Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f17a73e9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f17a73e9
编写于
9月 30, 2022
作者:
Z
Zhang Zheng
提交者:
GitHub
9月 30, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimize performance of depthwise_conv_bwd (#46362)
* Optimize performance of depthwise_conv_bwd * fix
上级
2e231402
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
60 addition
and
47 deletion
+60
-47
paddle/phi/kernels/gpu/depthwise_conv.h
paddle/phi/kernels/gpu/depthwise_conv.h
+60
-47
未找到文件。
paddle/phi/kernels/gpu/depthwise_conv.h
浏览文件 @
f17a73e9
...
...
@@ -469,60 +469,62 @@ __global__ void KernelDepthwiseConvSp(ARG_DEFINE_KernelDepthwiseConv) {
const int dilate_height, const int dilate_width, \
T *const input_grad_data
template
<
typename
T
,
bool
fuse_relu_before_conv
>
template
<
typename
T
,
int
c_filter
,
bool
fuse_relu_before_conv
>
__device__
__inline__
void
KernelDepthwiseConvInputGradNCHW
(
ARG_DEFINE_KernelDepthwiseConvInputGrad
)
{
const
int
batch
=
blockIdx
.
y
;
const
int
c_in
=
blockIdx
.
x
;
for
(
int
w_in
=
threadIdx
.
x
;
w_in
<
input_width
;
w_in
+=
blockDim
.
x
)
{
for
(
int
h_in
=
threadIdx
.
y
;
h_in
<
input_height
;
h_in
+=
blockDim
.
y
)
{
const
int
c_out_start
=
c_in
*
filter_multiplier
;
int
h_out_start
=
h_in
-
(
filter_height
-
1
)
*
dilate_height
+
padding_height
;
int
h_out_end
=
h_in
+
padding_height
;
int
w_out_start
=
w_in
-
(
filter_width
-
1
)
*
dilate_width
+
padding_width
;
int
w_out_end
=
w_in
+
padding_width
;
T
value
(
0
);
int
index
=
((
batch
*
gridDim
.
x
+
c_in
)
*
input_height
+
h_in
)
*
input_width
+
w_in
;
const
int
fw_size
=
c_filter
!=
-
1
?
c_filter
:
filter_width
;
const
int
fh_size
=
c_filter
!=
-
1
?
c_filter
:
filter_height
;
int
idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
idx
>=
batch_size
*
input_channels
*
input_height
*
input_width
)
{
return
;
}
if
(
fuse_relu_before_conv
)
{
if
(
input_data
[
index
]
<=
T
(
0
))
{
input_grad_data
[
inde
x
]
=
0
;
continue
;
if
(
input_data
[
idx
]
<=
static_cast
<
T
>
(
0.0
f
))
{
input_grad_data
[
id
x
]
=
0
;
return
;
}
}
for
(
int
c_out
=
c_out_start
;
c_out
<
c_out_start
+
filter_multiplier
;
c_out
++
)
{
int
filter_offset
=
(
c_out
+
1
)
*
filter_height
*
filter_width
;
for
(
int
h_out
=
h_out_start
;
h_out
<=
h_out_end
;
h_out
+=
dilate_height
)
{
for
(
int
w_out
=
w_out_start
;
w_out
<=
w_out_end
;
w_out
+=
dilate_width
)
{
filter_offset
--
;
int
s_h_out
=
h_out
/
stride_height
;
int
s_w_out
=
w_out
/
stride_width
;
if
(
h_out
%
stride_height
==
0
&&
w_out
%
stride_width
==
0
&&
s_h_out
>=
0
&&
s_h_out
<
output_height
&&
s_w_out
>=
0
&&
s_w_out
<
output_width
)
{
int
tmp_1
=
idx
/
input_width
;
const
int
w_in
=
idx
-
tmp_1
*
input_width
;
int
tmp_2
=
tmp_1
/
input_height
;
const
int
h_in
=
tmp_1
-
tmp_2
*
input_height
;
tmp_1
=
tmp_2
;
tmp_2
=
tmp_1
/
