Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
effc5559
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
effc5559
编写于
5月 29, 2019
作者:
J
Jiabin Yang
提交者:
GitHub
5月 29, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop, layz init Grad (#17653)
上级
33a791dd
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
100 addition
and
52 deletion
+100
-52
paddle/fluid/imperative/CMakeLists.txt
paddle/fluid/imperative/CMakeLists.txt
+0
-1
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+41
-26
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+39
-8
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+4
-7
python/paddle/fluid/dygraph/layers.py
python/paddle/fluid/dygraph/layers.py
+2
-1
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
+14
-9
未找到文件。
paddle/fluid/imperative/CMakeLists.txt
浏览文件 @
effc5559
...
...
@@ -4,6 +4,5 @@ cc_library(tracer SRCS tracer.cc DEPS proto_desc device_context pybind profiler)
cc_library
(
engine SRCS engine.cc
)
cc_library
(
imperative_profiler SRCS profiler.cc
)
cc_library
(
nccl_context SRCS nccl_context.cc DEPS device_context
)
cc_test
(
nccl_context_test SRCS nccl_context_test.cc DEPS nccl_context
)
endif
()
paddle/fluid/imperative/layer.cc
浏览文件 @
effc5559
...
...
@@ -97,6 +97,13 @@ void AddTo(Variable* src, Variable* dst, platform::Place place) {
boost
::
apply_visitor
(
func
,
place
);
}
void
ZeroGrads
(
VarBase
*
vb
,
const
platform
::
Place
&
place
)
{
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
auto
grad_t
=
vb
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
operators
::
math
::
set_constant
(
*
dev_ctx
,
grad_t
,
0.0
);
}
void
AddGradBySort
(
BackwardSumMap
*
bck_map
,
VarBase
*
target
)
{
PADDLE_ENFORCE
(
bck_map
->
find
(
target
)
!=
bck_map
->
end
(),
"Can't find %s in backward grad map"
,
target
->
Name
());
...
...
@@ -110,8 +117,8 @@ void AddGradBySort(BackwardSumMap* bck_map, VarBase* target) {
for
(
auto
&
var_pair
:
current
.
second
)
{
Variable
*
origin_grad
=
target
->
var_
.
get
();
Variable
*
grad_to_add
=
var_pair
.
second
->
var_
.
get
();
VLOG
(
2
)
<<
"add origin_grad: "
<<
target
->
Name
();
VLOG
(
2
)
<<
"added grad: "
<<
var_pair
.
second
->
Name
()
VLOG
(
10
)
<<
"add origin_grad: "
<<
target
->
Name
();
VLOG
(
10
)
<<
"added grad: "
<<
var_pair
.
second
->
Name
()
<<
" trace id is: "
<<
var_pair
.
first
;
AddTo
(
grad_to_add
,
origin_grad
,
current
.
first
);
delete
var_pair
.
second
;
...
...
@@ -127,7 +134,7 @@ class Autograd {
if
(
var
->
IsStopGradient
())
{
return
;
}
VLOG
(
3
)
<<
"start autograd"
;
VLOG
(
2
)
<<
"start autograd"
;
BackwardSumMap
bck_map
;
GradientRef
grad_ref
;
std
::
deque
<
OpBase
*>
ready
;
...
...
@@ -195,7 +202,7 @@ class Autograd {
for
(
auto
it
:
candidate
->
pre_ops_
)
{
for
(
OpBase
*
pre_op
:
it
.
second
)
{
if
(
!
pre_op
)
continue
;
VLOG
(
2
)
<<
"op dep "
<<
candidate
->
Type
()
<<
" trace id "
VLOG
(
9
)
<<
"op dep "
<<
candidate
->
Type
()
<<
" trace id "
<<
candidate
->
trace_id_
<<
" <---- "
<<
it
.
first
<<
" <---- "
<<
pre_op
->
Type
()
<<
" trace id "
<<
pre_op
->
trace_id_
;
if
(
visited
.
find
(
pre_op
)
==
visited
.
end
())
{
...
