未验证 提交 f1f79b0d 编写于 作者: L Leo Chen 提交者: GitHub

fix maybe-uninitialized warning (#42902)

* fix maybe-uninitialized warning

* fix compile

* fix xpu compile

* fix npu compile

* fix infer compile

* fix compile

* fix compile
上级 45d7a3ea
......@@ -147,7 +147,6 @@ set(COMMON_FLAGS
-Wno-error=terminate # Warning in PADDLE_ENFORCE
-Wno-error=int-in-bool-context # Warning in Eigen gcc 7.2
-Wimplicit-fallthrough=0 # Warning in tinyformat.h
-Wno-error=maybe-uninitialized # Warning in boost gcc 7.2
${fsanitize}
)
......
......@@ -546,9 +546,9 @@ bool DistModel::Run(const std::vector<DistModelTensor> &input_data,
DistModelTimer timer;
timer.tic();
double feed_elapse;
double fleet_exe_elapse;
double fetch_elapse;
double feed_elapse = 0;
double fleet_exe_elapse = 0;
double fetch_elapse = 0;
if (!FeedData(input_data, scope_.get())) {
LOG(ERROR) << "DistModel failed at feeding data.";
......
......@@ -488,7 +488,7 @@ void QuantDequantFusePass::FuseDequant(ir::Graph* graph, Scope* scope,
// Convert weight to fp32 range
auto* weight_tensor =
scope->Var(quantized_op_weight_node->Name())->GetMutable<LoDTensor>();
auto w_dims = weight_tensor->dims();
const auto& w_dims = weight_tensor->dims();
float* quantized_weight_data =
weight_tensor->mutable_data<float>(platform::CPUPlace());
// If quantized op is fc, weight scale size = 1;
......
......@@ -93,7 +93,7 @@ void TransposeFlattenConcatFusePass::RunTransposeFlattenConcatFuse(
std::vector<Node *> nodes;
std::vector<int> trans_axis0;
int flatten_axis0;
int flatten_axis0 = 0;
for (int i = 0; i < times; i++) {
PADDLE_ENFORCE_NOT_NULL(
subgraph.at(pattern.GetPDNode("transpose" + std::to_string(i))),
......
......@@ -268,7 +268,7 @@ void LiteSubgraphPass::SetUpEngine(
auto nnadapter_model_cache_token =
Get<std::vector<std::string>>("nnadapter_model_cache_token");
lite_api::TargetType target_type;
lite_api::TargetType target_type = TARGET(kX86);
if (use_gpu) {
target_type = TARGET(kCUDA);
} else if (use_xpu) {
......
......@@ -522,7 +522,7 @@ TEST(Tensor, GpuShareExternalData) {
auto out = predictor->GetOutputHandle("fc_1.tmp_2");
auto out_shape = out->shape();
float* out_data;
float* out_data = nullptr;
auto out_size = std::accumulate(out_shape.begin(), out_shape.end(), 1,
std::multiplies<int>()) *
sizeof(float);
......
......@@ -56,7 +56,7 @@ class MultiheadMatMulOpConverter : public OpConverter {
weight_t->numel() * sizeof(float));
// (hidden_in, 3, hidden_out)
auto weight_dims = weight_t->dims();
const auto& weight_dims = weight_t->dims();
int hidden_in = weight_dims[0]; // channels_in
int three = weight_dims[1]; // channels_out
......
......@@ -41,7 +41,7 @@ class ReduceOpConverter : public OpConverter {
const framework::Scope& scope, bool test_mode) override {
VLOG(4) << "convert a paddle " << op_type << " op to tensorrt reduce layer";
framework::OpDesc op_desc(op, nullptr);
nvinfer1::ReduceOperation reduce_type;
nvinfer1::ReduceOperation reduce_type = nvinfer1::ReduceOperation::kSUM;
if (op_type == "reduce_sum") {
reduce_type = nvinfer1::ReduceOperation::kSUM;
} else if (op_type == "reduce_mean") {
......
