Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f2317b67
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f2317b67
编写于
9月 13, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
separate resetFwd and resetBwd to some sub functions
上级
66fdbd0c
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
433 addition
and
188 deletion
+433
-188
paddle/gserver/layers/MKLDNNConvLayer.cpp
paddle/gserver/layers/MKLDNNConvLayer.cpp
+327
-186
paddle/gserver/layers/MKLDNNConvLayer.h
paddle/gserver/layers/MKLDNNConvLayer.h
+106
-2
未找到文件。
paddle/gserver/layers/MKLDNNConvLayer.cpp
浏览文件 @
f2317b67
...
@@ -18,9 +18,6 @@ limitations under the License. */
...
@@ -18,9 +18,6 @@ limitations under the License. */
using
namespace
mkldnn
;
// NOLINT
using
namespace
mkldnn
;
// NOLINT
typedef
memory
::
format
format
;
typedef
memory
::
format
format
;
typedef
convolution_forward
conv_fwd
;
typedef
convolution_backward_weights
conv_bwdWgt
;
typedef
convolution_backward_data
conv_bwdData
;
namespace
paddle
{
namespace
paddle
{
...
@@ -114,237 +111,396 @@ void MKLDNNConvLayer::resetFwd(std::vector<primitive>& pipeline,
...
@@ -114,237 +111,396 @@ void MKLDNNConvLayer::resetFwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
MKLDNNMatrixPtr
&
out
)
{
pipeline
.
clear
();
resetFwdPD
(
fwdPD_
);
bool
hasBias
=
biases_
&&
biases_
->
getW
();
biasVal_
=
nullptr
;
resetFwdBuffers
(
fwdPD_
,
in
,
wgt
,
bias
,
out
);
resetFwdPipeline
(
pipeline
,
fwdPD_
,
in
,
wgt
,
bias
,
out
);
printValueFormatFlow
();
}
void
MKLDNNConvLayer
::
resetBwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>
bwdWgtPD
;
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>
bwdDataPD
;
resetBwdWgtPD
(
bwdWgtPD
);
resetBwdDataPD
(
bwdDataPD
);
resetBwdBuffers
(
bwdWgtPD
,
bwdDataPD
,
in
,
wgt
,
bias
,
out
);
resetBwdPipeline
(
pipeline
,
bwdWgtPD
,
bwdDataPD
,
in
,
wgt
,
bias
,
out
);
printGradFormatFlow
();
}
void
MKLDNNConvLayer
::
updateInputData
()
{
cpuInVal_
->
setData
(
getInputValue
(
0
,
CPU_DEVICE
)
->
getData
());
}
void
MKLDNNConvLayer
::
updateWeights
(
const
UpdateCallback
&
callback
)
{
weight_
->
getParameterPtr
()
->
incUpdate
(
callback
);
if
(
biases_
&&
biases_
->
getWGrad
())
{
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
void
MKLDNNConvLayer
::
loadConvSettings
(
memory
::
dims
&
wgt
,
memory
::
dims
&
bias
,
memory
::
dims
&
stride
,
memory
::
dims
&
dilation
,
memory
::
dims
&
padL
,
memory
::
dims
&
padR
)
{
wgt
=
(
gp_
==
1
)
?
memory
::
dims
{
oc_
,
ic_
,
fh_
,
fw_
}
:
memory
::
dims
{
gp_
,
oc_
/
gp_
,
ic_
/
gp_
,
fh_
,
fw_
};
bias
=
memory
::
dims
{
oc_
};
stride
=
memory
::
dims
{
sh_
,
sw_
};
padL
=
memory
::
dims
{
ph_
,
pw_
};
padR
=
getPaddingR
();
// note: mkldnn dilation start from 0
dilation
=
memory
::
dims
{
dh_
-
1
,
dw_
-
1
};
}
void
MKLDNNConvLayer
::
resetFwdPD
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
)
{
// dims for conv
// dims for conv
memory
::
dims
inDims
=
memory
::
dims
{
bs_
,
ic_
,
ih_
,
iw_
};
memory
::
dims
inDims
=
memory
::
dims
{
bs_
,
ic_
,
ih_
,
iw_
};
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
memory
::
dims
wgtDims
=
memory
::
dims
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
;
(
gp_
==
1
)
?
memory
::
dims
{
oc_
,
ic_
,
fh_
,
fw_
}
loadConvSettings
(
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
);
:
memory
::
dims
{
gp_
,
oc_
/
gp_
,
ic_
/
gp_
,
fh_
,
fw_
};
memory
::
dims
biasDims
=
memory
::
dims
{
oc_
};
memory
::
dims
strides
=
{
sh_
,
sw_
};
// note: mkldnn dilation start from 0
memory
::
dims
dilations
=
{
dh_
-
1
,
dw_
-
1
};
memory
::
dims
padding
=
{
ph_
,
pw_
};
memory
::
dims
padR
=
getPaddingR
();
// create forward handle
prop_kind
pk
=
passType_
==
PASS_TEST
?
