Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f15d930a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f15d930a
编写于
8月 01, 2022
作者:
Z
zhiboniu
提交者:
GitHub
8月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert for cmake static library errors on XPU KP #44762
上级
798670bb
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
82 addition
and
910 deletion
+82
-910
paddle/fluid/operators/detection/multiclass_nms_op.cc
paddle/fluid/operators/detection/multiclass_nms_op.cc
+10
-8
paddle/phi/api/yaml/legacy_api.yaml
paddle/phi/api/yaml/legacy_api.yaml
+0
-9
paddle/phi/infermeta/ternary.cc
paddle/phi/infermeta/ternary.cc
+0
-93
paddle/phi/infermeta/ternary.h
paddle/phi/infermeta/ternary.h
+0
-15
paddle/phi/kernels/CMakeLists.txt
paddle/phi/kernels/CMakeLists.txt
+1
-2
paddle/phi/kernels/cpu/multiclass_nms3_kernel.cc
paddle/phi/kernels/cpu/multiclass_nms3_kernel.cc
+0
-627
paddle/phi/kernels/multiclass_nms3_kernel.h
paddle/phi/kernels/multiclass_nms3_kernel.h
+0
-37
paddle/phi/ops/compat/multiclass_nms3_sig.cc
paddle/phi/ops/compat/multiclass_nms3_sig.cc
+0
-36
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+0
-1
python/paddle/fluid/tests/unittests/test_multiclass_nms_op.py
...on/paddle/fluid/tests/unittests/test_multiclass_nms_op.py
+71
-82
未找到文件。
paddle/fluid/operators/detection/multiclass_nms_op.cc
浏览文件 @
f15d930a
...
...
@@ -13,10 +13,8 @@ limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/nms_util.h"
#include "paddle/phi/infermeta/ternary.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -611,6 +609,12 @@ class MultiClassNMS3Op : public MultiClassNMS2Op {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
MultiClassNMS2Op
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
MultiClassNMS2Op
::
InferShape
(
ctx
);
ctx
->
SetOutputDim
(
"NmsRoisNum"
,
{
-
1
});
}
};
class
MultiClassNMS3OpMaker
:
public
MultiClassNMS2OpMaker
{
...
...
@@ -629,10 +633,6 @@ class MultiClassNMS3OpMaker : public MultiClassNMS2OpMaker {
}
// namespace operators
}
// namespace paddle
DECLARE_INFER_SHAPE_FUNCTOR
(
multiclass_nms3
,
MultiClassNMSShapeFunctor
,
PD_INFER_META
(
phi
::
MultiClassNMSInferMeta
));
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
multiclass_nms
,
...
...
@@ -658,5 +658,7 @@ REGISTER_OPERATOR(
ops
::
MultiClassNMS3Op
,
ops
::
MultiClassNMS3OpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
MultiClassNMSShapeFunctor
);
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
multiclass_nms3
,
ops
::
MultiClassNMSKernel
<
float
>
,
ops
::
MultiClassNMSKernel
<
double
>
);
paddle/phi/api/yaml/legacy_api.yaml
浏览文件 @
f15d930a
...
...
@@ -1652,15 +1652,6 @@
func
:
multi_dot
backward
:
multi_dot_grad
-
api
:
multiclass_nms3
args
:
(Tensor bboxes, Tensor scores, Tensor rois_num, float score_threshold, int nms_top_k, int keep_top_k, float nms_threshold=0.3, bool normalized=true, float nms_eta=1.0, int background_label=0)
output
:
Tensor(out), Tensor(index), Tensor(nms_rois_num)
infer_meta
:
func
:
MultiClassNMSInferMeta
kernel
:
func
:
multiclass_nms3
optional
:
rois_num
# multinomial
-
api
:
multinomial
args
:
(Tensor x, int num_samples, bool replacement)
...
...
paddle/phi/infermeta/ternary.cc
浏览文件 @
f15d930a
...
...
@@ -743,99 +743,6 @@ void LinspaceInferMeta(const MetaTensor& start,
LinspaceRawInferMeta
(
start
,
stop
,
number
,
out
);
}
void
MultiClassNMSInferMeta
(
const
MetaTensor
&
bboxes
,
const
MetaTensor
&
scores
,
const
MetaTensor
&
rois_num
,
float
score_threshold
,
int
nms_top_k
,
int
keep_top_k
,
float
nms_threshold
,
bool
normalized
,
float
nms_eta
,
int
background_label
,
MetaTensor
*
out
,
MetaTensor
*
index
,
MetaTensor
*
nms_rois_num
,
MetaConfig
config
)
{
auto
box_dims
=
bboxes
.
dims
();
auto
score_dims
=
scores
.
dims
();
auto
score_size
=
score_dims
.
size
();
if
(
config
.
is_runtime
)
{
PADDLE_ENFORCE_EQ
(
score_size
==
2
||
score_size
==
3
,
true
,
errors
::
InvalidArgument
(
"The rank of Input(Scores) must be 2 or 3"
". But received rank = %d"
,
score_size
));
PADDLE_ENFORCE_EQ
(
box_dims
.
size
(),
3
,
errors
::
InvalidArgument
(
"The rank of Input(BBoxes) must be 3"
". But received rank = %d"
,
box_dims
.
size
()));
if
(
score_size
==
3
)
{
PADDLE_ENFORCE_EQ
(
box_dims
[
2
]
==
4
||
box_dims
[
2
]
==
8
||
box_dims
[
2
]
==
16
||
box_dims
[
2
]
==
24
||
box_dims
[
2
]
==
32
,
true
,
errors
::
InvalidArgument
(
"The last dimension of Input"
"(BBoxes) must be 4 or 8, "
"represents the layout of coordinate "
"[xmin, ymin, xmax, ymax] or "
"4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
"8 points: [xi, yi] i= 1,2,...,8 or "
"12 points: [xi, yi] i= 1,2,...,12 or "
"16 points: [xi, yi] i= 1,2,...,16"
));
PADDLE_ENFORCE_EQ
(
box_dims
[
1
],
score_dims
[
2
],
errors
::
InvalidArgument
(
"The 2nd dimension of Input(BBoxes) must be equal to "
"last dimension of Input(Scores), which represents the "
"predicted bboxes."
