Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f1c8d3fa
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f1c8d3fa
编写于
6月 26, 2023
作者:
W
wz1qqx
提交者:
GitHub
6月 26, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add squeeze2+matmul pass (#54779)
上级
ffeac6d5
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
441 addition
and
0 deletion
+441
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+5
-0
paddle/fluid/framework/ir/relu6_fuse_pass.cc
paddle/fluid/framework/ir/relu6_fuse_pass.cc
+137
-0
paddle/fluid/framework/ir/relu6_fuse_pass.h
paddle/fluid/framework/ir/relu6_fuse_pass.h
+59
-0
paddle/fluid/framework/ir/relu6_fuse_pass_test.cc
paddle/fluid/framework/ir/relu6_fuse_pass_test.cc
+70
-0
paddle/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass.cc
...e/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass.cc
+133
-0
paddle/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass.h
...le/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass.h
+9
-0
paddle/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass_test.cc
...id/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass_test.cc
+26
-0
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+2
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
f1c8d3fa
...
...
@@ -107,6 +107,7 @@ pass_library(constant_folding_pass inference)
pass_library
(
auto_mixed_precision_pass inference
)
pass_library
(
conv2d_fusion_layout_transfer_pass inference
)
pass_library
(
transfer_layout_elim_pass inference
)
pass_library
(
relu6_fuse_pass inference
)
pass_library
(
silu_fuse_pass inference
)
pass_library
(
simplify_with_basic_ops_pass base
)
pass_library
(
fc_elementwise_layernorm_fuse_pass base
)
...
...
@@ -434,6 +435,10 @@ cc_test(
test_delete_cast_op_pass
SRCS delete_cast_op_pass_test.cc
DEPS delete_cast_op_pass
)
cc_test
(
test_relu6_fuse_pass
SRCS relu6_fuse_pass_test.cc
DEPS relu6_fuse_pass
)
if
(
WITH_GPU OR WITH_ROCM
)
cc_test
(
...
...
paddle/fluid/framework/ir/relu6_fuse_pass.cc
0 → 100644
浏览文件 @
f1c8d3fa
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/relu6_fuse_pass.h"
#include <cmath>
#include <string>
#include "paddle/fluid/framework/op_version_registry.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
Relu6FusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
// This pass is now used for xpu, because xpu can fuse conv + bias + relu6
const
std
::
string
pattern_name
=
"relu6_fuse"
;
FusePassBase
::
Init
(
pattern_name
,
graph
);
GraphPatternDetector
gpd
;
auto
*
clip_x
=
gpd
.
mutable_pattern
()
->
NewNode
(
"clip_x"
)
->
assert_is_op_input
(
"clip"
,
"X"
)
->
assert_var_not_persistable
()
->
AsInput
();
auto
clip_op
=
gpd
.
mutable_pattern
()
->
NewNode
(
"clip_op"
)
->
assert_is_op
(
"clip"
);
auto
clip_min
=
gpd
.
mutable_pattern
()
->
NewNode
(
"clip_min"
)
->
assert_is_op_input
(
"clip"
,
"Min"
)
->
assert_is_persistable_var
()
->
assert_more
([](
Node
*
node
)
{
return
node
->
Var
()
->
GetShape
().
size
()
==
1
;
})
->
AsInput
();
auto
clip_max
=
gpd
.
mutable_pattern
()
->
NewNode
(
"clip_max"
)
->
assert_is_op_input
(
"clip"
,
"Max"
)
->
assert_is_persistable_var
()
->
assert_more
([](
Node
*
node
)
{
return
node
->
Var
()
->
GetShape
().
size
()
==
1
;
})
->
AsInput
();
auto
clip_out
=
gpd
.
mutable_pattern
()
->
NewNode
(
"clip_out"
)
->
assert_is_op_output
(
"clip"
)
->
AsOutput
();
clip_op
->
LinksFrom
({
clip_x
,
clip_min
,
clip_max
}).
