Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f1955e2b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f1955e2b
编写于
11月 17, 2016
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove copy & paste code.
上级
8a50f796
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
38 addition
and
299 deletion
+38
-299
doc_cn/algorithm/rnn/hierarchical-rnn.rst
doc_cn/algorithm/rnn/hierarchical-rnn.rst
+38
-299
未找到文件。
doc_cn/algorithm/rnn/hierarchical-rnn.rst
浏览文件 @
f1955e2b
...
...
@@ -16,37 +16,14 @@
- 单层序列的数据( :code:`Sequence/tour_train_wdseg`)如下,一共有10个样本。每个样本由两部分组成,一个label(此处都为2)和一个已经分词后的句子。
.. code-block:: text
2 酒店 有 很 舒适 的 床垫 子 , 床上用品 也 应该 是 一人 一 换 , 感觉 很 利落 对 卫生 很 放心 呀 。
2 很 温馨 , 也 挺 干净 的 * 地段 不错 , 出来 就 有 全家 , 离 地铁站 也 近 , 交通 很方便 * 就是 都 不 给 刷牙 的 杯子 啊 , 就 第一天 给 了 一次性杯子 *
2 位置 方便 , 强烈推荐 , 十一 出去玩 的 时候 选 的 , 对面 就是 华润万家 , 周围 吃饭 的 也 不少 。
2 交通便利 , 吃 很 便利 , 乾 浄 、 安静 , 商务 房 有 电脑 、 上网 快 , 价格 可以 , 就 早餐 不 好吃 。 整体 是 不错 的 。 適 合 出差 來 住 。
2 本来 准备 住 两 晚 , 第 2 天 一早 居然 停电 , 且 无 通知 , 只有 口头 道歉 。 总体来说 性价比 尚可 , 房间 较 新 , 还是 推荐 .
2 这个 酒店 去过 很多 次 了 , 选择 的 主要原因 是 离 客户 最 便宜 相对 又 近 的 酒店
2 挺好 的 汉庭 , 前台 服务 很 热情 , 卫生 很 整洁 , 房间 安静 , 水温 适中 , 挺好 !
2 HowardJohnson 的 品质 , 服务 相当 好 的 一 家 五星级 。 房间 不错 、 泳池 不错 、 楼层 安排 很 合理 。 还有 就是 地理位置 , 简直 一 流 。 就 在 天一阁 、 月湖 旁边 , 离 天一广场 也 不远 。 下次 来 宁波 还会 住 。
2 酒店 很干净 , 很安静 , 很 温馨 , 服务员 服务 好 , 各方面 都 不错 *
2 挺好 的 , 就是 没 窗户 , 不过 对 得 起 这 价格
.. literalinclude:: ../../../paddle/gserver/tests/Sequence/tour_train_wdseg
:language: text
- 双层序列的数据( :code:`Sequence/tour_train_wdseg.nest`)如下,一共有4个样本。样本间用空行分开,代表不同的双层序列,序列数据和上面的完全一样。每个样本的子句数分别为2,3,2,3。
.. code-block:: text
2 酒店 有 很 舒适 的 床垫 子 , 床上用品 也 应该 是 一人 一 换 , 感觉 很 利落 对 卫生 很 放心 呀 。
2 很 温馨 , 也 挺 干净 的 * 地段 不错 , 出来 就 有 全家 , 离 地铁站 也 近 , 交通 很方便 * 就是 都 不 给 刷牙 的 杯子 啊 , 就 第一天 给 了 一次性杯子 *
2 位置 方便 , 强烈推荐 , 十一 出去玩 的 时候 选 的 , 对面 就是 华润万家 , 周围 吃饭 的 也 不少 。
2 交通便利 , 吃 很 便利 , 乾 浄 、 安静 , 商务 房 有 电脑 、 上网 快 , 价格 可以 , 就 早餐 不 好吃 。 整体 是 不错 的 。 適 合 出差 來 住 。
2 本来 准备 住 两 晚 , 第 2 天 一早 居然 停电 , 且 无 通知 , 只有 口头 道歉 。 总体来说 性价比 尚可 , 房间 较 新 , 还是 推荐 .
