diff --git a/python/paddle/tensor/math.py b/python/paddle/tensor/math.py index 7cc19186d00682d9b0bab473b013b8def3dd1786..c9560fd04d5ed7fa18bebd8b3801bf44a1ae2288 100644 --- a/python/paddle/tensor/math.py +++ b/python/paddle/tensor/math.py @@ -1389,7 +1389,7 @@ def min(input, dim=None, keep_dim=False, out=None, name=None): return out -def log1p(x, out=None, name=None): +def log1p(x, name=None): """ :alias_main: paddle.log1p :alias: paddle.log1p,paddle.tensor.log1p,paddle.tensor.math.log1p @@ -1399,9 +1399,6 @@ def log1p(x, out=None, name=None): Out = \\ln(x+1) Args: x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64. - out(Variable, optional): Optional output which can be any created - Variable that meets the requirements to store the result of operation. - if out is None, a new Varibale will be create to store the result. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: @@ -1430,8 +1427,7 @@ def log1p(x, out=None, name=None): inputs = {'X': [x]} helper = LayerHelper('log1p', **locals()) dtype = helper.input_dtype(input_param_name='x') - if out is None: - out = helper.create_variable_for_type_inference(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out}) return out