LinksTo
({
clip_out
});
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
Node
*
clip_x_node
=
subgraph
.
at
(
clip_x
);
Node
*
clip_op_node
=
subgraph
.
at
(
clip_op
);
Node
*
clip_max_node
=
subgraph
.
at
(
clip_max
);
Node
*
clip_min_node
=
subgraph
.
at
(
clip_min
);
Node
*
clip_out_node
=
subgraph
.
at
(
clip_out
);
auto
*
scope
=
param_scope
();
PADDLE_ENFORCE_NOT_NULL
(
scope
,
platform
::
errors
::
InvalidArgument
(
"Scope cannot be nullptr."
));
const
auto
&
clip_max_t
=
scope
->
GetVar
(
clip_max_node
->
Name
())
->
Get
<
phi
::
DenseTensor
>
();
auto
clip_max_t_dims
=
clip_max_t
.
dims
();
PADDLE_ENFORCE_EQ
(
clip_max_t_dims
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"the size(%d) of clip max tensor "
"must equal 1"
,
clip_max_t_dims
.
size
()));
const
auto
&
clip_min_t
=
scope
->
GetVar
(
clip_min_node
->
Name
())
->
Get
<
phi
::
DenseTensor
>
();
auto
clip_min_t_dims
=
clip_min_t
.
dims
();
PADDLE_ENFORCE_EQ
(
clip_min_t_dims
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"the size(%d) of clip max tensor "
"must equal 1"
,
clip_min_t_dims
.
size
()));
auto
tensor_type
=
clip_max_t
.
dtype
();
float
max_val_
=
0.
f
;
float
min_val_
=
1.
f
;
if
(
tensor_type
==
phi
::
DataType
::
FLOAT16
)
{
auto
*
clip_max_t_fp16_ptr
=
clip_max_t
.
data
<
platform
::
float16
>
();
auto
*
clip_min_t_fp16_ptr
=
clip_min_t
.
data
<
platform
::
float16
>
();
max_val_
=
static_cast
<
float
>
(
clip_max_t_fp16_ptr
[
0
]);
min_val_
=
static_cast
<
float
>
(
clip_min_t_fp16_ptr
[
0
]);
}
else
if
(
tensor_type
==
phi
::
DataType
::
FLOAT32
)
{
auto
*
clip_max_t_fp32_ptr
=
clip_max_t
.
data
<
float
>
();
auto
*
clip_min_t_fp32_ptr
=
clip_min_t
.
data
<
float
>
();
max_val_
=
clip_max_t_fp32_ptr
[
0
];
min_val_
=
clip_min_t_fp32_ptr
[
0
];
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"relu6_fuse_pass do not supported weight dtype. "
"we now only support fp32/fp16."
));
}
if
(
std
::
abs
(
max_val_
-
6.0
)
<
1e-3
&&
std
::
abs
(
min_val_
-
0.0
)
<
1e-3
)
{
OpDesc
new_desc
;
new_desc
.
SetType
(
"relu6"
);
new_desc
.
SetAttr
(
"threshold"
,
6.
f
);
new_desc
.
SetInput
(
"X"
,
{
clip_x_node
->
Name
()});
new_desc
.
SetOutput
(
"Out"
,
{
clip_out_node
->
Name
()});
new_desc
.
Flush
();
std
::
unordered_set
<
const
Node
*>
del_node_set
;
del_node_set
.
insert
(
clip_op_node
);
del_node_set
.
insert
(
clip_max_node
);
del_node_set
.