prop_kind
::
forward_scoring
prop_kind
pk
=
:
prop_kind
::
forward_training
;
passType_
==
PASS_TEST
?
prop_kind
::
forward
:
prop_kind
::
forward_training
;
algorithm
algo
=
algorithm
::
convolution_direct
;
algorithm
algo
=
algorithm
::
convolution_direct
;
padding_kind
padKind
=
padding_kind
::
zero
;
padding_kind
padKind
=
padding_kind
::
zero
;
conv_fwd
::
desc
fwdDesc
=
conv_fwd
::
desc
fwdDesc
=
hasBias
?
conv_fwd
::
desc
(
pk
,
biases_
&&
biases_
->
getW
()
algo
,
?
conv_fwd
::
desc
(
pk
,
MKLDNNMatrix
::
createMemoryDesc
(
inDims
),
algo
,
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
MKLDNNMatrix
::
createMemoryDesc
(
inDims
),
MKLDNNMatrix
::
createMemoryDesc
(
biasDims
),
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
MKLDNNMatrix
::
createMemoryDesc
(
outDims
),
MKLDNNMatrix
::
createMemoryDesc
(
biasDims
),
strides
,
MKLDNNMatrix
::
createMemoryDesc
(
outDims
),
dilations
,
strides
,
padding
,
dilations
,
padR
,
padL
,
padKind
)
padR
,
:
conv_fwd
::
desc
(
pk
,
padKind
)
algo
,
:
conv_fwd
::
desc
(
pk
,
MKLDNNMatrix
::
createMemoryDesc
(
inDims
),
algo
,
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
MKLDNNMatrix
::
createMemoryDesc
(
inDims
),
MKLDNNMatrix
::
createMemoryDesc
(
outDims
),
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
strides
,
MKLDNNMatrix
::
createMemoryDesc
(
outDims
),
dilations
,
strides
,
padding
,
dilations
,
padR
,
padL
,
padKind
);
padR
,
fwdPD_
.
reset
(
new
conv_fwd
::
primitive_desc
(
fwdDesc
,
engine_
));
padKind
);
pd
.
reset
(
new
conv_fwd
::
primitive_desc
(
fwdDesc
,
engine_
));
// create mkldnn matrix
}
const
MatrixPtr
&
wgtVal
=
weight_
->
getW
();
const
MatrixPtr
&
inVal
=
inputLayers_
[
0
]
->
getOutput
().
value
;
void
MKLDNNConvLayer
::
resetFwdBuffers
(
const
MatrixPtr
&
outVal
=
output_
.
value
;
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
wgt
=
MKLDNNMatrix
::
create
(
wgtVal
,
fwdPD_
->
weights_primitive_desc
());
MKLDNNMatrixPtr
&
in
,
in
=
MKLDNNMatrix
::
create
(
inVal
,
fwdPD_
->
src_primitive_desc
());
MKLDNNMatrixPtr
&
wgt
,
out
=
MKLDNNMatrix
::
create
(
outVal
,
fwdPD_
->
dst_primitive_desc
());
MKLDNNMatrixPtr
&
bias
,
VLOG
(
MKLDNN_FMTS
)
<<
"Weight value format: "
<<
wgtVal_
->
getFormat
();
MKLDNNMatrixPtr
&
out
)
{
if
(
hasBias
)
{
CHECK
(
pd
);
const
MatrixPtr
&
biasVal
=
biases_
->
getW
();
resetInValue
(
pd
,
in
);
bias
=
MKLDNNMatrix
::
create
(
biasVal
,
biasDims
,
format
::
x
,
engine_
);
CHECK
(
bias
->
getPrimitiveDesc
()
==
fwdPD_
->
bias_primitive_desc
())
resetWgtBiasValue
(
pd
,
wgt
,
bias
);
<<
"bias primitive desc should always be equal"
;
resetOutValue
(
pd
,
out
);
}
void
MKLDNNConvLayer
::
resetFwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
pipeline
.
clear
();
if
(
cvtInVal_
)
{
pipeline
.
push_back
(
*
cvtInVal_
);
}
if
(
bias
)
{
fwd_
.
reset
(
new
conv_fwd
(
*
pd
,
*
in
,
*
wgt
,
*
bias
,
*
out
));
}
else
{
fwd_
.
reset
(
new
conv_fwd
(
*
pd
,
*
in
,
*
wgt
,
*
out
));
}
}
pipeline
.
push_back
(
*
fwd_
);
if
(
cvtOutVal_
)
{
pipeline
.
push_back
(
*
cvtOutVal_
);
}
}
// add reorder if input value do not match
void
MKLDNNConvLayer
::
resetInValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
)
{
const
MatrixPtr
&
inMat
=
inputLayers_
[
0
]
->
getOutput
().