"But received box_dims[1](%s) != socre_dims[2](%s)"
,
box_dims
[
1
],
score_dims
[
2
]));
}
else
{
PADDLE_ENFORCE_EQ
(
box_dims
[
2
],
4
,
errors
::
InvalidArgument
(
"The last dimension of Input"
"(BBoxes) must be 4. But received dimension = %d"
,
box_dims
[
2
]));
PADDLE_ENFORCE_EQ
(
box_dims
[
1
],
score_dims
[
1
],
errors
::
InvalidArgument
(
"The 2nd dimension of Input"
"(BBoxes) must be equal to the 2nd dimension of Input(Scores). "
"But received box dimension = %d, score dimension = %d"
,
box_dims
[
1
],
score_dims
[
1
]));
}
}
PADDLE_ENFORCE_NE
(
out
,
nullptr
,
errors
::
InvalidArgument
(
"The out in MultiClassNMSInferMeta can't be nullptr."
));
PADDLE_ENFORCE_NE
(
index
,
nullptr
,
errors
::
InvalidArgument
(
"The index in MultiClassNMSInferMeta can't be nullptr."
));
// Here the box_dims[0] is not the real dimension of output.
// It will be rewritten in the computing kernel.
out
->
set_dims
(
phi
::
make_ddim
({
-
1
,
box_dims
[
2
]
+
2
}));
out
->
set_dtype
(
bboxes
.
dtype
());
index
->
set_dims
(
phi
::
make_ddim
({
-
1
,
box_dims
[
2
]
+
2
}));
index
->
set_dtype
(
DataType
::
INT32
);
nms_rois_num
->
set_dims
(
phi
::
make_ddim
({
-
1
}));
nms_rois_num
->
set_dtype
(
DataType
::
INT32
);
}
void
NllLossRawInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
const
MetaTensor
&
weight
,
...
...
paddle/phi/infermeta/ternary.h
浏览文件 @
f15d930a
...
...
@@ -123,21 +123,6 @@ void LinspaceInferMeta(const MetaTensor& start,
DataType
dtype
,
MetaTensor
*
out
);
void
MultiClassNMSInferMeta
(
const
MetaTensor
&
bboxes
,
const
MetaTensor
&
scores
,
const
MetaTensor
&
rois_num
,
float
score_threshold
,
int
nms_top_k
,
int
keep_top_k
,
float
nms_threshold
,
bool
normalized
,
float
nms_eta
,
int
background_label
,
MetaTensor
*
out
,
MetaTensor
*
index
,
MetaTensor
*
nms_rois_num
,
MetaConfig
config
=
MetaConfig
());
void
NllLossRawInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
const
MetaTensor
&
weight
,
...
...
paddle/phi/kernels/CMakeLists.txt
浏览文件 @
f15d930a
...
...
@@ -80,8 +80,7 @@ set(COMMON_KERNEL_DEPS
lod_utils
custom_kernel
string_infermeta
utf8proc
gpc
)
utf8proc
)
copy_if_different
(
${
kernel_declare_file
}
${
kernel_declare_file_final
}
)
...
...
paddle/phi/kernels/cpu/multiclass_nms3_kernel.cc
已删除
100644 → 0
浏览文件 @
798670bb
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/multiclass_nms3_kernel.h"
#include "paddle/fluid/operators/detection/gpc.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
namespace
phi
{
using
gpc
::
gpc_free_polygon
;
using
gpc
::
gpc_polygon_clip
;
template
<
class
T
>
class
Point_
{
public:
// default constructor
Point_
()
{}
Point_
(
T
_x
,
T
_y
)
{}
Point_
(
const
Point_
&
pt
)
{}
Point_
&
operator
=
(
const
Point_
&
pt
);
// conversion to another data type
// template<typename _T> operator Point_<_T>() const;
// conversion to the old-style C structures
// operator Vec<T, 2>() const;
// checks whether the point is inside the specified rectangle
// bool inside(const Rect_<T>& r) const;
T
x
;
//!< x coordinate of the point
T
y
;
//!< y coordinate of the point
};
template
<
class
T
>
void
Array2PointVec
(
const
T
*
box
,
const
size_t
box_size
,
std
::
vector
<
Point_
<
T
>>*
vec
)
{
size_t
pts_num
=
box_size
/
2
;
(
*
vec
).
resize
(
pts_num
);
for
(
size_t
i
=
0
;
i
<
pts_num
;
i
++
)
{
(
*
vec
).
at
(
i
).
x
=
box
[
2
*
i
];
(
*
vec
).
at
(
i
).
y
=
box
[
2
*
i
+
1
];
}
}
template
<
class
T
>
void
Array2Poly
(
const
T
*
box
,
const
size_t
box_size
,
gpc
::
gpc_polygon
*
poly
)
{
size_t
pts_num
=
box_size
/
2
;
(
*
poly
).
num_contours
=
1
;
(
*
poly
).
hole
=
reinterpret_cast
<
int
*>
(
malloc
(
sizeof
(
int
)));
(
*
poly
).
hole
[
0
]
=
0
;
(
*
poly
).
contour
=
(
gpc
::
gpc_vertex_list
*
)
malloc
(
sizeof
(
gpc
::
gpc_vertex_list
));
(
*
poly
).
contour
->
num_vertices
=
pts_num
;
(
*
poly
).
contour
->
vertex
=
(
gpc
::
gpc_vertex
*
)
malloc
(
sizeof
(
gpc
::
gpc_vertex
)
*
pts_num
);
for
(
size_t
i
=
0
;
i
<
pts_num
;
++
i
)
{
(
*
poly
).