insert
(
clip_min_node
);
GraphSafeRemoveNodes
(
graph
,
del_node_set
);
auto
fused_node
=
graph
->
CreateOpNode
(
&
new_desc
);
IR_NODE_LINK_TO
(
clip_x_node
,
fused_node
);
IR_NODE_LINK_TO
(
fused_node
,
clip_out_node
);
}
};
gpd
(
graph
,
handler
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
relu6_fuse_pass
,
paddle
::
framework
::
ir
::
Relu6FusePass
);
paddle/fluid/framework/ir/relu6_fuse_pass.h
0 → 100644
浏览文件 @
f1c8d3fa
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Graph
;
/*
fuse fill_constant + clip block in to relu6 op
For example:
graph:
Min(0) Input Max(6.0)
\ | /
\ | /
clip
|
|
Output
------------------------------------------------------
After the pass is applied:
Input
|
|
relu6
|
|
Output
*/
class
Relu6FusePass
:
public
FusePassBase
{
public:
virtual
~
Relu6FusePass
()
{}
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
const
std
::
string
name_scope_
{
"relu6_fuse_pass"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/relu6_fuse_pass_test.cc
0 → 100644
浏览文件 @
f1c8d3fa
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/pass_tester_helper.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
template
<
typename
T
=
float
>
void
AddVarToScope
(
Scope
*
param_scope
,
const
std
::
string
&
name
,
const
DDim
&
dims
,
T
value
=
0
)
{
auto
*
tensor
=
param_scope
->
Var
(
name
)
->
GetMutable
<
phi
::
DenseTensor
>
();
tensor
->
Resize
(
dims
);
auto
*
cpu_ctx
=
static_cast
<
phi
::
CPUContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
phi
::
CPUPlace
()));
auto
*
data
=
cpu_ctx
->
Alloc
<
T
>
(
tensor
);
for
(
int64_t
i
=
0
;
i
<
tensor
->
numel
();
i
++
)
{
data
[
i
]
=
value
;
}
}
TEST
(
Relu6FusePass
,
basic
)
{
Layers
layers
;
auto
*
in_x
=
layers
.
data
(
"in_x"
,
{
1
,
32
,
112
,
112
});
auto
*
clip_min
=
layers
.
data
(
"clip_x"
,
{
1
},
true
);
auto
*
clip_max
=
layers
.
data
(
"clip_y"
,
{
1
},
true
);
layers
.
clip
(
in_x
,
clip_min
,
clip_max
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
auto
*
param_scope
=
new
Scope
();
graph
->
Set
(
"__param_scope__"
,
param_scope
);
AddVarToScope
(
param_scope
,
clip_min
->
Name
(),
{
1
},
0.
f
);
AddVarToScope
(
param_scope
,
clip_max
->
Name
(),
{
1
},
6.
f
);
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"relu6_fuse_pass"
);
VLOG
(
3
)
<<
DebugString
(
graph
);
pass
->
Apply
(
graph
.
get
());
VLOG
(
3
)
<<
DebugString
(
graph
);
auto
clip_num
=
GetNumOpNodes
(
graph
,
"clip"
);
PADDLE_ENFORCE_EQ
(
clip_num
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"clip should be mapped to relu6 after pass."
));
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
relu6_fuse_pass
);
paddle/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass.cc
浏览文件 @
f1c8d3fa
...
...
@@ -139,6 +139,76 @@ Reshape2MatmulPattern::Reshape2MatmulPattern(PDPattern* pattern,
reshape2
->
LinksFrom
({
reshape2_in
}).
LinksTo
({
matmul_x
});
matmul
->
LinksFrom
({
matmul_x
,
matmul_y
}).
LinksTo
({
matmul_out
});
}
struct
Squeeze2MatmulPattern
:
public
PatternBase
{
Squeeze2MatmulPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
squeeze2
);
PATTERN_DECL_NODE
(
matmul
);
// declare variable node's name
PATTERN_DECL_NODE
(
squeeze2_in
);
PATTERN_DECL_NODE
(
matmul_x
);
PATTERN_DECL_NODE
(
matmul_y
);
PATTERN_DECL_NODE
(
matmul_out
);
};
Squeeze2MatmulPattern
::
Squeeze2MatmulPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
squeeze2_in
=
pattern
->
NewNode
(
squeeze2_in_repr
())
->
assert_is_op_input
(
"squeeze2"
,
"X"
)
->
AsInput
()
->
assert_more
([](
Node
*
node
)
{
auto
squeeze2_in_x_shape
=
node
->
Var
()
->
GetShape
();
size_t
squeeze2_in_rank
=
squeeze2_in_x_shape
.