......@@ -161,8 +161,8 @@ class LazyZerosNPU {
}
auto place = dev_ctx.GetPlace();
auto stream = dev_ctx.stream();
Tensor* zero_tensor;
void* zero_ptr;
Tensor* zero_tensor = nullptr;
void* zero_ptr = nullptr;
if (found_inf_vec[0]) {
int max_num = -1;
for (size_t i = 0; i < xs.size(); ++i) {
......
......@@ -75,7 +75,7 @@ void Compare(f::Scope *scope, const p::DeviceContext &ctx,
paddle::framework::TensorToVector(*tensor_out, ctx, &out_vec);
ctx.Wait();
float expected;
float expected = 0.0;
if (op_type == "elementwise_add") {
expected = 3.0;
} else if (op_type == "elementwise_sub") {
......@@ -133,7 +133,7 @@ void CompareGrad(f::Scope *scope, const p::DeviceContext &ctx,
paddle::framework::TensorToVector(*tensor_dy, ctx, &dy_vec);
ctx.Wait();
float expected_x, expected_y;
float expected_x = 0, expected_y = 0;
if (op_type == "elementwise_add_grad") {
expected_x = 1.0;
expected_y = 6.0;
......
......@@ -103,7 +103,7 @@ void ComputeSumAndSquareSum(const framework::Tensor &cpu_x,
framework::Tensor *cpu_sum,
framework::Tensor *cpu_sum_of_square) {
// x is in NHWC format.
auto dims = cpu_x.dims();
const auto &dims = cpu_x.dims();
int64_t c = dims[3];
const T *cpu_x_ptr = cpu_x.data<T>();
......
......@@ -51,7 +51,7 @@ void InitRandomTensor(const std::vector<int64_t> &dims,
template <typename T>
void TransposeNchwToNhwc(const framework::Tensor &cpu_in,
framework::Tensor *cpu_out) {
auto in_dims = cpu_in.dims();
const auto &in_dims = cpu_in.dims();
EXPECT_EQ(cpu_in.dims().size(), 4);
const T *cpu_in_ptr = cpu_in.data<T>();
......@@ -184,7 +184,7 @@ template <typename T>
void ComputeSumAndSquareSum(const framework::Tensor &cpu_out,
framework::Tensor *cpu_sum,
framework::Tensor *cpu_sum_of_square) {
auto dims = cpu_out.dims();
const auto &dims = cpu_out.dims();
int64_t c = dims[3];
const T *cpu_out_ptr = cpu_out.data<T>();
......
......@@ -130,7 +130,7 @@ class FusionRepeatedFCReluKernel : public framework::OpKernel<T> {
int weight_sz = static_cast<int>(weights.size());
auto i_dims = in->dims();
auto w_dims = weights[0]->dims();
const auto& w_dims = weights[0]->dims();
jit::matmul_attr_t attr;
attr.m = i_dims[0];
attr.n = w_dims[1];
......@@ -140,8 +140,8 @@ class FusionRepeatedFCReluKernel : public framework::OpKernel<T> {
relus[0]->mutable_data<T>(place), attr);
for (int i = 1; i < weight_sz - 1; ++i) {
auto i_dims = relus[i - 1]->dims();
auto w_dims = weights[i]->dims();
const auto& i_dims = relus[i - 1]->dims();
const auto& w_dims = weights[i]->dims();
attr.m = i_dims[0];
attr.n = w_dims[1];
attr.k = w_dims[0];
......@@ -150,8 +150,8 @@ class FusionRepeatedFCReluKernel : public framework::OpKernel<T> {
biases[i]->data<T>(), relus[i]->mutable_data<T>(place), attr);
}
auto i_dims_last = relus[weight_sz - 2]->dims();
auto w_dims_last = weights[weight_sz - 1]->dims();
const auto& i_dims_last = relus[weight_sz - 2]->dims();
const auto& w_dims_last = weights[weight_sz - 1]->dims();
attr.m = i_dims_last[0];
attr.n = w_dims_last[1];
attr.k = w_dims_last[0];
......