contour
->
vertex
[
i
].
x
=
box
[
2
*
i
];
(
*
poly
).
contour
->
vertex
[
i
].
y
=
box
[
2
*
i
+
1
];
}
}
template
<
class
T
>
void
PointVec2Poly
(
const
std
::
vector
<
Point_
<
T
>>&
vec
,
gpc
::
gpc_polygon
*
poly
)
{
int
pts_num
=
vec
.
size
();
(
*
poly
).
num_contours
=
1
;
(
*
poly
).
hole
=
reinterpret_cast
<
int
*>
(
malloc
(
sizeof
(
int
)));
(
*
poly
).
hole
[
0
]
=
0
;
(
*
poly
).
contour
=
(
gpc
::
gpc_vertex_list
*
)
malloc
(
sizeof
(
gpc
::
gpc_vertex_list
));
(
*
poly
).
contour
->
num_vertices
=
pts_num
;
(
*
poly
).
contour
->
vertex
=
(
gpc
::
gpc_vertex
*
)
malloc
(
sizeof
(
gpc
::
gpc_vertex
)
*
pts_num
);
for
(
size_t
i
=
0
;
i
<
pts_num
;
++
i
)
{
(
*
poly
).
contour
->
vertex
[
i
].
x
=
vec
[
i
].
x
;
(
*
poly
).
contour
->
vertex
[
i
].
y
=
vec
[
i
].
y
;
}
}
template
<
class
T
>
void
Poly2PointVec
(
const
gpc
::
gpc_vertex_list
&
contour
,
std
::
vector
<
Point_
<
T
>>*
vec
)
{
int
pts_num
=
contour
.
num_vertices
;
(
*
vec
).
resize
(
pts_num
);
for
(
int
i
=
0
;
i
<
pts_num
;
i
++
)
{
(
*
vec
).
at
(
i
).
x
=
contour
.
vertex
[
i
].
x
;
(
*
vec
).
at
(
i
).
y
=
contour
.
vertex
[
i
].
y
;
}
}
template
<
class
T
>
T
GetContourArea
(
const
std
::
vector
<
Point_
<
T
>>&
vec
)
{
size_t
pts_num
=
vec
.
size
();
if
(
pts_num
<
3
)
return
T
(
0.
);
T
area
=
T
(
0.
);
for
(
size_t
i
=
0
;
i
<
pts_num
;
++
i
)
{
area
+=
vec
[
i
].
x
*
vec
[(
i
+
1
)
%
pts_num
].
y
-
vec
[
i
].
y
*
vec
[(
i
+
1
)
%
pts_num
].
x
;
}
return
std
::
fabs
(
area
/
2.0
);
}
template
<
class
T
>
T
PolyArea
(
const
T
*
box
,
const
size_t
box_size
,
const
bool
normalized
)
{
// If coordinate values are is invalid
// if area size <= 0, return 0.
std
::
vector
<
Point_
<
T
>>
vec
;
Array2PointVec
<
T
>
(
box
,
box_size
,
&
vec
);
return
GetContourArea
<
T
>
(
vec
);
}
template
<
class
T
>
T
PolyOverlapArea
(
const
T
*
box1
,
const
T
*
box2
,
const
size_t
box_size
,
const
bool
normalized
)
{
gpc
::
gpc_polygon
poly1
;
gpc
::
gpc_polygon
poly2
;
Array2Poly
<
T
>
(
box1
,
box_size
,
&
poly1
);
Array2Poly
<
T
>
(
box2
,
box_size
,
&
poly2
);
gpc
::
gpc_polygon
respoly
;
gpc
::
gpc_op
op
=
gpc
::
GPC_INT
;
gpc
::
gpc_polygon_clip
(
op
,
&
poly2
,
&
poly1
,
&
respoly
);
T
inter_area
=
T
(
0.
);
int
contour_num
=
respoly
.
num_contours
;
for
(
int
i
=
0
;
i
<
contour_num
;
++
i
)
{
std
::
vector
<
Point_
<
T
>>
resvec
;
Poly2PointVec
<
T
>
(
respoly
.
contour
[
i
],
&
resvec
);
// inter_area += std::fabs(cv::contourArea(resvec)) + 0.5f *
// (cv::arcLength(resvec, true));
inter_area
+=
GetContourArea
<
T
>
(
resvec
);
}
gpc
::
gpc_free_polygon
(
&
poly1
);
gpc
::
gpc_free_polygon
(
&
poly2
);
gpc
::
gpc_free_polygon
(
&
respoly
);
return
inter_area
;
}
template
<
class
T
>
bool
SortScorePairDescend
(
const
std
::
pair
<
float
,
T
>&
pair1
,
const
std
::
pair
<
float
,
T
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
template
<
class
T
>
static
inline
void
GetMaxScoreIndex
(
const
std
::
vector
<
T
>&
scores
,
const
T
threshold
,
int
top_k
,
std
::
vector
<
std
::
pair
<
T
,
int
>>*
sorted_indices
)
{
for
(
size_t
i
=
0
;
i
<
scores
.
size
();
++
i
)
{
if
(
scores
[
i
]
>
threshold
)
{
sorted_indices
->
push_back
(
std
::
make_pair
(
scores
[
i
],
i
));
}
}
// Sort the score pair according to the scores in descending order
std
::
stable_sort
(
sorted_indices
->
begin
(),
sorted_indices
->
end
(),
SortScorePairDescend
<
int
>
);
// Keep top_k scores if needed.
