From f40110a82add9879a5265ee455be517314d53483 Mon Sep 17 00:00:00 2001 From: tangwei12 Date: Tue, 21 Aug 2018 12:50:23 +0800 Subject: [PATCH] add simnet bow unittest --- .../fluid/tests/unittests/dist_simnet_bow.py | 216 ++++++++++++++++++ 1 file changed, 216 insertions(+) create mode 100644 python/paddle/fluid/tests/unittests/dist_simnet_bow.py diff --git a/python/paddle/fluid/tests/unittests/dist_simnet_bow.py b/python/paddle/fluid/tests/unittests/dist_simnet_bow.py new file mode 100644 index 00000000000..cbf5ab7a773 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/dist_simnet_bow.py @@ -0,0 +1,216 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import numpy as np +import argparse +import time +import math +import random + +import paddle +import paddle.fluid as fluid +import paddle.fluid.profiler as profiler +from paddle.fluid import core +import unittest +from multiprocessing import Process +import os +import signal +from functools import reduce +from test_dist_base import TestDistRunnerBase, runtime_main + +DTYPE = "float32" + +# For Net +base_lr = 0.005 +emb_lr = base_lr * 3 +dict_dim = 1451594 +emb_dim = 128 +hid_dim = 128 +margin = 0.1 +batch_size = 128 +sample_rate = 1 + +# Fix seed for test +fluid.default_startup_program().random_seed = 1 +fluid.default_main_program().random_seed = 1 + + +def get_acc(cos_q_nt, cos_q_pt): + cond = fluid.layers.less_than(cos_q_nt, cos_q_pt) + cond = fluid.layers.cast(cond, dtype='float64') + cond_3 = fluid.layers.reduce_sum(cond) + acc = fluid.layers.elementwise_div( + cond_3, + fluid.layers.fill_constant( + shape=[1], value=batch_size * 1.0, dtype='float64'), + name="simnet_acc") + return acc + + +def get_loss(cos_q_pt, cos_q_nt): + loss_op1 = fluid.layers.elementwise_sub( + fluid.layers.fill_constant_batch_size_like( + input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'), + cos_q_pt) + loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt) + loss_op3 = fluid.layers.elementwise_max( + fluid.layers.fill_constant_batch_size_like( + input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'), + loss_op2) + avg_cost = fluid.layers.mean(loss_op3) + return avg_cost + + +def get_optimizer(): + # SGD optimizer + optimizer = fluid.optimizer.SGD(learning_rate=base_lr) + return optimizer + + +def train_network(): + # query + q = fluid.layers.data( + name="query_ids", shape=[1], dtype="int64", lod_level=1) + ## embedding + q_emb = fluid.layers.embedding( + input=q, + size=[dict_dim, emb_dim], + param_attr=fluid.ParamAttr( + name="__emb__", learning_rate=emb_lr), + is_sparse=True) + ## vsum + q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum') + q_ss = fluid.layers.softsign(q_sum) + ## fc layer after conv + q_fc = fluid.layers.fc(input=q_ss, + size=hid_dim, + param_attr=fluid.ParamAttr( + name="__q_fc__", learning_rate=base_lr)) + # label data + label = fluid.layers.data(name="label", shape=[1], dtype="int64") + # pt + pt = fluid.layers.data( + name="pos_title_ids", shape=[1], dtype="int64", lod_level=1) + ## embedding + pt_emb = fluid.layers.embedding( + input=pt, + size=[dict_dim, emb_dim], + param_attr=fluid.ParamAttr( + name="__emb__", learning_rate=emb_lr), + is_sparse=True) + ## vsum + pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum') + pt_ss = fluid.layers.softsign(pt_sum) + ## fc layer + pt_fc = fluid.layers.fc(input=pt_ss, + size=hid_dim, + param_attr=fluid.ParamAttr( + name="__fc__", learning_rate=base_lr), + bias_attr=fluid.ParamAttr(name="__fc_b__")) + # nt + nt = fluid.layers.data( + name="neg_title_ids", shape=[1], dtype="int64", lod_level=1) + ## embedding + nt_emb = fluid.layers.embedding( + input=nt, + size=[dict_dim, emb_dim], + param_attr=fluid.ParamAttr( + name="__emb__", learning_rate=emb_lr), + is_sparse=True) + ## vsum + nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum') + nt_ss = fluid.layers.softsign(nt_sum) + ## fc layer + nt_fc = fluid.layers.fc(input=nt_ss, + size=hid_dim, + param_attr=fluid.ParamAttr( + name="__fc__", learning_rate=base_lr), + bias_attr=fluid.ParamAttr(name="__fc_b__")) + cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc) + cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc) + # loss + avg_cost = get_loss(cos_q_pt, cos_q_nt) + # acc + acc = get_acc(cos_q_nt, cos_q_pt) + return [avg_cost, acc, cos_q_pt] + + +def combination(x, y): + res = [[[xi, yi] for yi in y] for xi in x] + return res[0] + + +def get_one_data(file_list): + for file in file_list: + contents = [] + with open(file, "r") as fin: + for i in fin: + contents.append(i.strip()) + random.shuffle(contents) + for index, q in enumerate(contents): + try: + one_data = [[int(j) for j in i.split(" ")] + for i in q.split(";")[:-1]] + if one_data[1][0] + one_data[1][1] != len(one_data) - 3: + q = fin.readline() + continue + tmp = combination(one_data[3:3 + one_data[1][0]], + one_data[3 + one_data[1][0]:]) + except Exception as e: + continue + + for each in tmp: + yield [one_data[2], each[0], each[1], [0]] + + +def get_batch_reader(file_list): + def batch_reader(): + res = [] + for i in get_one_data(file_list): + if random.random() <= sample_rate: + res.append(i) + if len(res) >= batch_size: + yield res + res = [] + + return batch_reader + + +def get_train_reader(): + # The training data set. + train_reader = get_batch_reader("sample") + train_feed = ["query_ids", "pos_title_ids", "neg_title_ids", "label"] + return train_reader, train_feed + + +class TestDistSimnetBow2x2(TestDistRunnerBase): + def get_model(self, batch_size=2): + # Train program + avg_cost, acc, predict = train_network() + + inference_program = fluid.default_main_program().clone() + # Optimization + opt = get_optimizer(learning_rate=0.001) + opt.minimize(avg_cost) + + # Reader + train_reader, _ = get_train_reader() + + return inference_program, avg_cost, train_reader, _, acc, predict + + +if __name__ == "__main__": + runtime_main(TestDistSimnetBow2x2) -- GitLab