......@@ -91,8 +91,8 @@ class FusionSeqPoolConcatKernel : public framework::OpKernel<T> {
auto* out = ctx.Output<LoDTensor>("Out");
std::string pooltype = ctx.Attr<std::string>("pooltype");
auto x0_lod = ins[0]->lod();
auto x0_dims = ins[0]->dims();
auto y_dims = out->dims();
const auto& x0_dims = ins[0]->dims();
const auto& y_dims = out->dims();
size_t bs = x0_lod[0].size() - 1;
out->Resize({static_cast<int64_t>(bs), y_dims[1]});
framework::LoD y_lod(1);
......@@ -122,7 +122,7 @@ class FusionSeqPoolConcatKernel : public framework::OpKernel<T> {
size_t n = ins.size();
size_t dst_step_size = n * w;
for (size_t i = 0; i < n; ++i) {
auto x_dims = ins[i]->dims();
const auto& x_dims = ins[i]->dims();
auto x_lod = ins[i]->lod()[0];
const T* src = ins[i]->data<T>();
T* dst = y_data + i * w;
......
......@@ -92,8 +92,8 @@ class FusionSeqPoolCVMConcatKernel : public framework::OpKernel<T> {
auto* out = ctx.Output<LoDTensor>("Out");
std::string pooltype = ctx.Attr<std::string>("pooltype");
auto x0_lod = ins[0]->lod();
auto x0_dims = ins[0]->dims();
auto y_dims = out->dims();
const auto& x0_dims = ins[0]->dims();
const auto& y_dims = out->dims();
size_t bs = x0_lod[0].size() - 1;
out->Resize({static_cast<int64_t>(bs), y_dims[1]});
framework::LoD y_lod(1);
......@@ -121,7 +121,7 @@ class FusionSeqPoolCVMConcatKernel : public framework::OpKernel<T> {
size_t n = ins.size();
size_t dst_step_size = n * w;
for (size_t i = 0; i < n; ++i) {
auto x_dims = ins[i]->dims();
const auto& x_dims = ins[i]->dims();
auto x_lod = ins[i]->lod()[0];
const T* src = ins[i]->data<T>();
T* dst = y_data + i * w;
......
......@@ -52,7 +52,7 @@ class SampleWithProb {
const std::size_t num_samples, const Tensor* L, Tensor* S,
Tensor* P) {
// UNDERSTAND: dimension issues
const auto lbl_dim = L->dims();
const auto& lbl_dim = L->dims();
const int batch_size = lbl_dim[0];
const int num_true = lbl_dim[1];
const int num_sampled_classes = num_true + num_samples;
......
......@@ -98,8 +98,8 @@ struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
const phi::SelectedRows& input1,
const framework::Tensor& input2, framework::Tensor* output) {
auto in1_height = input1.height();
auto in2_dims = input2.dims();
auto out_dims = output->dims();
const auto& in2_dims = input2.dims();
const auto& out_dims = output->dims();
PADDLE_ENFORCE_EQ(
in1_height, in2_dims[0],
platform::errors::InvalidArgument("The two inputs height must be equal."
......@@ -249,7 +249,7 @@ struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
return;
}
auto in1_height = input1.height();
auto in2_dims = input2->dims();
const auto& in2_dims = input2->dims();
PADDLE_ENFORCE_EQ(
in1_height, in2_dims[0],
platform::errors::InvalidArgument("The two inputs height must be equal."
......@@ -289,7 +289,7 @@ struct SelectedRowsAddToTensor<phi::CPUContext, T> {
return;
}
auto in1_height = input1.height();
auto in2_dims = input2->dims();
const auto& in2_dims = input2->dims();
PADDLE_ENFORCE_EQ(
in1_height, in2_dims[0],
platform::errors::InvalidArgument("The two inputs height must be equal."
......@@ -838,7 +838,7 @@ struct UpdateToTensor<platform::CPUDeviceContext, T> {
const ScatterOps& op, const phi::SelectedRows& input1,
framework::Tensor* input2) {
auto in1_height = input1.height();
auto in2_dims = input2->dims();
const auto& in2_dims = input2->dims();
PADDLE_ENFORCE_EQ(
in1_height, in2_dims[0],
platform::errors::InvalidArgument("The two inputs height must be equal."
