diff --git a/develop/doc/operators.json b/develop/doc/operators.json index 23dc607913728b32a755138905358066f24f552d..6c7ea5074cecc728fb107bd8ade9ba74f0bdf8ef 100644 --- a/develop/doc/operators.json +++ b/develop/doc/operators.json @@ -1059,6 +1059,24 @@ "intermediate" : 0 } ], "attrs" : [ ] +},{ + "type" : "reciprocal", + "comment" : "\nReciprocal Activation Operator.\n\n$$out = \\frac{1}{x}$$\n\n", + "inputs" : [ + { + "name" : "X", + "comment" : "Input of Reciprocal operator", + "duplicable" : 0, + "intermediate" : 0 + } ], + "outputs" : [ + { + "name" : "Out", + "comment" : "Output of Reciprocal operator", + "duplicable" : 0, + "intermediate" : 0 + } ], + "attrs" : [ ] },{ "type" : "softmax", "comment" : "\nSoftmax Operator.\n\nThe input of the softmax operator is a 2-D tensor with shape N x K (N is the\nbatch_size, K is the dimension of input feature). The output tensor has the\nsame shape as the input tensor.\n\nFor each row of the input tensor, the softmax operator squashes the\nK-dimensional vector of arbitrary real values to a K-dimensional vector of real\nvalues in the range [0, 1] that add up to 1.\nIt computes the exponential of the given dimension and the sum of exponential\nvalues of all the other dimensions in the K-dimensional vector input.\nThen the ratio of the exponential of the given dimension and the sum of\nexponential values of all the other dimensions is the output of the softmax\noperator.\n\nFor each row $i$ and each column $j$ in Input(X), we have:\n $$Out[i, j] = \\frac{\\exp(X[i, j])}{\\sum_j(exp(X[i, j])}$$\n\n", @@ -1544,24 +1562,6 @@ "comment" : "(float, default 0.0) L2 regularization strength.", "generated" : 0 } ] -},{ - "type" : "reciprocal", - "comment" : "\nReciprocal Activation Operator.\n\n$$out = \\frac{1}{x}$$\n\n", - "inputs" : [ - { - "name" : "X", - "comment" : "Input of Reciprocal operator", - "duplicable" : 0, - "intermediate" : 0 - } ], - "outputs" : [ - { - "name" : "Out", - "comment" : "Output of Reciprocal operator", - "duplicable" : 0, - "intermediate" : 0 - } ], - "attrs" : [ ] },{ "type" : "reduce_min", "comment" : "\n{ReduceOp} Operator.\n\nThis operator computes the min of input tensor along the given dimension. \nThe result tensor has 1 fewer dimension than the input unless keep_dim is true.\nIf reduce_all is true, just reduce along all dimensions and output a scalar.\n\n", @@ -2426,6 +2426,29 @@ "intermediate" : 0 } ], "attrs" : [ ] +},{ + "type" : "get_places", + "comment" : "\nReturns a list of places based on flags. The list will be used for parallel\nexecution.\n", + "inputs" : [ ], + "outputs" : [ + { + "name" : "Out", + "comment" : "vector of Place", + "duplicable" : 0, + "intermediate" : 0 + } ], + "attrs" : [ + { + "name" : "device_count", + "type" : "int", + "comment" : "device count", + "generated" : 0 + }, { + "name" : "device_type", + "type" : "string", + "comment" : "device type must be in [\"CPU\", \"CUDA\"]", + "generated" : 0 + } ] },{ "type" : "read_from_array", "comment" : "\nReadFromArray Operator.\n\nRead a LoDTensor from a LoDTensor Array.\n\nAssume $T$ is LoDTensor, $i$ is the subscript of the array, and $A$ is the array. The\nequation is\n\n$$T = A[i]$$\n\n",