value
;
in
=
MKLDNNMatrix
::
create
(
inMat
,
pd
->
src_primitive_desc
());
// create buffer and reorder if input value do not match
cpuInVal_
=
nullptr
;
cvtInVal_
=
nullptr
;
if
(
inputIsOnlyMKLDNN
())
{
if
(
inputIsOnlyMKLDNN
())
{
MKLDNNMatrixPtr
dnnIn
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
in
Val
);
MKLDNNMatrixPtr
dnnIn
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
in
Mat
);
CHECK
(
dnnIn
)
<<
"Input should be MKLDNNMatrix"
;
CHECK
(
dnnIn
)
<<
"Input should be MKLDNNMatrix"
;
if
(
dnnIn
->
getPrimitiveDesc
()
!=
in
->
getPrimitiveDesc
())
{
if
(
dnnIn
->
getPrimitiveDesc
()
!=
in
->
getPrimitiveDesc
())
{
CHECK_EQ
(
dnnIn
->
getFormat
(),
format
::
nc
);
CHECK_EQ
(
dnnIn
->
getFormat
(),
format
::
nc
);
CHECK
(
ih_
==
1
&&
iw_
==
1
);
CHECK
(
ih_
==
1
&&
iw_
==
1
)
<<
"when input is nc format"
;
dnnIn
=
MKLDNNMatrix
::
create
(
inVal
,
inDims
,
format
::
nchw
,
engine_
);
// create a new one with nchw format and same data
memory
::
dims
inDims
=
memory
::
dims
{
bs_
,
ic_
,
1
,
1
};
dnnIn
=
MKLDNNMatrix
::
create
(
inMat
,
inDims
,
format
::
nchw
,
engine_
);
CHECK
(
dnnIn
->
getPrimitiveDesc
()
==
in
->
getPrimitiveDesc
());
CHECK
(
dnnIn
->
getPrimitiveDesc
()
==
in
->
getPrimitiveDesc
());
}
}
in
=
dnnIn
;
in
=
dnnIn
;
}
else
{
}
else
{
const
MatrixPtr
&
cpuIn
=
getInputValue
(
0
,
CPU_DEVICE
);
const
MatrixPtr
&
cpuIn
=
getInputValue
(
0
,
CPU_DEVICE
);
memory
::
dims
inDims
=
memory
::
dims
{
bs_
,
ic_
,
ih_
,
iw_
};
cpuInVal_
=
MKLDNNMatrix
::
create
(
cpuIn
,
inDims
,
format
::
nchw
,
engine_
);
cpuInVal_
=
MKLDNNMatrix
::
create
(
cpuIn
,
inDims
,
format
::
nchw
,
engine_
);
if
(
cpuInVal_
->
getPrimitiveDesc
()
!=
in
->
getPrimitiveDesc
())
{
if
(
cpuInVal_
->
getPrimitiveDesc
()
!=
in
->
getPrimitiveDesc
())
{
// create new mkldnn matrix
// create new mkldnn matrix
in
=
MKLDNNMatrix
::
create
(
nullptr
,
fwdPD_
->
src_primitive_desc
());
in
=
MKLDNNMatrix
::
create
(
nullptr
,
pd
->
src_primitive_desc
());
cvtInVal_
=
MKLDNNMatrix
::
createReorder
(
cpuInVal_
,
in
);
cvtInVal_
=
MKLDNNMatrix
::
createReorder
(
cpuInVal_
,
in
);
CHECK
(
cvtInVal_
);
CHECK
(
cvtInVal_
)
<<
"should not be emptry"
;
pipeline
.
push_back
(
*
cvtInVal_
);
}
else
{
}
else
{
in
=
cpuInVal_
;
in
=
cpuInVal_
;
}
}
}
}
}
// add fwd handle
void
MKLDNNConvLayer
::
resetWgtBiasValue
(
if
(
hasBias
)
{
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
fwd_
.
reset
(
new
conv_fwd
(
*
fwdPD_
,
*
in
,
*
wgt
,
*
bias
,
*
out
));
MKLDNNMatrixPtr
&
wgt
,
}
else
{
MKLDNNMatrixPtr
&
bias
)
{
fwd_
.
reset
(
new
conv_fwd
(
*
fwdPD_
,
*
in
,
*
wgt
,
*
out
));
wgt
=
MKLDNNMatrix
::
create
(
weight_
->
getW
(),
pd
->
weights_primitive_desc
());
VLOG
(
MKLDNN_FMTS
)
<<
"Weight value format: "
<<
wgt
->
getFormat
();
bias
=
nullptr
;
if
(
biases_
&&
biases_
->
getW
())
{
bias
=
MKLDNNMatrix
::
create
(
biases_
->
getW
(),
pd
->
bias_primitive_desc
());
}
}
pipeline
.
push_back
(
*
fwd_
);
}
void
MKLDNNConvLayer
::
resetOutValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
out
)
{
out
=
MKLDNNMatrix
::
create
(
output_
.
value
,
pd
->
dst_primitive_desc
());
// change original output value from cpu matrix to mkldnn matrix
// change original output value from cpu matrix to mkldnn matrix
output_
.