......
......@@ -231,7 +231,7 @@ class SoftmaxFunctor<DeviceContext, T, is_test, enable_if_CPU<DeviceContext>> {
public:
void operator()(const DeviceContext& context, const int axis_dim,
const framework::Tensor* X, framework::Tensor* Y) {
auto in_dims = X->dims();
const auto& in_dims = X->dims();
constexpr int kBatchDim = 0;
constexpr int kClassDim = 1;
......
......@@ -53,7 +53,7 @@ std::vector<TreeNode> Tree2ColUtil::construct_patch(
void Tree2ColUtil::construct_tree(const framework::Tensor &EdgeSet,
std::vector<std::vector<int>> *tr,
size_t *node_count) {
auto edge_set_dims = EdgeSet.dims();
const auto &edge_set_dims = EdgeSet.dims();
PADDLE_ENFORCE_EQ(edge_set_dims[1], 2,
platform::errors::InvalidArgument(
"The second dimension of the EdgeSet shall be 2, but "
......@@ -89,7 +89,7 @@ class Tree2ColFunctor<platform::CPUDeviceContext, T> {
const framework::Tensor &node_features,
framework::Tensor *patch, int max_depth) {
std::vector<std::vector<int>> tr;
auto feature_dims = node_features.dims();
const auto &feature_dims = node_features.dims();
auto cpu_place = context.GetPlace();
phi::funcs::SetConstant<platform::CPUDeviceContext, T> constant;
int64_t feature_size = feature_dims[1];
......@@ -142,7 +142,7 @@ class Col2TreeFunctor<platform::CPUDeviceContext, T> {
const framework::Tensor &out_grad, framework::Tensor *in_grad,
int max_depth) {
std::vector<std::vector<int>> tr;
auto output_dims = out_grad.dims();
const auto &output_dims = out_grad.dims();
auto cpu_place = context.GetPlace();
phi::funcs::SetConstant<platform::CPUDeviceContext, T> constant;
int64_t output_size = output_dims[1];
......
......@@ -37,7 +37,7 @@ class XPUROIAlignOpKernel : public framework::OpKernel<T> {
auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
auto aligned = ctx.Attr<bool>("aligned");
auto in_dims = in->dims();
const auto& in_dims = in->dims();
int batch_size = in_dims[0];
int channels = in_dims[1];
int height = in_dims[2];
......
......@@ -31,7 +31,7 @@ void MvGradKernel(const Context& dev_ctx,
auto dx = x_grad;
auto dvec = vec_grad;
auto dim_x = x.dims();
const auto& dim_x = x.dims();
int m = dim_x[0];
int n = dim_x[1];
......
......@@ -32,7 +32,7 @@ void PsroiPoolGradKernel(const Context& ctx,
float spatial_scale,
DenseTensor* dx) {
if (dx) {
auto in_dims = x.dims();
const auto& in_dims = x.dims();
int input_channels = in_dims[1];
int height = in_dims[2];
int width = in_dims[3];
......
......@@ -330,7 +330,7 @@ void RnnFunc(const Context& dev_ctx,
}
}
DenseTensor* input_holder;
DenseTensor* input_holder = nullptr;
DenseTensor* output_holder = output;
bool has_allocate_mem = false;
......
......@@ -26,7 +26,7 @@ void TrilIndicesKernel(const Context& dev_ctx,
DataType dtype,
DenseTensor* out) {
T* out_data = dev_ctx.template Alloc<T>(out);
auto out_dims = out->dims();
const auto& out_dims = out->dims();
int64_t tril_size = out_dims[1];
int64_t i = 0;
T r = std::max<int64_t>(0, -offset), c = 0;
......
......@@ -1284,9 +1284,9 @@ void Blas<DeviceContext>::MatMul(const phi::DenseTensor &mat_a,
T alpha,
phi::DenseTensor *mat_out,
T beta) const {
auto dim_a = mat_a.dims();
auto dim_b = mat_b.dims();
auto dim_out = mat_out->dims();
const auto &dim_a = mat_a.dims();
const auto &dim_b = mat_b.dims();
const auto &dim_out = mat_out->dims();
PADDLE_ENFORCE_EQ(
dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
true,
......