if
(
top_k
>
-
1
&&
top_k
<
static_cast
<
int
>
(
sorted_indices
->
size
()))
{
sorted_indices
->
resize
(
top_k
);
}
}
template
<
class
T
>
static
inline
T
BBoxArea
(
const
T
*
box
,
const
bool
normalized
)
{
if
(
box
[
2
]
<
box
[
0
]
||
box
[
3
]
<
box
[
1
])
{
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
w
=
box
[
2
]
-
box
[
0
];
const
T
h
=
box
[
3
]
-
box
[
1
];
if
(
normalized
)
{
return
w
*
h
;
}
else
{
// If coordinate values are not within range [0, 1].
return
(
w
+
1
)
*
(
h
+
1
);
}
}
}
template
<
class
T
>
static
inline
T
JaccardOverlap
(
const
T
*
box1
,
const
T
*
box2
,
const
bool
normalized
)
{
if
(
box2
[
0
]
>
box1
[
2
]
||
box2
[
2
]
<
box1
[
0
]
||
box2
[
1
]
>
box1
[
3
]
||
box2
[
3
]
<
box1
[
1
])
{
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
inter_xmin
=
std
::
max
(
box1
[
0
],
box2
[
0
]);
const
T
inter_ymin
=
std
::
max
(
box1
[
1
],
box2
[
1
]);
const
T
inter_xmax
=
std
::
min
(
box1
[
2
],
box2
[
2
]);
const
T
inter_ymax
=
std
::
min
(
box1
[
3
],
box2
[
3
]);
T
norm
=
normalized
?
static_cast
<
T
>
(
0.
)
:
static_cast
<
T
>
(
1.
);
T
inter_w
=
inter_xmax
-
inter_xmin
+
norm
;
T
inter_h
=
inter_ymax
-
inter_ymin
+
norm
;
const
T
inter_area
=
inter_w
*
inter_h
;
const
T
bbox1_area
=
BBoxArea
<
T
>
(
box1
,
normalized
);
const
T
bbox2_area
=
BBoxArea
<
T
>
(
box2
,
normalized
);
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
template
<
class
T
>
T
PolyIoU
(
const
T
*
box1
,
const
T
*
box2
,
const
size_t
box_size
,
const
bool
normalized
)
{
T
bbox1_area
=
PolyArea
<
T
>
(
box1
,
box_size
,
normalized
);
T
bbox2_area
=
PolyArea
<
T
>
(
box2
,
box_size
,
normalized
);
T
inter_area
=
PolyOverlapArea
<
T
>
(
box1
,
box2
,
box_size
,
normalized
);
if
(
bbox1_area
==
0
||
bbox2_area
==
0
||
inter_area
==
0
)
{
// If coordinate values are invalid
// if area size <= 0, return 0.
return
T
(
0.
);
}
else
{
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
inline
std
::
vector
<
size_t
>
GetNmsLodFromRoisNum
(
const
DenseTensor
*
rois_num
)
{
std
::
vector
<
size_t
>
rois_lod
;
auto
*
rois_num_data
=
rois_num
->
data
<
int
>
();
rois_lod
.
push_back
(
static_cast
<
size_t
>
(
0
));
for
(
int
i
=
0
;
i
<
rois_num
->
numel
();
++
i
)
{
rois_lod
.
push_back
(
rois_lod
.
back
()
+
static_cast
<
size_t
>
(
rois_num_data
[
i
]));
}
return
rois_lod
;
}
template
<
typename
T
,
typename
Context
>
void
SliceOneClass
(
const
Context
&
ctx
,
const
DenseTensor
&
items
,
const
int
class_id
,
DenseTensor
*
one_class_item
)
{
// T* item_data = one_class_item->mutable_data<T>(ctx.GetPlace());
T
*
item_data
=
ctx
.
template
Alloc
<
T
>(
one_class_item
);
const
T
*
items_data
=
items
.
data
<
T
>
();
const
int64_t
num_item
=
items
.
dims
()[
0
];
const
int
class_num
=
items
.
dims
()[
1
];
if
(
items
.
dims
().
size
()
==
3
)
{
int
item_size
=
items
.
dims
()[
2
];
for
(
int
i
=
0
;
i
<
num_item
;
++
i
)
{
std
::
memcpy
(
item_data
+
i
*
item_size
,
items_data
+
i
*
class_num
*
item_size
+
class_id
*
item_size
,
sizeof
(
T
)
*
item_size
);
}
}
else
{
for
(
int
i
=
0
;
i
<
num_item
;
++
i
)
{
item_data
[
i
]
=
items_data
[
i
*
class_num
+
class_id
];
}
}
}
template
<
typename
T
>
void
NMSFast
(
const
DenseTensor
&
bbox
,
const
DenseTensor
&
scores
,
const
T
score_threshold
,
const
T
nms_threshold
,
const
T
eta
,
const
int64_t
top_k
,
std
::
vector
<
int
>*
selected_indices
,
const
bool
normalized
)
{
// The total boxes for each instance.
int64_t
num_boxes
=
bbox
.
dims
()[
0
];
// 4: [xmin ymin xmax ymax]
// 8: [x1 y1 x2 y2 x3 y3 x4 y4]
// 16, 24, or 32: [x1 y1 x2 y2 ... xn yn], n = 8, 12 or 16
int64_t
box_size
=
bbox
.
dims
()[
1
];
std
::
vector
<
T
>
scores_data
(
num_boxes
);
std
::
copy_n
(
scores
.
data
<
T
>
(),
num_boxes
,
scores_data
.
begin
());
std
::
vector
<
std
::
pair
<
T
,
int
>>
sorted_indices
;
GetMaxScoreIndex
<
T
>
(
scores_data
,
score_threshold
,
top_k
,
&
sorted_indices
);
selected_indices
->
clear
();
T
adaptive_threshold
=
nms_threshold
;
const
T
*
bbox_data
=
bbox
.
data
<
T
>
();
while
(
sorted_indices
.
size
()
!=
0
)
{
const
int
idx
=
sorted_indices
.
front
().
second
;
bool
keep
=
true
;
for
(
size_t
k
=
0
;
k
<
selected_indices
->
size
();
++
k
)
{
if
(
keep
)
{
const
int
kept_idx
=
(
*
selected_indices
)[
k
];
T
overlap
=
T
(
0.
