207,14 @@ def _build_table(statistic_data,
format_ratio
(
float
(
item
.
cpu_time
)
/
total_time
)),
'{} / {} / {} / {} / {}'
.
format
(
format_time
(
item
.
gpu_time
,
unit
=
time_unit
),
item
.
g
eneral_g
pu_time
,
unit
=
time_unit
),
format_time
(
item
.
avg_gpu_time
,
unit
=
time_unit
),
item
.
avg_g
eneral_g
pu_time
,
unit
=
time_unit
),
format_time
(
item
.
max_gpu_time
,
unit
=
time_unit
),
item
.
max_g
eneral_g
pu_time
,
unit
=
time_unit
),
format_time
(
item
.
min_gpu_time
,
unit
=
time_unit
),
format_ratio
(
float
(
item
.
gpu_time
)
/
total_time
)),
item
.
min_g
eneral_g
pu_time
,
unit
=
time_unit
),
format_ratio
(
float
(
item
.
g
eneral_g
pu_time
)
/
total_time
)),
]
all_row_values
.
append
(
row_values
)
...
...
@@ -1207,20 +1291,22 @@ def _build_table(statistic_data,
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
min_cpu_time
)
elif
sorted_by
==
SortedKeys
.
GPUTotal
:
sorted_items
=
sorted
(
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
gpu_time
,
reverse
=
True
)
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
general_gpu_time
,
reverse
=
True
)
elif
sorted_by
==
SortedKeys
.
GPUAvg
:
sorted_items
=
sorted
(
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
avg_gpu_time
,
key
=
lambda
x
:
x
[
1
].
avg_g
eneral_g
pu_time
,
reverse
=
True
)
elif
sorted_by
==
SortedKeys
.
GPUMax
:
sorted_items
=
sorted
(
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
max_gpu_time
,
key
=
lambda
x
:
x
[
1
].
max_g
eneral_g
pu_time
,
reverse
=
True
)
elif
sorted_by
==
SortedKeys
.
GPUMin
:
sorted_items
=
sorted
(
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
min_gpu_time
)
items
.
items
(),
key
=
lambda
x
:
x
[
1
].
min_g
eneral_g
pu_time
)
for
name
,
item
in
sorted_items
:
row_values
=
[
...
...
@@ -1238,14 +1324,15 @@ def _build_table(statistic_data,
format_ratio
(
float
(
item
.
cpu_time
)
/
total_time
)),
'{} / {} / {} / {} / {}'
.
format
(
format_time
(
item
.
gpu_time
,
unit
=
time_unit
),
item
.
g
eneral_g
pu_time
,
unit
=
time_unit
),
format_time
(
item
.
avg_gpu_time
,
unit
=
time_unit
),
item
.
avg_g
eneral_g
pu_time
,
unit
=
time_unit
),
format_time
(
item
.
max_gpu_time
,
unit
=
time_unit
),
item
.
max_g
eneral_g
pu_time
,
unit
=
time_unit
),
format_time
(
item
.
min_gpu_time
,
unit
=
time_unit
),
format_ratio
(
float
(
item
.
gpu_time
)
/
total_time
)),
item
.
min_general_gpu_time
,
unit
=
time_unit
),
format_ratio
(
float
(
item
.
general_gpu_time
)
/
total_time
)),
]
all_row_values
.
append
(
row_values
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录