2 这个 酒店 去过 很多 次 了 , 选择 的 主要原因 是 离 客户 最 便宜 相对 又 近 的 酒店
2 挺好 的 汉庭 , 前台 服务 很 热情 , 卫生 很 整洁 , 房间 安静 , 水温 适中 , 挺好 !
2 HowardJohnson 的 品质 , 服务 相当 好 的 一 家 五星级 。 房间 不错 、 泳池 不错 、 楼层 安排 很 合理 。 还有 就是 地理位置 , 简直 一 流 。 就 在 天一阁 、 月湖 旁边 , 离 天一广场 也 不远 。 下次 来 宁波 还会 住 。
2 酒店 很干净 , 很安静 , 很 温馨 , 服务员 服务 好 , 各方面 都 不错 *
2 挺好 的 , 就是 没 窗户 , 不过 对 得 起 这 价格
.. literalinclude:: ../../../paddle/gserver/tests/Sequence/tour_train_wdseg.nest
:language: text
其次,我们看一下单双层序列的不同dataprovider(见 :code:`sequenceGen.py` ):
...
...
@@ -55,22 +32,9 @@
- word_slot是integer_value_sequence类型,代表单层序列。
- label是integer_value类型,代表一个向量。
.. code-block:: python
def hook(settings, dict_file, **kwargs):
settings.word_dict = dict_file
settings.input_types = [integer_value_sequence(len(settings.word_dict)),
integer_value(3)]
@provider(init_hook=hook)
def process(settings, file_name):
with open(file_name, 'r') as fdata:
for line in fdata:
label, comment = line.strip().split('\t')
label = int(''.join(label.split()))
words = comment.split()
word_slot = [settings.word_dict[w] for w in words if w in settings.word_dict]
yield word_slot, label
.. literalinclude:: ../../../paddle/gserver/tests/sequenceGen.py
:language: python
:lines: 21-39
- 双层序列的dataprovider如下:
...
...
@@ -78,64 +42,18 @@
- label是integer_value_sequence类型,代表单层序列,即一个子句一个label。注意:也可以为integer_value类型,代表一个向量,即一个句子一个label。通常根据任务需求进行不同设置。
- 关于dataprovider中input_types的详细用法,参见PyDataProvider2。
.. code-block:: python
def hook2(settings, dict_file, **kwargs):
settings.word_dict = dict_file
settings.input_types = [integer_value_sub_sequence(len(settings.word_dict)),
integer_value_sequence(3)]
@provider(init_hook=hook2)
def process2(settings, file_name):
with open(file_name) as fdata:
label_list = []
word_slot_list = []
for line in fdata:
if (len(line)) > 1:
label,comment = line.strip().split('\t')
label = int(''.join(label.split()))
words = comment.split()
word_slot = [settings.word_dict[w] for w in words if w in settings.word_dict]
label_list.append(label)
word_slot_list.append(word_slot)
else:
yield word_slot_list, label_list
label_list = []
word_slot_list = []
.. literalinclude:: ../../../paddle/gserver/tests/sequenceGen.py
:language: python
:lines: 42-71
模型中的配置
------------
首先,我们看一下单层序列的配置(见 :code:`sequence_layer_group.conf`)。注意:batchsize=5表示一次过5句单层序列,因此2个batch就可以完成1个pass。
.. code-block:: python
settings(batch_size=5)
data = data_layer(name="word", size=dict_dim)
emb = embedding_layer(input=data, size=word_dim)
# (lstm_input + lstm) is equal to lstmemory
with mixed_layer(size=hidden_dim*4) as lstm_input:
lstm_input += full_matrix_projection(input=emb)
lstm = lstmemory_group(input=lstm_input,
size=hidden_dim,
act=TanhActivation(),
gate_act=SigmoidActivation(),
state_act=TanhActivation(),
lstm_layer_attr=ExtraLayerAttribute(error_clipping_threshold=50))
lstm_last = last_seq(input=lstm)
with mixed_layer(size=label_dim,
act=SoftmaxActivation(),
bias_attr=True) as output:
output += full_matrix_projection(input=lstm_last)
outputs(classification_cost(input=output, label=data_layer(name="label", size=1)))
.. literalinclude:: ../../../paddle/gserver/tests/sequence_layer_group.conf
:language: python
:lines: 38-63
其次,我们看一下语义相同的双层序列配置(见 :code:`sequence_nest_layer_group.conf` ),并对其详细分析:
...