size
();
bool
nice_shape
=
squeeze2_in_x_shape
[
2
]
==
1
&&
squeeze2_in_x_shape
[
3
]
==
1
;
return
squeeze2_in_rank
==
4
&&
nice_shape
;
});
auto
*
squeeze2
=
pattern
->
NewNode
(
squeeze2_repr
())
->
assert_is_op
(
"squeeze2"
)
->
assert_has_n_inputs
(
1
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
squeeze2_op_axes
=
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"axes"
);
return
squeeze2_op_axes
==
std
::
vector
<
int
>
{
2
,
3
};
});
auto
matmul_x
=
pattern
->
NewNode
(
matmul_x_repr
())
->
assert_is_op_output
(
"squeeze2"
,
"Out"
)
->
assert_has_n_outputs
(
1
)
->
assert_is_op_input
(
"matmul"
,
"X"
)
->
assert_more
([](
Node
*
node
)
{
auto
matmul_x_shape
=
node
->
Var
()
->
GetShape
();
size_t
matmul_x_rank
=
matmul_x_shape
.
size
();
return
matmul_x_rank
==
2
;
});
auto
*
matmul_y
=
pattern
->
NewNode
(
matmul_y_repr
())
->
assert_is_op_input
(
"matmul"
,
"Y"
)
->
assert_is_persistable_var
()
->
assert_more
([](
Node
*
node
)
{
auto
matmul_y_shape
=
node
->
Var
()
->
GetShape
();
size_t
matmul_y_rank
=
matmul_y_shape
.
size
();
return
matmul_y_rank
==
2
;
});
auto
*
matmul
=
pattern
->
NewNode
(
matmul_repr
())
->
assert_is_op
(
"matmul"
)
->
assert_op_attr
<
bool
>
(
"transpose_X"
,
false
)
->
assert_op_attr
<
bool
>
(
"transpose_Y"
,
false
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
matmul_alpha_attr
=
op_desc
->
GetAttrIfExists
<
float
>
(
"alpha"
);
return
std
::
abs
(
matmul_alpha_attr
-
1.
f
)
<
1e-5
;
});
auto
*
matmul_out
=
pattern
->
NewNode
(
matmul_out_repr
())
->
assert_is_op_output
(
"matmul"
,
"Out"
)
->
AsOutput
();
squeeze2
->
LinksFrom
({
squeeze2_in
}).
LinksTo
({
matmul_x
});
matmul
->
LinksFrom
({
matmul_x
,
matmul_y
}).
LinksTo
({
matmul_out
});
}
}
// namespace patterns
void
Reshape2MatmulXPUFusePass
::
FuseReshape2Matmul
(
ir
::
Graph
*
graph
)
const
{
...
...
@@ -250,6 +320,59 @@ void MapMatmulV2ToMatmulXPUPass::ApplyImpl(ir::Graph* graph) const {
MapMatmulV2ToMatmul
(
graph
);
}
void
Squeeze2MatmulXPUFusePass
::
FuseSqueeze2Matmul
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
Squeeze2MatmulPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle Squeeze2MatmulXPUFusePass"
;
/* declare operator node's name */
GET_IR_NODE
(
squeeze2
);
GET_IR_NODE
(
matmul
);
/* declare variable node's name*/
GET_IR_NODE
(
squeeze2_in
);
GET_IR_NODE
(
matmul_x
);
GET_IR_NODE
(
matmul_y
);
GET_IR_NODE
(
matmul_out
);
bool
flag
=
true
;
std
::
vector
<
Node
*>&
next_ops
=
matmul_out
->
outputs
;
flag
=
flag
&&
next_ops
.
size
()
==
1
&&
(
next_ops
[
0
]
->
Name
()
==
"elementwise_add"
||
next_ops
[
0
]
->
Name
()
==
"batch_norm"
);
if
(
flag
)
{
OpDesc
desc
(
matmul
->
Op
()
->
Block
());
desc
.
SetType
(
"mul"
);
desc
.
SetInput
(
"X"
,
{
squeeze2_in
->
Name
()});
desc
.
SetInput
(
"Y"
,
{
matmul_y
->
Name
()});
desc
.
SetOutput
(
"Out"
,
{
matmul_out
->
Name
()});
desc
.
SetAttr
(
"x_num_col_dims"
,
1
);
desc
.