);
// 4: [xmin ymin xmax ymax]
if
(
box_size
==
4
)
{
overlap
=
JaccardOverlap
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
normalized
);
}
// 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
if
(
box_size
==
8
||
box_size
==
16
||
box_size
==
24
||
box_size
==
32
)
{
overlap
=
PolyIoU
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
box_size
,
normalized
);
}
keep
=
overlap
<=
adaptive_threshold
;
}
else
{
break
;
}
}
if
(
keep
)
{
selected_indices
->
push_back
(
idx
);
}
sorted_indices
.
erase
(
sorted_indices
.
begin
());
if
(
keep
&&
eta
<
1
&&
adaptive_threshold
>
0.5
)
{
adaptive_threshold
*=
eta
;
}
}
}
template
<
typename
T
,
typename
Context
>
void
MultiClassNMS
(
const
Context
&
ctx
,
const
DenseTensor
&
scores
,
const
DenseTensor
&
bboxes
,
const
int
scores_size
,
float
scorethreshold
,
int
nms_top_k
,
int
keep_top_k
,
float
nmsthreshold
,
bool
normalized
,
float
nmseta
,
int
background_label
,
std
::
map
<
int
,
std
::
vector
<
int
>>*
indices
,
int
*
num_nmsed_out
)
{
T
nms_threshold
=
static_cast
<
T
>
(
nmsthreshold
);
T
nms_eta
=
static_cast
<
T
>
(
nmseta
);
T
score_threshold
=
static_cast
<
T
>
(
scorethreshold
);
int
num_det
=
0
;
int64_t
class_num
=
scores_size
==
3
?
scores
.
dims
()[
0
]
:
scores
.
dims
()[
1
];
DenseTensor
bbox_slice
,
score_slice
;
for
(
int64_t
c
=
0
;
c
<
class_num
;
++
c
)
{
if
(
c
==
background_label
)
continue
;
if
(
scores_size
==
3
)
{
score_slice
=
scores
.
Slice
(
c
,
c
+
1
);
bbox_slice
=
bboxes
;
}
else
{
score_slice
.
Resize
({
scores
.
dims
()[
0
],
1
});
bbox_slice
.
Resize
({
scores
.
dims
()[
0
],
4
});
SliceOneClass
<
T
,
Context
>
(
ctx
,
scores
,
c
,
&
score_slice
);
SliceOneClass
<
T
,
Context
>
(
ctx
,
bboxes
,
c
,
&
bbox_slice
);
}
NMSFast
<
T
>
(
bbox_slice
,
score_slice
,
score_threshold
,
nms_threshold
,
nms_eta
,
nms_top_k
,
&
((
*
indices
)[
c
]),
normalized
);
if
(
scores_size
==
2
)
{
std
::
stable_sort
((
*
indices
)[
c
].
begin
(),
(
*
indices
)[
c
].
end
());
}
num_det
+=
(
*
indices
)[
c
].
size
();
}
*
num_nmsed_out
=
num_det
;
const
T
*
scores_data
=
scores
.
data
<
T
>
();
if
(
keep_top_k
>
-
1
&&
num_det
>
keep_top_k
)
{
const
T
*
sdata
;
std
::
vector
<
std
::
pair
<
float
,
std
::
pair
<
int
,
int
>>>
score_index_pairs
;
for
(
const
auto
&
it
:
*
indices
)
{
int
label
=
it
.
first
;
if
(
scores_size
==
3
)
{
sdata
=
scores_data
+
label
*
scores
.
dims
()[
1
];
}
else
{
score_slice
.
Resize
({
scores
.
dims
()[
0
],
1
});
SliceOneClass
<
T
,
Context
>
(
ctx
,
scores
,
label
,
&
score_slice
);
sdata
=
score_slice
.
data
<
T
>
();
}
const
std
::
vector
<
int
>&
label_indices
=
it
.
second
;
for
(
size_t
j
=
0
;
j
<
label_indices
.
size
();
++
j
)
{
int
idx
=
label_indices
[
j
];
score_index_pairs
.
push_back
(
std
::
make_pair
(
sdata
[
idx
],
std
::
make_pair
(
label
,
idx
)));
}
}
// Keep top k results per image.
std
::
stable_sort
(
score_index_pairs
.
begin
(),
score_index_pairs
.
end
(),
SortScorePairDescend
<
std
::
pair
<
int
,
int
>>
);
score_index_pairs
.
resize
(
keep_top_k
);
// Store the new indices.
std
::
map
<
int
,
std
::
vector
<
int
>>
new_indices
;
for
(
size_t
j
=
0
;
j
<
score_index_pairs
.
size
();
++
j
)
{
int
label
=
score_index_pairs
[
j
].
second
.
first
;
int
idx
=
score_index_pairs
[
j
].
second
.
second
;
new_indices
[
label
].
push_back
(
idx
);
}
if
(
scores_size
==
2
)
{
for
(
const
auto
&
it
:
new_indices
)
{
int
label
=
it
.
first
;
std
::
stable_sort
(
new_indices
[
label
].
begin
(),
new_indices
[
label
].
end
());
}
}
new_indices
.
swap
(
*
indices
);
*
num_nmsed_out
=
keep_top_k
;
}
}
template
<
typename
T
,
typename
Context
>
void
MultiClassOutput
(
const
Context
&
ctx
,
const
DenseTensor
&
scores
,
const
DenseTensor
&
bboxes
,
const
std
::
map
<
int
,
std
::
vector
<
int
>>&
selected_indices
,
const
int
scores_size
,
DenseTensor
*
out
,
int
*
oindices
=
nullptr
,
const
int
offset
=
0
)
{
int64_t
class_num
=
scores
.
dims
()[
1
];
int64_t
predict_dim
=
scores
.
dims
()[
1
];
int64_t
box_size
=
bboxes
.
dims
()[
1
];
if
(
scores_size
==
2
)
{
box_size
=
bboxes
.
dims
()[
2
];
}
int64_t
out_dim
=
box_size
+
2
;
auto
*
scores_data
=
scores
.
data
<
T
>
();
auto
*
bboxes_data
=
bboxes
.
data
<
T
>
();
auto
*
odata
=
out
->
data
<
T
>
();
const
T
*
sdata
;
DenseTensor
bbox
;
bbox
.