value
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
out
);
output_
.
value
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
out
);
// add reorder if output value has cpu device and pd do not match
// create reorder if output value has cpu device and pd do not match
cpuOutVal_
=
nullptr
;
cpuOutVal_
=
nullptr
;
if
(
!
outputIsOnlyMKLDNN
())
{
if
(
!
outputIsOnlyMKLDNN
())
{
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
value
;
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
value
;
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
cpuOutVal_
=
MKLDNNMatrix
::
create
(
cpuOut
,
outDims
,
format
::
nchw
,
engine_
);
cpuOutVal_
=
MKLDNNMatrix
::
create
(
cpuOut
,
outDims
,
format
::
nchw
,
engine_
);
if
(
cpuOutVal_
->
getPrimitiveDesc
()
!=
out
->
getPrimitiveDesc
())
{
if
(
cpuOutVal_
->
getPrimitiveDesc
()
!=
out
->
getPrimitiveDesc
())
{
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
cpuOutVal_
);
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
cpuOutVal_
);
CHECK
(
cvtOutVal_
);
CHECK
(
cvtOutVal_
)
<<
"should not be emptry"
;
pipeline
.
push_back
(
*
cvtOutVal_
);
}
else
{
}
else
{
//
share data
//
CPU output share the same data of MKLDNN output
cpuOut
->
setData
(
out
->
getData
());
cpuOut
->
setData
(
out
->
getData
());
cpuOutVal_
=
out
;
cpuOutVal_
=
out
;
}
}
}
}
printValueFormatFlow
();
}
}
void
MKLDNNConvLayer
::
resetBwd
(
std
::
vector
<
primitive
>&
pipeline
,
void
MKLDNNConvLayer
::
resetBwdWgtPD
(
MKLDNNMatrixPtr
&
in
,
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
pd
)
{
MKLDNNMatrixPtr
&
wgt
,
memory
::
dims
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
;
MKLDNNMatrixPtr
&
bias
,
loadConvSettings
(
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
);
MKLDNNMatrixPtr
&
out
)
{
pipeline
.
clear
();
bool
hasBias
=
biases_
&&
biases_
->
getWGrad
();
//
/ backward weight
//
create backward weight using input, output and weight value memory desc
CHECK
(
inVal_
)
<<
"Should have input value"
;
CHECK
(
inVal_
)
<<
"Should have input value"
;
CHECK
(
outVal_
)
<<
"Should have output value"
;
CHECK
(
outVal_
)
<<
"Should have output value"
;
CHECK
(
wgtVal_
)
<<
"Should have weight value"
;
CHECK
(
wgtVal_
)
<<
"Should have weight value"
;
memory
::
dims
wgtDims
=
(
gp_
==
1
)
?
memory
::
dims
{
oc_
,
ic_
,
fh_
,
fw_
}
:
memory
::
dims
{
gp_
,
oc_
/
gp_
,
ic_
/
gp_
,
fh_
,
fw_
};
memory
::
dims
strides
=
{
sh_
,
sw_
};
memory
::
dims
dilations
=
{
dh_
-
1
,
dw_
-
1
};
memory
::
dims
padding
=
{
ph_
,
pw_
};
memory
::
dims
padR
=
getPaddingR
();
// create backward handle
algorithm
algo
=
algorithm
::
convolution_direct
;
algorithm
algo
=
algorithm
::
convolution_direct
;
padding_kind
padKind
=
padding_kind
::
zero
;
padding_kind
padKind
=
padding_kind
::
zero
;
auto
bwdWgtDesc
=
auto
bwdWgtDesc
=
biasVal_
!=
nullptr
hasBias
?
conv_bwdWgt
::
desc
(
algo
,
?
conv_bwdWgt
::
desc
(
algo
,
inVal_
->
getMemoryDesc
(),
inVal_
->
getMemoryDesc
(),
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
wgtVal_
->
getMemoryDesc
(),
biasVal_
->
getMemoryDesc
(),
biasVal_
->
getMemoryDesc
(),
outVal_
->
getMemoryDesc
(),
outVal_
->
getMemoryDesc
(),
strides
,
strides
,
padding
,
padL
,
padR
,
padR
,
padKind
)
padKind
)
:
conv_bwdWgt
::
desc
(
algo
,
:
conv_bwdWgt
::
desc
(
algo
,
inVal_
->
getMemoryDesc
(),
inVal_
->
getMemoryDesc
(),
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
wgtVal_
->
getMemoryDesc
(),
outVal_
->
getMemoryDesc
(),
outVal_
->
getMemoryDesc
(),
strides
,
strides
,
padding
,
padL
,
padR
,
padR
,
padKind
);
padKind
);
pd
.
reset
(
new
conv_bwdWgt
::
primitive_desc
(
bwdWgtDesc
,
engine_
,
*
fwdPD_
));
auto
bwdWgtPD
=
conv_bwdWgt
::
primitive_desc
(
bwdWgtDesc
,
engine_
,
*
fwdPD_
);
CHECK
(
pd
->
src_primitive_desc
()
==
inVal_
->
getPrimitiveDesc
())
CHECK
(
bwdWgtPD
.