input_channels
;
const
int
c_in
=
tmp_1
-
tmp_2
*
input_channels
;
const
int
batch
=
tmp_2
;
T
value
(
0
);
for
(
int
c_mul
=
0
;
c_mul
<
filter_multiplier
;
++
c_mul
)
{
int
c_out
=
c_in
*
filter_multiplier
+
c_mul
;
int
filter_offset
=
c_out
*
filter_height
*
filter_width
;
#pragma unroll
for
(
int
fh
=
0
;
fh
<
fh_size
;
++
fh
)
{
#pragma unroll
for
(
int
fw
=
0
;
fw
<
fw_size
;
++
fw
)
{
int
h_out
=
h_in
+
padding_height
-
fh
*
dilate_height
;
int
w_out
=
w_in
+
padding_width
-
fw
*
dilate_width
;
if
((
h_out
-
h_out
/
stride_height
*
stride_height
==
0
)
&&
(
w_out
-
w_out
/
stride_width
*
stride_width
==
0
))
{
h_out
/=
stride_height
;
w_out
/=
stride_width
;
if
(
h_out
>=
0
&&
h_out
<
output_height
&&
w_out
>=
0
&&
w_out
<
output_width
)
{
int
output_grad_offset
=
((
batch
*
output_channels
+
c_out
)
*
output_height
+
s_h_out
)
*
((
batch
*
output_channels
+
c_out
)
*
output_height
+
h_out
)
*
output_width
+
s_
w_out
;
w_out
;
value
+=
output_grad_data
[
output_grad_offset
]
*
filter_data
[
filter_offset
];
}
}
filter_offset
++
;
}
}
input_grad_data
[
index
]
=
value
;
}
}
input_grad_data
[
idx
]
=
value
;
}
template
<
typename
T
,
bool
fuse_relu_before_conv
>
...
...
@@ -735,7 +737,7 @@ __global__ void KernelDepthwiseConvInputGradSp(
if
(
c_filter_multiplier
==
0
||
c_filter
==
-
1
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
KernelDepthwiseConvInputGradNCHW
<
T
,
fuse_relu_before_conv
>
(
KernelDepthwiseConvInputGradNCHW
<
T
,
c_filter
,
fuse_relu_before_conv
>
(
input_data
,
output_grad_data
,
filter_data
,
...
...
@@ -1247,8 +1249,7 @@ class DepthwiseConvFunctor<phi::GPUContext, T, fuse_relu_before_conv> {
batch_size
);
}
int
filter_multiplier
=
output_channels
/
input_channels
;
int
nums_output
=
batch_size
*
output_channels
*
output_height
*
output_width
;
int
nums_output
=
output
->
numel
();
#ifdef __HIPCC__
int
block_size
=
256
;
#else
...
...
@@ -1421,6 +1422,13 @@ class DepthwiseConvInputGradFunctor<phi::GPUContext, T, fuse_relu_before_conv> {
batch_size
);
}
int
filter_multiplier
=
output_channels
/
input_channels
;
int
nums_input
=
input_grad
->
numel
();
#ifdef __HIPCC__
int
block_size
=
256
;
#else
int
block_size
=
512
;
#endif
int
grid_size
=
(
nums_input
+
block_size
-
1
)
/
block_size
;
#define check_case(c_filter_multiplier, c_stride, c_filter) \
if (c_filter_multiplier == 0 || \
...
...
@@ -1429,6 +1437,11 @@ class DepthwiseConvInputGradFunctor<phi::GPUContext, T, fuse_relu_before_conv> {
(ksize_height == ksize_width && ksize_height == c_filter || \
c_filter == -1)) { \
if (data_layout != DataLayout::kNHWC) { \
if (c_filter == -1) { \
threads.x = block_size; \
grid.x = grid_size; \
threads.y = threads.z = grid.y = grid.z = 1; \
} \
KernelDepthwiseConvInputGradSp<T, \
c_filter_multiplier, \
c_stride, \
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录