...
@@ -267,9 +274,11 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad(
for
(
const
auto
&
it
:
grad_output_variable_map
)
{
auto
&
outputs
=
tmp_grad_outputs
[
k
][
it
.
first
];
outputs
.
reserve
(
it
.
second
.
size
());
for
(
size_t
i
=
0
;
i
<
it
.
second
.
size
();
++
i
)
{
VarBase
*
origin_grad_var_base
=
it
.
second
[
i
];
for
(
VarBase
*
origin_grad_var_base
:
it
.
second
)
{
if
(
!
origin_grad_var_base
->
IsInitialize
())
{
origin_grad_var_base
->
InitBuffer
();
ZeroGrads
(
origin_grad_var_base
,
place_
);
}
// Allocate a new variable
VarBase
*
tmp_grad_var_base
=
new
VarBase
(
string
::
Sprintf
(
"%s@IGrad"
,
origin_grad_var_base
->
Name
()),
...
...
@@ -304,11 +313,15 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad(
for
(
const
auto
&
it
:
grad_input_vars_
[
k
])
{
auto
&
grad_invars
=
grad_invars_map
[
it
.
first
];
grad_invars
.
reserve
(
it
.
second
.
size
());
for
(
const
VarBase
*
grad_inp
:
it
.
second
)
{
for
(
VarBase
*
grad_inp
:
it
.
second
)
{
PADDLE_ENFORCE_NOT_NULL
(
grad_inp
->
var_
,
"op %s input %s nullptr"
,
grad_op_desc
->
Type
(),
grad_inp
->
Name
());
grad_invars
.
emplace_back
(
grad_inp
->
var_
.
get
());
if
(
!
grad_inp
->
IsInitialize
())
{
grad_inp
->
InitBuffer
();
ZeroGrads
(
grad_inp
,
place_
);
}
const
VarBase
*
const_grad_inp
=
grad_inp
;
grad_invars
.
emplace_back
(
const_grad_inp
->
var_
.
get
());
}
}
...
...
@@ -343,22 +356,23 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad(
// track outputs used by sum
if
(
bck_stratedy
.
sorted_sum_gradient_
)
{
#ifndef PADDLE_WITH_CUDA
VLOG
(
2
)
<<
"origin_outputs is : "
<<
origin_outputs
[
i
]
->
Name
()
<<
" "
;
VLOG
(
2
)
<<
origin_outputs
[
i
]
VLOG
(
10
)
<<
"origin_outputs is : "
<<
origin_outputs
[
i
]
->
Name
()
<<
" "
;
VLOG
(
10
)
<<
origin_outputs
[
i
]
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
()
->
data
<
float
>
()[
0
];
VLOG
(
2
)
<<
"outputs is : "
<<
outputs
[
i
]
->
Name
()
<<
" "
;
VLOG
(
2
)
<<
outputs
[
i
]
VLOG
(
10
)
<<
"outputs is : "
<<
outputs
[
i
]
->
Name
()
<<
" "
;
VLOG
(
10
)
<<
outputs
[
i
]
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
()
->
data
<
float
>
()[
0
];
#endif
if
(
bck_map
->
find
(
origin_outputs
[
i
])
!=
bck_map
->
end
())
{
VLOG
(
2
)
<<
"add sub grad to "
<<
origin_outputs
[
i
]
->
Name
();
VLOG
(
10
)
<<
"add sub grad to "
<<
origin_outputs
[
i
]
->
Name
();
bck_map
->
at
(
origin_outputs
[
i
])
.
second
.
emplace_back
(
std
::
pair
<
int
,
VarBase
*>
(
this
->
trace_id_
,
outputs
[
i
]));
}
else
{
VLOG
(
2
)
<<
"insert new map for "
<<
origin_outputs
[
i
]
->
Name
();
VLOG
(
10
)
<<
"insert new map for "
<<
origin_outputs
[
i
]
->
Name
();
std
::
pair
<
platform
::
Place
,
std
::
vector
<
std
::
pair
<
int
,
VarBase
*>>>
tmp
(
place_
,
{
std
::
make_pair
(
this
->
trace_id_
,
outputs
[
i
])});
bck_map
->
insert
(
std
::
make_pair
(
origin_outputs
[
i
],
tmp
));
...