src_primitive_desc
()
==
inVal_
->
getPrimitiveDesc
())
<<
"primitive desc of in value should equal"
;
<<
"primitive desc of in value should equal"
;
CHECK
(
bwdWgtPD
.
diff_dst_primitive_desc
()
==
outVal_
->
getPrimitiveDesc
())
CHECK
(
pd
->
diff_dst_primitive_desc
()
==
outVal_
->
getPrimitiveDesc
())
<<
"primitive desc of out grad should equal the out value"
;
<<
"primitive desc of out grad should equal the out value"
;
CHECK
(
bwdWgtPD
.
diff_weights_primitive_desc
()
==
wgtVal_
->
getPrimitiveDesc
())
CHECK
(
pd
->
diff_weights_primitive_desc
()
==
wgtVal_
->
getPrimitiveDesc
())
<<
"primitive desc of weight grad should equal the weight value"
;
<<
"primitive desc of weight grad should equal the weight value"
;
}
// create mkldnn matrix
void
MKLDNNConvLayer
::
resetBwdDataPD
(
const
MatrixPtr
&
wgtGrad
=
weight_
->
getWGrad
();
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
pd
)
{
const
MatrixPtr
&
outGrad
=
output_
.
grad
;
if
(
inputLayers_
[
0
]
->
getOutput
().
grad
==
nullptr
)
{
wgt
=
MKLDNNMatrix
::
create
(
wgtGrad
,
bwdWgtPD
.
diff_weights_primitive_desc
());
return
;
out
=
MKLDNNMatrix
::
create
(
outGrad
,
bwdWgtPD
.
diff_dst_primitive_desc
());
CHECK
(
wgt
->
getPrimitiveDesc
()
==
wgtVal_
->
getPrimitiveDesc
())
<<
"primitive desc of weight grad and value should be equal"
;
CHECK
(
out
->
getPrimitiveDesc
()
==
outVal_
->
getPrimitiveDesc
())
<<
"primitive desc of out grad and value should be equal"
;
VLOG
(
MKLDNN_FMTS
)
<<
"Backward weight, weight grad format: "
<<
wgt
->
getFormat
();
if
(
hasBias
)
{
const
MatrixPtr
&
biasGrad
=
biases_
->
getWGrad
();
bias
=
MKLDNNMatrix
::
create
(
biasGrad
,
bwdWgtPD
.
diff_bias_primitive_desc
());
CHECK
(
bias
->
getPrimitiveDesc
()
==
biasVal_
->
getPrimitiveDesc
())
<<
"primitive desc of bias grad should equal the bias value"
;
}
}
memory
::
dims
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
;
loadConvSettings
(
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
);
CHECK
(
inVal_
)
<<
"Should have input value"
;
CHECK
(
outVal_
)
<<
"Should have output value"
;
// create backward data using input and output value memory desc
// but using weight memory desc with any format
auto
bwdDataDesc
=
conv_bwdData
::
desc
(
algorithm
::
convolution_direct
,
inVal_
->
getMemoryDesc
(),
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
outVal_
->
getMemoryDesc
(),
strides
,
padL
,
padR
,
padding_kind
::
zero
);
pd
.
reset
(
new
conv_bwdData
::
primitive_desc
(
bwdDataDesc
,
engine_
,
*
fwdPD_
));
CHECK
(
pd
->
diff_src_primitive_desc
()
==
inVal_
->
getPrimitiveDesc
())
<<
"primitive desc of in grad should equal the in value"
;
CHECK
(
pd
->
diff_dst_primitive_desc
()
==
outVal_
->
getPrimitiveDesc
())
<<
"primitive desc of out grad should equal"
;
}
void
MKLDNNConvLayer
::
resetBwdBuffers
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
CHECK
(
wgtPD
);
resetOutGrad
(
wgtPD
,
out
);
resetWgtBiasGrad
(
wgtPD
,
wgt
,
bias
);
resetInGrad
(
dataPD
,
in
);
resetWgtValBwdData
(
dataPD
,
wgtValBwdData_
);
}
void
MKLDNNConvLayer
::
resetBwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
pipeline
.
clear
();
if
(
cvtOutGrad_
)
{
pipeline
.
push_back
(
*
cvtOutGrad_
);
}
// add bwdWgt handle
if
(
bias
)
{
bwdWgt_
.
reset
(
new
conv_bwdWgt
(
*
wgtPD
,
*
inVal_
,
*
out
,
*
wgt
,
*
bias
));
}
else
{
bwdWgt_
.
reset
(
new
conv_bwdWgt
(
*
wgtPD
,
*
inVal_
,
*
out
,
*
wgt
));
}
pipeline
.
push_back
(
*
bwdWgt_
);
if
(
dataPD
==
nullptr
)
{
return
;
}
if
(
cvtWgtVal_
)
{
pipeline
.
