未验证 提交 f29a3c68 编写于 作者: W Weilong Wu 提交者: GitHub

Fix the logic of VarBase _to func (#37193)

上级 4c160be2
...@@ -386,21 +386,18 @@ def monkey_patch_varbase(): ...@@ -386,21 +386,18 @@ def monkey_patch_varbase():
device = t.place device = t.place
if dtype is None: if dtype is None:
dtype = t.dtype dtype = t.dtype
if type(dtype) is str:
dtype = framework.convert_np_dtype_to_dtype_(dtype)
# 1. gpu place need to determine whether the memory is sufficient for allocation. # 1. gpu place need to determine whether the memory is sufficient for allocation.
if t.place.is_gpu_place(): if t.place.is_gpu_place():
gpu_memory_available = core.gpu_memory_available()
# for gpu, minimum memory allocation unit is 256 bytes.
if type(dtype) is str:
size_dtype = core.size_of_dtype(
framework.convert_np_dtype_to_dtype_(dtype))
else:
size_dtype = core.size_of_dtype(dtype) size_dtype = core.size_of_dtype(dtype)
# Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes, # Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes,
# waiting_alloc_memory will compute the memory space occupied by 't'. # waiting_alloc_memory will compute the memory space occupied by 't'.
# Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough. # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
waiting_alloc_memory = ( waiting_alloc_memory = (
(t._numel() * size_dtype) / 256 + 1) * 256 * 1.2 (t._numel() * size_dtype) / 256 + 1) * 256 * 1.2
gpu_memory_available = core.gpu_memory_available()
if gpu_memory_available < waiting_alloc_memory: if gpu_memory_available < waiting_alloc_memory:
# Copy Tensor to cpu # Copy Tensor to cpu
t_used = t._copy_to(paddle.CPUPlace(), blocking) t_used = t._copy_to(paddle.CPUPlace(), blocking)
...@@ -414,12 +411,17 @@ def monkey_patch_varbase(): ...@@ -414,12 +411,17 @@ def monkey_patch_varbase():
# 2. cast Tensor to dtype # 2. cast Tensor to dtype
if dtype is not None and dtype != t_used.dtype: if dtype is not None and dtype != t_used.dtype:
with paddle.fluid.framework._dygraph_place_guard(
place=t_used.place):
t_casted = t_used.cast(dtype=dtype) t_casted = t_used.cast(dtype=dtype)
else: else:
t_casted = t_used t_casted = t_used
# 3. Copy casted Tensor(in CPU or GPU) to device # 3. Copy casted Tensor(in CPU or GPU) to device
if device is not None and not t_casted.place._equals(device):
new_t = t_casted._copy_to(device, blocking) new_t = t_casted._copy_to(device, blocking)
else:
new_t = t_casted
# 4. Share Tensor to origin Tensor # 4. Share Tensor to origin Tensor
dst_tensor = t.value().get_tensor() dst_tensor = t.value().get_tensor()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册