Resize
({
scores
.
dims
()[
0
],
box_size
});
int
count
=
0
;
for
(
const
auto
&
it
:
selected_indices
)
{
int
label
=
it
.
first
;
const
std
::
vector
<
int
>&
indices
=
it
.
second
;
if
(
scores_size
==
2
)
{
SliceOneClass
<
T
,
Context
>
(
ctx
,
bboxes
,
label
,
&
bbox
);
}
else
{
sdata
=
scores_data
+
label
*
predict_dim
;
}
for
(
size_t
j
=
0
;
j
<
indices
.
size
();
++
j
)
{
int
idx
=
indices
[
j
];
odata
[
count
*
out_dim
]
=
label
;
// label
const
T
*
bdata
;
if
(
scores_size
==
3
)
{
bdata
=
bboxes_data
+
idx
*
box_size
;
odata
[
count
*
out_dim
+
1
]
=
sdata
[
idx
];
// score
if
(
oindices
!=
nullptr
)
{
oindices
[
count
]
=
offset
+
idx
;
}
}
else
{
bdata
=
bbox
.
data
<
T
>
()
+
idx
*
box_size
;
odata
[
count
*
out_dim
+
1
]
=
*
(
scores_data
+
idx
*
class_num
+
label
);
if
(
oindices
!=
nullptr
)
{
oindices
[
count
]
=
offset
+
idx
*
class_num
+
label
;
}
}
// xmin, ymin, xmax, ymax or multi-points coordinates
std
::
memcpy
(
odata
+
count
*
out_dim
+
2
,
bdata
,
box_size
*
sizeof
(
T
));
count
++
;
}
}
}
template
<
typename
T
,
typename
Context
>
void
MultiClassNMSKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
bboxes
,
const
DenseTensor
&
scores
,
const
paddle
::
optional
<
DenseTensor
>&
rois_num
,
float
score_threshold
,
int
nms_top_k
,
int
keep_top_k
,
float
nms_threshold
,
bool
normalized
,
float
nms_eta
,
int
background_label
,
DenseTensor
*
out
,
DenseTensor
*
index
,
DenseTensor
*
nms_rois_num
)
{
bool
return_index
=
index
!=
nullptr
;
bool
has_roisnum
=
rois_num
.
get_ptr
()
!=
nullptr
;
auto
score_dims
=
scores
.
dims
();
auto
score_size
=
score_dims
.
size
();
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
int
>>>
all_indices
;
std
::
vector
<
size_t
>
batch_starts
=
{
0
};
int64_t
batch_size
=
score_dims
[
0
];
int64_t
box_dim
=
bboxes
.
dims
()[
2
];
int64_t
out_dim
=
box_dim
+
2
;
int
num_nmsed_out
=
0
;
DenseTensor
boxes_slice
,
scores_slice
;
int
n
=
0
;
if
(
has_roisnum
)
{
n
=
score_size
==
3
?
batch_size
:
rois_num
.
get_ptr
()
->
numel
();
}
else
{
n
=
score_size
==
3
?
batch_size
:
bboxes
.
lod
().
back
().
size
()
-
1
;
}
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
std
::
map
<
int
,
std
::
vector
<
int
>>
indices
;
if
(
score_size
==
3
)
{
scores_slice
=
scores
.
Slice
(
i
,
i
+
1
);
scores_slice
.
Resize
({
score_dims
[
1
],
score_dims
[
2
]});
boxes_slice
=
bboxes
.
Slice
(
i
,
i
+
1
);
boxes_slice
.
Resize
({
score_dims
[
2
],
box_dim
});
}
else
{
std
::
vector
<
size_t
>
boxes_lod
;
if
(
has_roisnum
)
{
boxes_lod
=
GetNmsLodFromRoisNum
(
rois_num
.
get_ptr
());
}
else
{
boxes_lod
=
bboxes
.
lod
().
back
();
}
if
(
boxes_lod
[
i
]
==
boxes_lod
[
i
+
1
])
{
all_indices
.
push_back
(
indices
);
batch_starts
.
push_back
(
batch_starts
.
back
());
continue
;
}
scores_slice
=
scores
.
Slice
(
boxes_lod
[
i
],
boxes_lod
[
i
+
1
]);
boxes_slice
=
bboxes
.
Slice
(
boxes_lod
[
i
],
boxes_lod
[
i
+
1
]);
}
MultiClassNMS
<
T
,
Context
>
(
ctx
,
scores_slice
,
boxes_slice
,
score_size
,
score_threshold
,
nms_top_k
,
keep_top_k
,
nms_threshold
,
normalized
,
nms_eta
,
background_label
,
&
indices
,
&
num_nmsed_out
);
all_indices
.
push_back
(
indices
);
batch_starts
.
push_back
(
batch_starts
.
back
()
+
num_nmsed_out
);
}
int
num_kept
=
batch_starts
.
back
();
if
(
num_kept
==
0
)
{
if
(
return_index
)
{
out
->
Resize
({
0
,
out_dim
});
ctx
.
template
Alloc
<
T
>(
out
);
index
->
Resize
({
0
,
1
});
ctx
.
template
Alloc
<
int
>(
index
);
}
else
{
out
->
Resize
({
1
,
1
});
T
*
od
=
ctx
.
template
Alloc
<
T
>(
out
);
od
[
0
]
=
-
1
;
batch_starts
=
{
0
,
1
};
}
}
else
{
out
->
Resize
({
num_kept
,
out_dim
});
ctx
.
template
Alloc
<
T
>(
out
);
int
offset
=
0
;
int
*
oindices
=
nullptr
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
if
(
score_size
==
3
)
{
scores_slice
=
scores
.