push_back
(
*
cvtWgtVal_
);
}
// add bwdData handle
CHECK
(
wgtValBwdData_
)
<<
"Should have weight memory"
;
bwdData_
.
reset
(
new
conv_bwdData
(
*
dataPD
,
*
out
,
*
wgtValBwdData_
,
*
in
));
pipeline
.
push_back
(
*
bwdData_
);
if
(
cvtInGrad_
)
{
pipeline
.
push_back
(
*
cvtInGrad_
);
}
}
void
MKLDNNConvLayer
::
resetOutGrad
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
MKLDNNMatrixPtr
&
out
)
{
const
MatrixPtr
&
outMat
=
output_
.
grad
;
out
=
MKLDNNMatrix
::
create
(
outMat
,
wgtPD
->
diff_dst_primitive_desc
());
CHECK
(
outVal_
!=
nullptr
&&
out
->
getPrimitiveDesc
()
==
outVal_
->
getPrimitiveDesc
())
<<
"primitive desc of out grad and value should be equal"
;
// TODO(TJ): merge outgrad
// TODO(TJ): merge outgrad
// add reorder if has user output grad
// create reorder if has output grad does not match
cpuOutGrad_
=
nullptr
;
cvtOutGrad_
=
nullptr
;
if
(
!
outputIsOnlyMKLDNN
())
{
if
(
!
outputIsOnlyMKLDNN
())
{
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
grad
;
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
grad
;
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
// same PrimitiveDesc with cpuInVal_
// same PrimitiveDesc with cpuInVal_
CHECK
(
cpuOutVal_
);
CHECK
(
cpuOutVal_
);
cpuOutGrad_
=
MKLDNNMatrix
::
create
(
cpuOut
,
cpuOutVal_
->
getPrimitiveDesc
());
cpuOutGrad_
=
MKLDNNMatrix
::
create
(
cpuOut
,
cpuOutVal_
->
getPrimitiveDesc
());
if
(
cpuOutGrad_
->
getPrimitiveDesc
()
==
out
->
getPrimitiveDesc
())
{
if
(
cpuOutGrad_
->
getPrimitiveDesc
()
==
out
->
getPrimitiveDesc
())
{
out
Grad
->
setData
(
cpuOut
->
getData
());
out
Mat
->
setData
(
cpuOut
->
getData
());
out
=
cpuOutGrad_
;
out
=
cpuOutGrad_
;
}
else
{
}
else
{
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
cpuOutGrad_
,
out
);
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
cpuOutGrad_
,
out
);
CHECK
(
cvtOutGrad_
);
CHECK
(
cvtOutGrad_
);
pipeline
.
push_back
(
*
cvtOutGrad_
);
}
}
}
}
}
// add bwdWgt handle
void
MKLDNNConvLayer
::
resetWgtBiasGrad
(
if
(
hasBias
)
{
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
bwdWgt_
.
reset
(
new
conv_bwdWgt
(
bwdWgtPD
,
*
inVal_
,
*
out
,
*
wgt
,
*
bias
));
MKLDNNMatrixPtr
&
wgt
,
}
else
{
MKLDNNMatrixPtr
&
bias
)
{
bwdWgt_
.
reset
(
new
conv_bwdWgt
(
bwdWgtPD
,
*
inVal_
,
*
out
,
*
wgt
));
wgt
=
MKLDNNMatrix
::
create
(
weight_
->
getWGrad
(),
}
wgtPD
->
diff_weights_primitive_desc
());
pipeline
.
push_back
(
*
bwdWgt_
);
CHECK
(
nullptr
!=
wgtVal_
&&
wgt
->
getPrimitiveDesc
()
==
wgtVal_
->
getPrimitiveDesc
())
<<
"primitive desc of weight grad and value should be equal"
;
VLOG
(
MKLDNN_FMTS
)
<<
"weight grad format: "
<<
wgt
->
getFormat
();
/// backward data
if
(
biasVal_
==
nullptr
)
{
const
MatrixPtr
&
inGrad
=
inputLayers_
[
0
]
->
getOutput
().
grad
;
if
(
inGrad
==
nullptr
)
{
return
;
return
;
}
}
bias
=
MKLDNNMatrix
::
create
(
biases_
->
getWGrad
(),
wgtPD
->
diff_bias_primitive_desc
());
CHECK
(
bias
->
getPrimitiveDesc
()
==
biasVal_
->
getPrimitiveDesc
())
<<
"primitive desc of bias grad should equal the bias value"
;
}
auto
bwdDataDesc
=
conv_bwdData
::
desc
(
algo
,
void
MKLDNNConvLayer
::
resetInGrad
(
inVal_
->
getMemoryDesc
(),
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
MKLDNNMatrixPtr
&
in
)
{
out
->
getMemoryDesc
(),
if
(
dataPD
==
nullptr
)
{
strides
,
return
;
padding
,
}
padR
,
padKind
);
auto
bwdDataPD
=
conv_bwdData
::
primitive_desc
(
bwdDataDesc
,
engine_
,
*
fwdPD_
);
CHECK
(
bwdDataPD
.