......@@ -32,8 +32,8 @@ void ChannelShuffleGradKernel(const Context& dev_ctx,
auto* dx = x_grad;
dev_ctx.template Alloc<T>(dx);
bool channel_last = (data_format == "NHWC");
auto do_dims = dout->dims();
auto dx_dims = dx->dims();
const auto& do_dims = dout->dims();
const auto& dx_dims = dx->dims();
DenseTensor t(*dout);
if (!channel_last) {
......
......@@ -31,8 +31,8 @@ void ChannelShuffleKernel(const Context& dev_ctx,
auto* in = &x;
dev_ctx.template Alloc<T>(out);
bool channel_last = (data_format == "NHWC");
auto in_dims = in->dims();
auto o_dims = out->dims();
const auto& in_dims = in->dims();
const auto& o_dims = out->dims();
DenseTensor t(*in);
if (!channel_last) {
......
......@@ -23,7 +23,7 @@ void MvKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& vec,
DenseTensor* out) {
auto dim_x = x.dims();
const auto& dim_x = x.dims();
// get data ptr
const T* x_data = x.data<T>();
......
......@@ -32,8 +32,8 @@ void PixelShuffleGradKernel(const Context& ctx,
ctx.template Alloc<T>(dx);
int factor = upscale_factor;
bool channel_last = (data_format == "NHWC");
auto do_dims = dout->dims();
auto dx_dims = dx->dims();
const auto& do_dims = dout->dims();
const auto& dx_dims = dx->dims();
DenseTensor t(*dout);
if (!channel_last) {
......
......@@ -31,8 +31,8 @@ void PixelShuffleKernel(const Context& ctx,
ctx.template Alloc<T>(out);
int factor = upscale_factor;
bool channel_last = (data_format == "NHWC");
auto in_dims = in->dims();
auto o_dims = out->dims();
const auto& in_dims = in->dims();
const auto& o_dims = out->dims();
DenseTensor t(*in);
if (!channel_last) {
......
......@@ -33,8 +33,8 @@ void PixelUnshuffleGradKernel(const Context& dev_ctx,
dev_ctx.template Alloc<T>(dx);
int factor = downscale_factor;
bool channel_last = (data_format == "NHWC");
auto do_dims = dout->dims();
auto dx_dims = dx->dims();
const auto& do_dims = dout->dims();
const auto& dx_dims = dx->dims();
DenseTensor t(*dout);
if (!channel_last) {
......
......@@ -32,8 +32,8 @@ void PixelUnshuffleKernel(const Context& dev_ctx,
dev_ctx.template Alloc<T>(out);
int factor = downscale_factor;
bool channel_last = (data_format == "NHWC");
auto in_dims = in->dims();
auto o_dims = out->dims();
const auto& in_dims = in->dims();
const auto& o_dims = out->dims();
DenseTensor t(*in);
if (!channel_last) {
......
......@@ -35,7 +35,7 @@ void UnfoldGradKernel(const Context& ctx,
if (!x_grad) return;
auto x_dims = x_grad->dims();
const auto& x_dims = x_grad->dims();
const int batch_size = static_cast<int>(x_dims[0]);
int out_height = phi::funcs::CalcOutputSize(x_dims[2],
......
......@@ -36,7 +36,7 @@ void UnfoldKernel(const Context& ctx,
paddle::operators::math::
Im2ColFunctor<paddle::operators::math::ColFormat::kCFO, Context, T>
im2col;
auto x_dims = x.dims();
const auto& x_dims = x.dims();
int out_height = phi::funcs::CalcOutputSize(x_dims[2],
kernel_sizes[0],
......
......@@ -100,7 +100,11 @@ class reference_content {
public: // structors
~reference_content() {}
// TODO(zhiqiu): remove it
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
reference_content(RefT r) : content_(r) {}
#pragma GCC diagnostic pop
reference_content(const reference_content& operand)
: content_(operand.content_) {}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册