SetAttr
(
"y_num_col_dims"
,
1
);
auto
mul_node
=
graph
->
CreateOpNode
(
&
desc
);
IR_NODE_LINK_TO
(
squeeze2_in
,
mul_node
);
IR_NODE_LINK_TO
(
matmul_y
,
mul_node
);
IR_NODE_LINK_TO
(
mul_node
,
matmul_out
);
GraphSafeRemoveNodes
(
graph
,
{
squeeze2
,
matmul_x
,
matmul
});
found_subgraph_count
++
;
}
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
void
Squeeze2MatmulXPUFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
FuseSqueeze2Matmul
(
graph
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
...
...
@@ -272,3 +395,13 @@ REGISTER_PASS_CAPABILITY(map_matmulv2_to_matmul_xpu_pass)
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
EQ
(
"matmul_v2"
,
0
)
.
LE
(
"matmul"
,
1
));
REGISTER_PASS
(
squeeze2_matmul_xpu_fuse_pass
,
paddle
::
framework
::
ir
::
Squeeze2MatmulXPUFusePass
);
REGISTER_PASS_CAPABILITY
(
squeeze2_matmul_xpu_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
EQ
(
"squeeze2"
,
0
)
.
LE
(
"matmul"
,
1
)
.
EQ
(
"mul"
,
0
));
paddle/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass.h
浏览文件 @
f1c8d3fa
...
...
@@ -31,6 +31,15 @@ namespace paddle {
namespace
framework
{
namespace
ir
{
class
Squeeze2MatmulXPUFusePass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
void
FuseSqueeze2Matmul
(
ir
::
Graph
*
graph
)
const
;
const
std
::
string
name_scope_
{
"squeeze2_matmul_xpu_fuse_pass"
};
};
class
Reshape2MatmulXPUFusePass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
...
...
paddle/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass_test.cc
浏览文件 @
f1c8d3fa
...
...
@@ -22,6 +22,32 @@ namespace paddle {
namespace
framework
{
namespace
ir
{
TEST
(
Squeeze2MatmulXPUFusePass
,
basic
)
{
Layers
layers
;
auto
*
squeeze2_in
=
layers
.
data
(
"squeeze2_in"
,
{
64
,
1
,
74
,
1
});
auto
*
squeeze2_out
=
layers
.
squeeze2
(
squeeze2_in
,
std
::
vector
<
int
>
{
1
,
3
});
auto
*
matmul_y
=
layers
.
data
(
"matmul_y"
,
{
74
,
64
},
true
);
auto
*
matmul_out
=
layers
.
matmul
(
squeeze2_out
,
matmul_y
,
nullptr
,
false
,
false
);
auto
*
ele_y
=
layers
.
data
(
"ele_y"
,
{
64
},
true
);
layers
.
elementwise_add
(
matmul_out
,
ele_y
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"squeeze2_matmul_xpu_fuse_pass"
);
VLOG
(
3
)
<<
DebugString
(
graph
);
pass
->
Apply
(
graph
.
get
());
VLOG
(
3
)
<<
DebugString
(
graph
);
auto
ops_num
=
GetNumOpNodes
(
graph
);
PADDLE_ENFORCE_EQ
(
ops_num
,
3
,
platform
::
errors
::
PreconditionNotMet
(
"graph should only have 2 op nodes, but received %d."
,
ops_num
));
}
TEST
(
ReShape2MatmulXPUFusePass
,
basic
)
{
Layers
layers
;
...
...
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
f1c8d3fa
...
...
@@ -529,10 +529,12 @@ XpuPassStrategy::XpuPassStrategy() : PassStrategy({}) {
"xpu_delete_cast_op_pass"
,
"stack_fuse_pass"
,
"fused_multi_transformer_xpu_pass"
,
"relu6_fuse_pass"
,
"sigmoid_elementmul_fuse_pass"
,
"matmul_weight_trans_pass"
,
"map_matmulv2_to_matmul_xpu_pass"
,
"reshape2_matmul_xpu_fuse_pass"
,
"squeeze2_matmul_xpu_fuse_pass"
,
"redundant_squeeze_unsqueeze_elimination_pass"
,
"fc_xpu_fuse_pass"
,
"conv2d_xpu_fuse_pass"
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录