diff_src_primitive_desc
()
==
inVal_
->
getPrimitiveDesc
())
<<
"primitive desc of in grad should equal the in value"
;
CHECK
(
bwdDataPD
.
diff_dst_primitive_desc
()
==
out
->
getPrimitiveDesc
())
<<
"primitive desc of out grad should equal"
;
// create mkldnn matrix inGrad_ and reorder if necessary
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
in
=
MKLDNNMatrix
::
create
(
inGrad
,
bwdDataPD
.
diff_src_primitive_desc
());
in
=
MKLDNNMatrix
::
create
(
inputLayers_
[
0
]
->
getOutput
().
grad
,
dataPD
->
diff_src_primitive_desc
());
CHECK
(
nullptr
!=
inVal_
&&
in
->
getPrimitiveDesc
()
==
inVal_
->
getPrimitiveDesc
())
<<
"primitive desc of input grad and value should be equal"
;
// create reorder if has output grad does not match
cpuInGrad_
=
nullptr
;
cvtInGrad_
=
nullptr
;
cvtInGrad_
=
nullptr
;
if
(
!
inputIsOnlyMKLDNN
())
{
if
(
!
inputIsOnlyMKLDNN
())
{
const
MatrixPtr
&
cpuIn
=
getInputGrad
(
0
,
CPU_DEVICE
);
const
MatrixPtr
&
cpuIn
=
getInputGrad
(
0
,
CPU_DEVICE
);
...
@@ -360,43 +516,28 @@ void MKLDNNConvLayer::resetBwd(std::vector<primitive>& pipeline,
...
@@ -360,43 +516,28 @@ void MKLDNNConvLayer::resetBwd(std::vector<primitive>& pipeline,
in
=
cpuInGrad_
;
in
=
cpuInGrad_
;
}
}
}
}
}
// create new weight value for backward data, and reorder if necessary
void
MKLDNNConvLayer
::
resetWgtValBwdData
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
wgt
)
{
if
(
dataPD
==
nullptr
)
{
return
;
}
// create new weight value for backward data, and create reorder if necessary
// since the primitive_desc would be different with wgtVal_
// since the primitive_desc would be different with wgtVal_
if
(
bwdDataPD
.
weights_primitive_desc
()
!=
wgtVal_
->
getPrimitiveDesc
())
{
CHECK
(
wgtVal_
)
<<
"should have weight value"
;
if
(
dataPD
->
weights_primitive_desc
()
!=
wgtVal_
->
getPrimitiveDesc
())
{
wgtValBwdData_
=
wgtValBwdData_
=
MKLDNNMatrix
::
create
(
nullptr
,
bwdDataPD
.
weights_primitive_desc
());
MKLDNNMatrix
::
create
(
nullptr
,
dataPD
->
weights_primitive_desc
());
cvtWgtVal_
=
MKLDNNMatrix
::
createReorder
(
wgtVal_
,
wgtValBwdData_
);
cvtWgtVal_
=
MKLDNNMatrix
::
createReorder
(
wgtVal_
,
wgtValBwdData_
);
CHECK
(
cvtWgtVal_
);
CHECK
(
cvtWgtVal_
);
pipeline
.
push_back
(
*
cvtWgtVal_
);
}
else
{
}
else
{
wgtValBwdData_
=
wgtVal_
;
wgtValBwdData_
=
wgtVal_
;
}
}
VLOG
(
MKLDNN_FMTS
)
<<
"
Backward data, weight value format:
"
VLOG
(
MKLDNN_FMTS
)
<<
"
weight value format for backward data
"
<<
wgtValBwdData_
->
getFormat
();
<<
wgtValBwdData_
->
getFormat
();
// add bwdData handle
CHECK
(
wgtValBwdData_
)
<<
"Should have weight memory"
;
bwdData_
.
reset
(
new
conv_bwdData
(
bwdDataPD
,
*
out
,
*
wgtValBwdData_
,
*
in
));
pipeline
.
push_back
(
*
bwdData_
);
// add ingrad reorder after bwdData
if
(
cvtInGrad_
)
{
pipeline
.
push_back
(
*
cvtInGrad_
);
}
printGradFormatFlow
();
}
void
MKLDNNConvLayer
::
updateInputData
()
{
cpuInVal_
->
setData
(
getInputValue
(
0
,
CPU_DEVICE
)
->
getData
());
}
void
MKLDNNConvLayer
::
updateWeights
(
const
UpdateCallback
&
callback
)
{
weight_
->
getParameterPtr
()
->
incUpdate
(
callback
);
if
(
biases_
&&
biases_
->
getWGrad
())
{
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
}
}
// namespace paddle
}
// namespace paddle
paddle/gserver/layers/MKLDNNConvLayer.h
浏览文件 @
f2317b67
...
@@ -18,6 +18,9 @@ limitations under the License. */
...