...
@@ -153,48 +71,9 @@
- 双层序列首先(last_seq层)取了每个subseq的最后一个元素,将其拼接成一个新的单层序列;接着(expand_layer层)将其扩展成一个新的双层序列,其中第i个subseq中的所有向量均为输入的单层序列中的第i个向量;最后(average_layer层)取了每个subseq的平均值。
- 分析得出:第一个last_seq后,每个subseq的最后一个元素就等于单层序列的最后一个元素,而expand_layer和average_layer后,依然保持每个subseq最后一个元素的值不变(这两层仅是为了展示它们的用法,实际中并不需要)。因此单双层序列的输出是一样旳。
.. code-block:: python
settings(batch_size=2)
data = data_layer(name="word", size=dict_dim)
emb_group = embedding_layer(input=data, size=word_dim)
# (lstm_input + lstm) is equal to lstmemory
def lstm_group(lstm_group_input):
with mixed_layer(size=hidden_dim*4) as group_input:
group_input += full_matrix_projection(input=lstm_group_input)
lstm_output = lstmemory_group(input=group_input,
name="lstm_group",
size=hidden_dim,
act=TanhActivation(),
gate_act=SigmoidActivation(),
state_act=TanhActivation(),
lstm_layer_attr=ExtraLayerAttribute(error_clipping_threshold=50))
return lstm_output
lstm_nest_group = recurrent_group(input=SubsequenceInput(emb_group),
step=lstm_group,
name="lstm_nest_group")
# hasSubseq ->(seqlastins) seq
lstm_last = last_seq(input=lstm_nest_group, agg_level=AggregateLevel.EACH_SEQUENCE)
# seq ->(expand) hasSubseq
lstm_expand = expand_layer(input=lstm_last, expand_as=emb_group, expand_level=ExpandLevel.FROM_SEQUENCE)
# hasSubseq ->(average) seq
lstm_average = pooling_layer(input=lstm_expand,
pooling_type=AvgPooling(),
agg_level=AggregateLevel.EACH_SEQUENCE)
with mixed_layer(size=label_dim,
act=SoftmaxActivation(),
bias_attr=True) as output:
output += full_matrix_projection(input=lstm_average)
outputs(classification_cost(input=output, label=data_layer(name="label", size=1)))
.. literalinclude:: ../../../paddle/gserver/tests/sequence_nest_layer_group.conf
:language: python
:lines: 38-84
示例2:双进双出,subseq间有memory
=================================
...
...
@@ -206,24 +85,9 @@
我们看一下单双层序列的不同数据组织形式和dataprovider(见 :code:`rnn_data_provider.py`)
.. code-block:: python
data = [
[[[1, 3, 2], [4, 5, 2]], 0],
[[[0, 2], [2, 5], [0, 1, 2]], 1],
]
@provider(input_types=[integer_value_sub_sequence(10),
integer_value(3)])
def process_subseq(settings, file_name):
for d in data:
yield d
@provider(input_types=[integer_value_sequence(10),
integer_value(3)])
def process_seq(settings, file_name):
for d in data:
seq = []
.. literalinclude:: ../../../paddle/gserver/tests/rnn_data_provider.py
:language: python
:lines: 20-32
- 单层序列:有两句,分别为[1,3,2,4,5,2]和[0,2,2,5,0,1,2]。
- 双层序列:有两句,分别为[[1,3,2],[4,5,2]](2个子句)和[[0,2],[2,5],[0,1,2]](3个子句)。
...
...
