Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f364b722
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f364b722
编写于
1月 25, 2019
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop, add ptb_rnn test in imperative
上级
a59b7ac7
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
120 addition
and
50 deletion
+120
-50
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
...n/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
+120
-49
python/paddle/fluid/tests/unittests/test_imperative_split.py
python/paddle/fluid/tests/unittests/test_imperative_split.py
+0
-1
未找到文件。
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
浏览文件 @
f364b722
...
@@ -20,7 +20,9 @@ from paddle.fluid.imperative.nn import EMBEDDING
...
@@ -20,7 +20,9 @@ from paddle.fluid.imperative.nn import EMBEDDING
import
paddle.fluid.framework
as
framework
import
paddle.fluid.framework
as
framework
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.base
import
to_variable
from
paddle.fluid.imperative.base
import
to_variable
from
test_imperative_base
import
new_program_scope
import
numpy
as
np
import
numpy
as
np
import
six
from
paddle.fluid.backward
import
append_backward
from
paddle.fluid.backward
import
append_backward
...
@@ -36,8 +38,8 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
...
@@ -36,8 +38,8 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
self
.
_num_layers
=
num_layers
self
.
_num_layers
=
num_layers
self
.
_init_scale
=
init_scale
self
.
_init_scale
=
init_scale
self
.
_dropout
=
dropout
self
.
_dropout
=
dropout
self
.
input
=
None
self
.
_
input
=
None
self
.
num_steps
=
num_steps
self
.
_
num_steps
=
num_steps
def
_build_once
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
def
_build_once
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
self
.
weight_1_arr
=
[]
self
.
weight_1_arr
=
[]
...
@@ -75,58 +77,49 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
...
@@ -75,58 +77,49 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
def
forward
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
def
forward
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
res
=
[]
res
=
[]
for
index
in
range
(
self
.
num_steps
):
for
index
in
range
(
self
.
_
num_steps
):
self
.
input
=
fluid
.
layers
.
slice
(
self
.
_
input
=
fluid
.
layers
.
slice
(
input_embedding
,
axes
=
[
1
],
starts
=
[
index
],
ends
=
[
index
+
1
])
input_embedding
,
axes
=
[
1
],
starts
=
[
index
],
ends
=
[
index
+
1
])
self
.
input
=
fluid
.
layers
.
reshape
(
self
.
_
input
=
fluid
.
layers
.
reshape
(
self
.
input
,
shape
=
[
-
1
,
self
.
_hidden_size
])
self
.
_
input
,
shape
=
[
-
1
,
self
.
_hidden_size
])
for
k
in
range
(
self
.
_num_layers
):
for
k
in
range
(
self
.
_num_layers
):
pre_hidden
=
self
.
hidden_array
[
k
]
pre_hidden
=
self
.
hidden_array
[
k
]
print
(
"pre_hidden shape is:{}"
.
format
(
pre_hidden
.
shape
))
print
(
"input shape is:{}"
.
format
(
self
.
input
.
shape
))
pre_cell
=
self
.
cell_array
[
k
]
pre_cell
=
self
.
cell_array
[
k
]
weight_1
=
self
.
weight_1_arr
[
k
]
weight_1
=
self
.
weight_1_arr
[
k
]
bias
=
self
.
bias_arr
[
k
]
bias
=
self
.
bias_arr
[
k
]
nn
=
fluid
.
layers
.
concat
([
self
.
input
,
pre_hidden
],
1
)
nn
=
fluid
.
layers
.
concat
([
self
.
_
input
,
pre_hidden
],
1
)
gate_input
=
fluid
.
layers
.
matmul
(
x
=
nn
,
y
=
weight_1
)
gate_input
=
fluid
.
layers
.
matmul
(
x
=
nn
,
y
=
weight_1
)
gate_input
=
fluid
.
layers
.
elementwise_add
(
gate_input
,
bias
)
gate_input
=
fluid
.
layers
.
elementwise_add
(
gate_input
,
bias
)
print
(
"gate_input shape is: {}"
.
format
(
gate_input
.
shape
))
i
,
j
,
f
,
o
=
fluid
.
layers
.
split
(
print
(
"gate_input value is :{}"
.
format
(
gate_input
.
_numpy
()))
gate_input
,
num_or_sections
=
4
,
dim
=-
1
)
print
(
"gate_input desc is :{}"
.
format
(
gate_input
))
c
=
pre_cell
*
fluid
.
layers
.
sigmoid
(
f
)
+
fluid
.
layers
.
sigmoid
(
# i, j, f, o = fluid.layers.split(gate_input, num_or_sections=4, dim=-1)
i
)
*
fluid
.
layers
.
tanh
(
j
)
# #
m
=
fluid
.
layers
.
tanh
(
c
)
*
fluid
.
layers
.
sigmoid
(
o
)
# # c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
self
.
hidden_array
[
k
]
=
m
# # i) * fluid.layers.tanh(j)
self
.
cell_array
[
k
]
=
c
# # m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
self
.