Slice
(
i
,
i
+
1
);
boxes_slice
=
bboxes
.
Slice
(
i
,
i
+
1
);
scores_slice
.
Resize
({
score_dims
[
1
],
score_dims
[
2
]});
boxes_slice
.
Resize
({
score_dims
[
2
],
box_dim
});
if
(
return_index
)
{
offset
=
i
*
score_dims
[
2
];
}
}
else
{
std
::
vector
<
size_t
>
boxes_lod
;
if
(
has_roisnum
)
{
boxes_lod
=
GetNmsLodFromRoisNum
(
rois_num
.
get_ptr
());
}
else
{
boxes_lod
=
bboxes
.
lod
().
back
();
}
if
(
boxes_lod
[
i
]
==
boxes_lod
[
i
+
1
])
continue
;
scores_slice
=
scores
.
Slice
(
boxes_lod
[
i
],
boxes_lod
[
i
+
1
]);
boxes_slice
=
bboxes
.
Slice
(
boxes_lod
[
i
],
boxes_lod
[
i
+
1
]);
if
(
return_index
)
{
offset
=
boxes_lod
[
i
]
*
score_dims
[
1
];
}
}
int64_t
s
=
batch_starts
[
i
];
int64_t
e
=
batch_starts
[
i
+
1
];
if
(
e
>
s
)
{
DenseTensor
nout
=
out
->
Slice
(
s
,
e
);
if
(
return_index
)
{
index
->
Resize
({
num_kept
,
1
});
int
*
output_idx
=
ctx
.
template
Alloc
<
int
>(
index
);
oindices
=
output_idx
+
s
;
}
MultiClassOutput
<
T
,
Context
>
(
ctx
,
scores_slice
,
boxes_slice
,
all_indices
[
i
],
score_dims
.
size
(),
&
nout
,
oindices
,
offset
);
}
}
}
if
(
nms_rois_num
!=
nullptr
)
{
nms_rois_num
->
Resize
({
n
});
ctx
.
template
Alloc
<
int
>(
nms_rois_num
);
int
*
num_data
=
nms_rois_num
->
data
<
int
>
();
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
{
num_data
[
i
-
1
]
=
batch_starts
[
i
]
-
batch_starts
[
i
-
1
];
}
nms_rois_num
->
Resize
({
n
});
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
multiclass_nms3
,
CPU
,
ALL_LAYOUT
,
phi
::
MultiClassNMSKernel
,
float
,
double
)
{
}
paddle/phi/kernels/multiclass_nms3_kernel.h
已删除
100644 → 0
浏览文件 @
798670bb
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
MultiClassNMSKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
bboxes
,
const
DenseTensor
&
scores
,
const
paddle
::
optional
<
DenseTensor
>&
rois_num
,
float
score_threshold
,
int
nms_top_k
,
int
keep_top_k
,
float
nms_threshold
,
bool
normalized
,
float
nms_eta
,
int
background_label
,
DenseTensor
*
out
,
DenseTensor
*
index
,
DenseTensor
*
nms_rois_num
);
}
// namespace phi
paddle/phi/ops/compat/multiclass_nms3_sig.cc
已删除
100644 → 0
浏览文件 @
798670bb
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
MultiClassNMS3OpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"multiclass_nms3"
,
{
"BBoxes"
,
"Scores"
,
"RoisNum"
},
{
"score_threshold"
,
"nms_top_k"
,
"keep_top_k"
,
"nms_threshold"
,
"normalized"
,
"nms_eta"
,
"background_label"
},
{
"Out"
,
"Index"
,
"NmsRoisNum"
});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
multiclass_nms3
,
phi
::
MultiClassNMS3OpArgumentMapping
);
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
f15d930a
...
...
@@ -1457,7 +1457,6 @@ class OpTest(unittest.TestCase):
# see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
if
expect_np
.
size
==
0
:
self
.
op_test
.
assertTrue
(
actual_np
.
size
==
0
)
# }}}
# print("actual_np, expect_np", actual_np, expect_np)
self
.
_compare_numpy
(
name
,
actual_np
,
expect_np
)
if
isinstance
(
expect
,
tuple
):
self
.
_compare_list
(
name
,
actual
,
expect
)
...
...
python/paddle/fluid/tests/unittests/test_multiclass_nms_op.py
浏览文件 @
f15d930a
...
...
@@ -19,81 +19,7 @@ import copy
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
,
in_dygraph_mode
,
_non_static_mode
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle
import
_C_ops
def
multiclass_nms3
(
bboxes
,
scores
,
rois_num
=
None
,
score_threshold
=
0.3
,
nms_top_k
=
1000
,
keep_top_k
=
100
,
nms_threshold
=
0.3
,
normalized
=
True
,
nms_eta
=
1.