@@ -236,46 +100,21 @@
- 单层序列:过了一个很简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全链接。
.. code-block:: python
def step(y):
mem = memory(name="rnn_state", size=hidden_dim)
return fc_layer(input=[y, mem],
size=hidden_dim,
act=TanhActivation(),
bias_attr=True,
name="rnn_state")
out = recurrent_group(step=step, input=emb)
.. literalinclude:: ../../../paddle/gserver/tests/sequence_rnn.conf
:language: python
:lines: 36-48
- 双层序列,外层memory是一个元素:
- 内层inner_step的recurrent_group和单层序列的几乎一样。除了boot_layer=outer_mem,表示将外层的outer_mem作为内层memory的初始状态。外层outer_step中,outer_mem是一个子句的最后一个向量,即整个双层group是将前一个子句的最后一个向量,作为下一个子句memory的初始状态。
- 从输入数据上看,单双层序列的句子是一样的,只是双层序列将其又做了子序列划分。因此双层序列的配置中,必须将前一个子句的最后一个元素,作为boot_layer传给下一个子句的memory,才能保证和单层序列的配置中“每一个时间步都用了上一个时间步的输出结果”一致。
.. code-block::
def outer_step(x):
outer_mem = memory(name="outer_rnn_state", size=hidden_dim)
def inner_step(y):
inner_mem = memory(name="inner_rnn_state",
size=hidden_dim,
boot_layer=outer_mem)
return fc_layer(input=[y, inner_mem],
size=hidden_dim,
act=TanhActivation(),
bias_attr=True,
name="inner_rnn_state")
inner_rnn_output = recurrent_group(
step=inner_step,
input=x)
last = last_seq(input=inner_rnn_output, name="outer_rnn_state")
return inner_rnn_output
out = recurrent_group(step=outer_step, input=SubsequenceInput(emb))
.. literalinclude:: ../../../paddle/gserver/tests/sequence_nest_rnn.conf
:language: python
:lines: 39-66
- 双层序列,外层memory是单层序列:
- 由于外层每个时间步返回的是一个子句,这些子句的长度往往不等长。因此当外层有is_seq=True的memory时,内层是**无法直接使用**它的,即内层memory的boot_layer不能链接外层的这个memory。
- 如果内层memory想**间接使用**这个外层memory,只能通过`pooling_layer`、`last_seq`或`first_seq`这三个layer将它先变成一个元素。但这种情况下,外层memory必须有boot_layer,否则在第0个时间步时,由于外层memory没有任何seq信息,因此上述三个layer的前向会报出“**Check failed: input.sequenceStartPositions**”的错误。
...
...
@@ -293,33 +132,11 @@
读取双层序列的方法
------------------
我们看一下单双层序列的数据组织形式和dataprovider(见`rnn_data_provider.py`)
.. code-block:: python
data2 = [
[[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]] ,0],
[[[0, 2], [2, 5], [0, 1, 2]],[[1, 5], [4], [2, 3, 6, 1]], 1],
]
@provider(input_types=[integer_value_sub_sequence(10),
integer_value_sub_sequence(10),
integer_value(2)],
should_shuffle=False)
def process_unequalength_subseq(settings, file_name): #双层RNN的dataprovider
for d in data2:
yield d
我们看一下单双层序列的数据组织形式和dataprovider(见 :code:`rnn_data_provider.py` )
@provider(input_types=[integer_value_sequence(10),
integer_value_sequence(10),
integer_value(2)],
should_shuffle=False)
def process_unequalength_seq(settings, file_name): #单层RNN的dataprovider
for d in data2:
words1=reduce(lambda x,y: x+y, d[0])
words2=reduce(lambda x,y: x+y, d[1])
yield words1, words2, d[2]
.. literalinclude:: ../../../paddle/gserver/tests/rnn_data_provider.py
:language: python
:lines: 69-97
data2 中有两个样本,每个样本有两个特征, 记fea1, fea2。
...
...