_input
=
m
# #
# # self.hidden_array[k] = m
if
self
.
_dropout
is
not
None
and
self
.
_dropout
>
0.0
:
# # self.cell_array[k] = c
self
.
_input
=
fluid
.
layers
.
dropout
(
# # self.input = m
self
.
_input
,
# #
dropout_prob
=
self
.
_dropout
,
# # if self.dropout is not None and self.dropout > 0.0:
dropout_implementation
=
'upscale_in_train'
)
# # self.input = fluid.layers.dropout(
res
.
append
(
# # self.input,
fluid
.
layers
.
reshape
(
# # dropout_prob=self.dropout,
self
.
_input
,
shape
=
[
1
,
-
1
,
self
.
_hidden_size
]))
# # dropout_implementation='upscale_in_train')
real_res
=
fluid
.
layers
.
concat
(
res
,
0
)
# #
real_res
=
fluid
.
layers
.
transpose
(
x
=
real_res
,
perm
=
[
1
,
0
,
2
])
# # res.append(
last_hidden
=
fluid
.
layers
.
concat
(
self
.
hidden_array
,
1
)
# # fluid.layers.reshape(
last_hidden
=
fluid
.
layers
.
reshape
(
# # input, shape=[1, -1, self._hidden_size]))
last_hidden
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
# # real_res = fluid.layers.concat(res, 0)
last_hidden
=
fluid
.
layers
.
transpose
(
x
=
last_hidden
,
perm
=
[
1
,
0
,
2
])
# # real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
last_cell
=
fluid
.
layers
.
concat
(
self
.
cell_array
,
1
)
# # last_hidden = fluid.layers.concat(self.hidden_array, 1)
last_cell
=
fluid
.
layers
.
reshape
(
# # last_hidden = fluid.layers.reshape(
last_cell
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
# # last_hidden, shape=[-1, self._num_layers, self._hidden_size])
last_cell
=
fluid
.
layers
.
transpose
(
x
=
last_cell
,
perm
=
[
1
,
0
,
2
])
# # last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
return
real_res
,
last_hidden
,
last_cell
# # last_cell = fluid.layers.concat(self.cell_array, 1)
# # last_cell = fluid.layers.reshape(
# # last_cell, shape=[-1, self._num_layers, self._hidden_size])
# # last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
# #
# return real_res, last_hidden, last_cell
return
[
1
],
[
2
],
[
3
]
class
PtbModel
(
fluid
.
imperative
.
Layer
):
class
PtbModel
(
fluid
.
imperative
.
Layer
):
...
@@ -189,12 +182,11 @@ class PtbModel(fluid.imperative.Layer):
...
@@ -189,12 +182,11 @@ class PtbModel(fluid.imperative.Layer):
x_emb
,
x_emb
,
dropout_prob
=
self
.
drop_out
,
dropout_prob
=
self
.
drop_out
,
dropout_implementation
=
'upscale_in_train'
)
dropout_implementation
=
'upscale_in_train'
)
print
(
"init_c is {}"
.
format
(
init_c
))
rnn_out
,
last_hidden
,
last_cell
=
self
.
simple_lstm_rnn
(
x_emb
,
init_h
,
rnn_out
,
last_hidden
,
last_cell
=
self
.
simple_lstm_rnn
(
x_emb
,
init_h
,
init_c
)
init_c
)
rnn_out
=
fluid
.
layers
.
reshape
(
rnn_out
=
fluid
.
layers
.
reshape
(
rnn_out
,
shape
=
[
-
1
,
self
.
num_steps
,
self
.
hidden_size
])
rnn_out
,
shape
=
[
-
1
,
self
.
num_steps
,
self
.
hidden_size
])
projection
=
fluid
.
layers
.
reshape
(
rnn_out
,
self
.
softmax_weight
)
projection
=
fluid
.
layers
.
matmul
(
rnn_out
,
self
.
softmax_weight
)
projection
=
fluid
.
layers
.
elementwise_add
(
projection
,
self
.
softmax_bias
)
projection
=
fluid
.
layers
.
elementwise_add
(
projection
,
self
.
softmax_bias
)
projection
=
fluid
.
layers
.
reshape
(
projection
=
fluid
.
layers
.
reshape
(
projection
,
shape
=
[
-
1
,
self
.
vocab_size
])
projection
,
shape
=
[
-
1
,
self
.
vocab_size
])
...