@@ -18,6 +18,9 @@ limitations under the License. */
#include "mkldnn.hpp"
#include "mkldnn.hpp"
namespace
paddle
{
namespace
paddle
{
typedef
mkldnn
::
convolution_forward
conv_fwd
;
typedef
mkldnn
::
convolution_backward_weights
conv_bwdWgt
;
typedef
mkldnn
::
convolution_backward_data
conv_bwdData
;
/**
/**
* @brief A subclass of MKLDNNLayer conv layer.
* @brief A subclass of MKLDNNLayer conv layer.
...
@@ -43,7 +46,7 @@ protected:
...
@@ -43,7 +46,7 @@ protected:
std
::
shared_ptr
<
mkldnn
::
reorder
>
cvtWgtVal_
;
std
::
shared_ptr
<
mkldnn
::
reorder
>
cvtWgtVal_
;
// save forward primitive_desc, which can be used backward
// save forward primitive_desc, which can be used backward
std
::
shared_ptr
<
mkldnn
::
convolution_forwar
d
::
primitive_desc
>
fwdPD_
;
std
::
shared_ptr
<
conv_fw
d
::
primitive_desc
>
fwdPD_
;
// MKLDNNMatrixPtr which should be created from CPU Device
// MKLDNNMatrixPtr which should be created from CPU Device
MKLDNNMatrixPtr
cpuInVal_
;
MKLDNNMatrixPtr
cpuInVal_
;
...
@@ -99,7 +102,6 @@ public:
...
@@ -99,7 +102,6 @@ public:
void
convertWeightsToPaddle
()
override
;
void
convertWeightsToPaddle
()
override
;
protected:
void
printSizeInfo
()
override
{
void
printSizeInfo
()
override
{
MKLDNNLayer
::
printSizeInfo
();
MKLDNNLayer
::
printSizeInfo
();
VLOG
(
MKLDNN_SIZES
)
<<
getName
()
<<
": fh: "
<<
fh_
<<
", fw: "
<<
fw_
VLOG
(
MKLDNN_SIZES
)
<<
getName
()
<<
": fh: "
<<
fh_
<<
", fw: "
<<
fw_
...
@@ -116,6 +118,7 @@ protected:
...
@@ -116,6 +118,7 @@ protected:
VLOG
(
MKLDNN_FMTS
)
<<
" >>> "
<<
cpuOutVal_
->
getFormat
();
VLOG
(
MKLDNN_FMTS
)
<<
" >>> "
<<
cpuOutVal_
->
getFormat
();
}
}
}
}
void
printGradFormatFlow
()
override
{
void
printGradFormatFlow
()
override
{
if
(
cpuInGrad_
)
{
if
(
cpuInGrad_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
cpuInGrad_
->
getFormat
()
<<
" <<<"
;
VLOG
(
MKLDNN_FMTS
)
<<
cpuInGrad_
->
getFormat
()
<<
" <<<"
;
...
@@ -126,6 +129,107 @@ protected:
...
@@ -126,6 +129,107 @@ protected:
}
}
}
}
protected:
/**
* load the dims settings of this conv
*/
void
loadConvSettings
(
mkldnn
::
memory
::
dims
&
wgt
,
mkldnn
::
memory
::
dims
&
bias
,
mkldnn
::
memory
::
dims
&
stride
,
mkldnn
::
memory
::
dims
&
dilation
,
mkldnn
::
memory
::
dims
&
padL
,
mkldnn
::
memory
::
dims
&
padR
);
/**
* reset the forward primitive descriptor.
*/
void
resetFwdPD
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
);
/**
* reset the MKLDNNMatrix buffers used in forward.
*/
void
resetFwdBuffers
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* reset the forward pipeline.
*/
void
resetFwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* reset MKLDNNMatrix of input value
*/
void
resetInValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
);
/**
* reset MKLDNNMatrix of weight and bias value
*/
void
resetWgtBiasValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
);
/**
* reset MKLDNNMatrix of output value
*/
void
resetOutValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
out
);
/**
* reset the backward weight primitive descriptor.
*/
void
resetBwdWgtPD
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
pd
);
/**
* reset the backward data primitive descriptor.
*/
void
resetBwdDataPD
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
pd
);
/**
* reset the MKLDNNMatrix buffers used in backward.
*/
void
resetBwdBuffers
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* reset the backward pipeline.
*/
void
resetBwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* reset MKLDNNMatrix of output grad
*/
void
resetOutGrad
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
MKLDNNMatrixPtr
&
out
);
/**
* reset MKLDNNMatrix of weight and bias grad
*/
void
resetWgtBiasGrad
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
);
/**
* reset MKLDNNMatrix of input grad
*/
void
resetInGrad
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
);
/**
* reset MKLDNNMatrix of weight value for backward data
* since the primitive_desc would be different with wgtVal_
*/
void
resetWgtValBwdData
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
wgt
);
/**
/**
* get padding_r according to
* get padding_r according to
* https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
* https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录