@@ -335,40 +152,16 @@ data2 中有两个样本,每个样本有两个特征, 记fea1, fea2。
模型中的配置
------------
单层RNN( :code:`sequence_rnn_multi_unequalength_inputs.conf`)和双层RNN( :code:`
sequence_nest_rnn_multi_unequalength_inputs
.conf`)两个模型配置达到的效果完全一样,区别只在于输入为单层还是双层序列,现在我们来看它们内部分别是如何实现的。
单层RNN( :code:`sequence_rnn_multi_unequalength_inputs.conf`)和双层RNN( :code:`
v
.conf`)两个模型配置达到的效果完全一样,区别只在于输入为单层还是双层序列,现在我们来看它们内部分别是如何实现的。
- 单层序列\:
- 过了一个简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全连接,功能与示例2中`sequence_rnn.conf`的`step`函数完全相同。这里,两个输入x1,x2分别通过calrnn返回最后时刻的状态。结果得到的encoder1_rep和encoder2_rep分别是单层序列,最后取encoder1_rep的最后一个时刻和encoder2_rep的所有时刻分别相加得到context。
- 注意到这里recurrent_group输入的每个样本中,fea1和fea2的长度都分别相等,这并非偶然,而是因为recurrent_group要求输入为单层序列时,所有输入的长度都必须相等。
.. code-block:: python
def step(x1, x2):
def calrnn(y):
mem = memory(name = 'rnn_state_' + y.name, size = hidden_dim)
out = fc_layer(input = [y, mem],
size = hidden_dim,
act = TanhActivation(),
bias_attr = True,
name = 'rnn_state_' + y.name)
return out
encoder1 = calrnn(x1)
encoder2 = calrnn(x2)
return [encoder1, encoder2]
encoder1_rep, encoder2_rep = recurrent_group(
name="stepout",
step=step,
input=[emb1, emb2])
encoder1_last = last_seq(input = encoder1_rep)
encoder1_expandlast = expand_layer(input = encoder1_last,
expand_as = encoder2_rep)
context = mixed_layer(input = [identity_projection(encoder1_expandlast),
identity_projection(encoder2_rep)],
size = hidden_dim)
.. literalinclude:: ../../../paddle/gserver/tests/sequence_rnn_multi_unequalength_inputs.conf
:language: python
:lines: 41-58
- 双层序列\:
...
...
@@ -376,63 +169,9 @@ data2 中有两个样本,每个样本有两个特征, 记fea1, fea2。
- 函数`outer_step`中可以分别处理这两个特征,但我们需要用<font color=red>targetInlink</font>指定recurrent_group的输出的格式(各子句长度)只能和其中一个保持一致,如这里选择了和emb2的长度一致。
- 最后,依然是取encoder1_rep的最后一个时刻和encoder2_rep的所有时刻分别相加得到context。
.. code-block:: python
def outer_step(x1, x2):
outer_mem1 = memory(name = "outer_rnn_state1", size = hidden_dim)
outer_mem2 = memory(name = "outer_rnn_state2", size = hidden_dim)
def inner_step1(y):
inner_mem = memory(name = 'inner_rnn_state_' + y.name,
size = hidden_dim,
boot_layer = outer_mem1)
out = fc_layer(input = [y, inner_mem],
size = hidden_dim,
act = TanhActivation(),
bias_attr = True,
name = 'inner_rnn_state_' + y.name)
return out
def inner_step2(y):
inner_mem = memory(name = 'inner_rnn_state_' + y.name,
size = hidden_dim,
boot_layer = outer_mem2)
out = fc_layer(input = [y, inner_mem],
size = hidden_dim,
act = TanhActivation(),
bias_attr = True,
name = 'inner_rnn_state_' + y.name)
return out
encoder1 = recurrent_group(
step = inner_step1,
name = 'inner1',
input = x1)
encoder2 = recurrent_group(
step = inner_step2,
name = 'inner2',
input = x2)
sentence_last_state1 = last_seq(input = encoder1, name = 'outer_rnn_state1')
sentence_last_state2_ = last_seq(input = encoder2, name = 'outer_rnn_state2')
encoder1_expand = expand_layer(input = sentence_last_state1,
expand_as = encoder2)
return [encoder1_expand, encoder2]
encoder1_rep, encoder2_rep = recurrent_group(
name="outer",
step=outer_step,
input=[SubsequenceInput(emb1), SubsequenceInput(emb2)],
targetInlink=emb2)
encoder1_last = last_seq(input = encoder1_rep)
encoder1_expandlast = expand_layer(input = encoder1_last,
expand_as = encoder2_rep)
context = mixed_layer(input = [identity_projection(encoder1_expandlast),
identity_projection(encoder2_rep)],
size = hidden_dim)
.. literalinclude:: ../../../paddle/gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.conf
:language: python
:lines: 41-89
示例4:beam_search的生成
========================
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录