,
background_label
=-
1
,
return_index
=
True
,
return_rois_num
=
True
,
name
=
None
):
helper
=
LayerHelper
(
'multiclass_nms3'
,
**
locals
())
if
in_dygraph_mode
():
attrs
=
(
score_threshold
,
nms_top_k
,
keep_top_k
,
nms_threshold
,
normalized
,
nms_eta
,
background_label
)
output
,
index
,
nms_rois_num
=
_C_ops
.
final_state_multiclass_nms3
(
bboxes
,
scores
,
rois_num
,
*
attrs
)
if
not
return_index
:
index
=
None
return
output
,
index
,
nms_rois_num
elif
_non_static_mode
():
attrs
=
(
'background_label'
,
background_label
,
'score_threshold'
,
score_threshold
,
'nms_top_k'
,
nms_top_k
,
'nms_threshold'
,
nms_threshold
,
'keep_top_k'
,
keep_top_k
,
'nms_eta'
,
nms_eta
,
'normalized'
,
normalized
)
output
,
index
,
nms_rois_num
=
_C_ops
.
multiclass_nms3
(
bboxes
,
scores
,
rois_num
,
*
attrs
)
if
not
return_index
:
index
=
None
return
output
,
index
,
nms_rois_num
else
:
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
bboxes
.
dtype
)
index
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
inputs
=
{
'BBoxes'
:
bboxes
,
'Scores'
:
scores
}
outputs
=
{
'Out'
:
output
,
'Index'
:
index
}
if
rois_num
is
not
None
:
inputs
[
'RoisNum'
]
=
rois_num
if
return_rois_num
:
nms_rois_num
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
outputs
[
'NmsRoisNum'
]
=
nms_rois_num
helper
.
append_op
(
type
=
"multiclass_nms3"
,
inputs
=
inputs
,
attrs
=
{
'background_label'
:
background_label
,
'score_threshold'
:
score_threshold
,
'nms_top_k'
:
nms_top_k
,
'nms_threshold'
:
nms_threshold
,
'keep_top_k'
:
keep_top_k
,
'nms_eta'
:
nms_eta
,
'normalized'
:
normalized
},
outputs
=
outputs
)
output
.
stop_gradient
=
True
index
.
stop_gradient
=
True
if
not
return_index
:
index
=
None
if
not
return_rois_num
:
nms_rois_num
=
None
return
output
,
nms_rois_num
,
index
from
paddle.fluid
import
Program
,
program_guard
def
softmax
(
x
):
...
...
@@ -615,8 +541,7 @@ class TestMulticlassNMS2LoDInput(TestMulticlassNMSLoDInput):
'normalized'
:
normalized
,
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -665,7 +590,6 @@ class TestMulticlassNMSError(unittest.TestCase):
class
TestMulticlassNMS3Op
(
TestMulticlassNMS2Op
):
def
setUp
(
self
):
self
.
python_api
=
multiclass_nms3
self
.
set_argument
()
N
=
7
M
=
1200
...
...
@@ -699,8 +623,8 @@ class TestMulticlassNMS3Op(TestMulticlassNMS2Op):
self
.
op_type
=
'multiclass_nms3'
self
.
inputs
=
{
'BBoxes'
:
boxes
,
'Scores'
:
scores
}
self
.
outputs
=
{
'Out'
:
nmsed_outs
,
'Index'
:
index_outs
,
'Out'
:
(
nmsed_outs
,
[
lod
])
,
'Index'
:
(
index_outs
,
[
lod
])
,
'NmsRoisNum'
:
np
.
array
(
lod
).
astype
(
'int32'
)
}
self
.
attrs
=
{
...
...
@@ -714,7 +638,7 @@ class TestMulticlassNMS3Op(TestMulticlassNMS2Op):
}
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
True
)
self
.
check_output
()
class
TestMulticlassNMS3OpNoOutput
(
TestMulticlassNMS3Op
):
...
...
@@ -725,6 +649,71 @@ class TestMulticlassNMS3OpNoOutput(TestMulticlassNMS3Op):
self
.
score_threshold
=
2.0
class
TestMulticlassNMS3LoDInput
(
TestMulticlassNMS2LoDInput
):
def
setUp
(
self
):
self
.
set_argument
()
M
=
1200
C
=
21
BOX_SIZE
=
4
box_lod
=
[[
1200
]]
background
=
0
nms_threshold
=
0.3
nms_top_k
=
400
keep_top_k
=
200
score_threshold
=
self
.
score_threshold
normalized
=
False
scores
=
np
.
random
.
random
((
M
,
C
)).
astype
(
'float32'
)
scores
=
np
.
apply_along_axis
(
softmax
,
1
,
scores
)
boxes
=
np
.
random
.
random
((
M
,
C
,
BOX_SIZE
)).
astype
(
'float32'
)
boxes
[:,
:,
0
]
=
boxes
[:,
:,
0
]
*
10
boxes
[:,
:,
1
]
=
boxes
[:,
:,
1
]
*
10
boxes
[:,
:,
2
]
=
boxes
[:,
:,
2
]
*
10
+
10
boxes
[:,
:,
3
]
=
boxes
[:,
:,
3
]
*
10
+
10
det_outs
,
lod
=
lod_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
,
box_lod
,
normalized
)
det_outs
=
np
.
array
(
det_outs
)
nmsed_outs
=
det_outs
[:,
:
-
1
].
astype
(
'float32'
)
if
len
(
det_outs
)
else
det_outs
self
.
op_type
=
'multiclass_nms3'
self
.
inputs
=
{
'BBoxes'
:
(
boxes
,
box_lod
),
'Scores'
:
(
scores
,
box_lod
),
'RoisNum'
:
np
.
array
(
box_lod
).
astype
(
'int32'
)
}
self
.
outputs
=
{
'Out'
:
(
nmsed_outs
,
[
lod
]),
'NmsRoisNum'
:
np
.
array
(
lod
).
astype
(
'int32'
)
}
self
.
attrs
=
{
'background_label'
:
0
,
'nms_threshold'
:
nms_threshold
,
'nms_top_k'
:
nms_top_k
,
'keep_top_k'
:
keep_top_k
,
'score_threshold'
:
score_threshold
,
'nms_eta'
:
1.0
,
'normalized'
:
normalized
,
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestMulticlassNMS3LoDNoOutput
(
TestMulticlassNMS3LoDInput
):
def
set_argument
(
self
):
# Here set 2.0 to test the case there is no outputs.
# In practical use, 0.0 < score_threshold < 1.0
self
.
score_threshold
=
2.0
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录