@@ -232,7 +224,8 @@ class TestImperativePtbRnn(unittest.TestCase):
...
@@ -232,7 +224,8 @@ class TestImperativePtbRnn(unittest.TestCase):
init_scale
=
init_scale
)
init_scale
=
init_scale
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
print
(
"q"
)
dy_param_updated
=
dict
()
dy_param_init
=
dict
()
for
i
in
range
(
2
):
for
i
in
range
(
2
):
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
...
@@ -248,17 +241,95 @@ class TestImperativePtbRnn(unittest.TestCase):
...
@@ -248,17 +241,95 @@ class TestImperativePtbRnn(unittest.TestCase):
init_cell
=
to_variable
(
init_cell_data
)
init_cell
=
to_variable
(
init_cell_data
)
dy_loss
,
last_hidden
,
last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
dy_loss
,
last_hidden
,
last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
init_cell
)
init_cell
)
dy_param_init
=
dict
()
if
i
==
0
:
if
i
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
).
all_parameters
():
dy_param_init
[
param
.
name
]
=
param
.
_numpy
()
dy_param_init
[
param
.
name
]
=
param
.
_numpy
()
dy_loss
.
_backward
()
dy_loss
.
_backward
()
sgd
.
minimize
(
dy_loss
)
sgd
.
minimize
(
dy_loss
)
dy_param_updated
=
dict
()
for
param
in
fluid
.
default_main_program
().
global_block
(
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
).
all_parameters
():
dy_param_updated
[
param
.
name
]
=
param
.
_numpy
()
dy_param_updated
[
param
.
name
]
=
param
.
_numpy
()
# print("dy_loss is {}".format(dy_loss._numpy()))
# print("last_hidden is {}".format(last_hidden._numpy()))
# print("last_cell is {}".format(last_cell._numpy()))
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
# TODO: marsyang1993 Change seed to
ptb_model
=
PtbModel
(
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_steps
=
num_steps
,
init_scale
=
init_scale
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
x
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
3
,
1
],
dtype
=
'int64'
)
y
=
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'float32'
)
init_hidden
=
fluid
.
layers
.
data
(
name
=
"init_hidden"
,
shape
=
[
1
],
dtype
=
'float32'
)
init_cell
=
fluid
.
layers
.
data
(
name
=
"init_cell"
,
shape
=
[
1
],
dtype
=
'float32'
)
static_loss
,
static_last_hidden
,
static_last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
init_cell
)
sgd
.
minimize
(
static_loss
)
static_param_updated
=
dict
()
static_param_init
=
dict
()
static_param_name_list
=
list
()
for
param
in
fluid
.
default_startup_program
().
global_block
(
).
all_parameters
():
static_param_name_list
.
append
(
param
.
name
)
out
=
exe
.
run
(
framework
.
default_startup_program
(),
fetch_list
=
static_param_name_list
)
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_init
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
i
in
range
(
2
):
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
1
))
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_cell_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
fetch_list
=
[
static_loss
,
static_last_hidden
,
static_last_cell
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
x_data
,
"y"
:
y_data
,
"init_hidden"
:
init_hidden_data
,
"init_cell"
:
init_cell_data
},
fetch_list
=
fetch_list
)
static_loss_value
=
out
[
0
]
static_last_cell_value
=
out
[
1
]
static_last_hidden_value
=
out
[
2
]
# print("static_loss is {}".format(out[0]))
# print("last_hidden is {}".format(out[1]))
# print("last_cell is {}".format(out[2]))
for
i
in
range
(
3
,
len
(
out
)):
static_param_updated
[
static_param_name_list
[
i
-
3
]]
=
out
[
i
]
self
.
assertTrue
(
np
.
allclose
(
static_loss_value
.
all
(),
dy_loss
.
_numpy
().
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_last_cell_value
.
all
(),
last_cell
.
_numpy
().
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_last_hidden_value
.
all
(),
last_hidden
.
_numpy
().
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_init
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_init
[
key
].
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_updated
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_updated
[
key
].
all
()))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_imperative_split.py
浏览文件 @
f364b722
...
@@ -38,7 +38,6 @@ class TestImperativePtbRnn(unittest.TestCase):
...
@@ -38,7 +38,6 @@ class TestImperativePtbRnn(unittest.TestCase):
inp
=
to_variable
(
np
.
arange
(
160
).
reshape
(
4
,
40
).
astype
(
'float32'
))
inp
=
to_variable
(
np
.
arange
(
160
).
reshape
(
4
,
40
).
astype
(
'float32'
))
st
=
Split_test
()
st
=
Split_test
()
out
=
st
(
inp
)
out
=
st
(
inp
)
print
(
out
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录