...
@@ -370,17 +384,17 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad(
PADDLE_ENFORCE
(
grad_ref
->
at
(
origin_outputs
[
i
])
>=
1
,
"Backward error when calculate grad reference"
);
if
(
grad_ref
->
at
(
origin_outputs
[
i
])
>
1
)
{
VLOG
(
2
)
<<
"remove ref for "
<<
origin_outputs
[
i
]
->
Name
();
VLOG
(
10
)
<<
"remove ref for "
<<
origin_outputs
[
i
]
->
Name
();
grad_ref
->
at
(
origin_outputs
[
i
])
--
;
}
else
{
VLOG
(
2
)
<<
"Add grad for: "
<<
origin_outputs
[
i
]
->
Name
();
VLOG
(
10
)
<<
"Add grad for: "
<<
origin_outputs
[
i
]
->
Name
();
AddGradBySort
(
bck_map
,
origin_outputs
[
i
]);
grad_ref
->
at
(
origin_outputs
[
i
])
--
;
}
}
else
{
framework
::
Variable
*
grad
=
outputs
[
i
]
->
var_
.
get
();
framework
::
Variable
*
orig_grad
=
origin_outputs
[
i
]
->
var_
.
get
();
VLOG
(
2
)
<<
"AddTo Called with orig_grad is: "
VLOG
(
10
)
<<
"AddTo Called with orig_grad is: "
<<
origin_outputs
[
i
]
->
name_
<<
" Grad to be added is "
<<
outputs
[
i
]
->
name_
;
AddTo
(
grad
,
orig_grad
,
place_
);
...
...
@@ -413,6 +427,7 @@ void VarBase::RunBackward(const detail::BackwardStrategy& bck_stratedy) {
if
(
!
pre_op_
)
return
;
platform
::
RecordEvent
record_event
(
"Imperative Backward"
);
VLOG
(
3
)
<<
"start backward"
;
grads_
->
InitBuffer
();
auto
grads_t
=
grads_
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
operators
::
math
::
set_constant
(
*
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
effc5559
...
...
@@ -121,7 +121,7 @@ class VarBase {
:
VarBase
(
name
,
var
->
Get
<
framework
::
LoDTensor
>
().
type
(),
var
->
Get
<
framework
::
LoDTensor
>
().
dims
(),
var
->
Get
<
framework
::
LoDTensor
>
().
place
(),
nullptr
,
grad
,
stop_gradient
,
false
)
{
stop_gradient
,
false
,
true
)
{
var_
=
std
::
move
(
var
);
}
...
...
@@ -137,18 +137,27 @@ class VarBase {
const
framework
::
DDim
&
shape
,
const
platform
::
Place
&
place
,
bool
stop_gradient
,
bool
persistable
)
:
VarBase
(
name
,
dtype
,
shape
,
place
,
nullptr
,
nullptr
,
stop_gradient
,
persistable
)
{}
persistable
,
true
)
{}
// Grad used constructor
VarBase
(
const
std
::
string
&
name
,
const
framework
::
proto
::
VarType
::
Type
dtype
,
const
std
::
vector
<
int64_t
>&
shape
,
const
platform
::
Place
&
place
,
bool
stop_gradient
,
bool
persistable
,
bool
need_initialize
)
:
VarBase
(
name
,
dtype
,
framework
::
make_ddim
(
shape
),
place
,
nullptr
,
nullptr
,
stop_gradient
,
persistable
,
need_initialize
)
{}
private:
// TODO(minqiyang): need support SelectedRows
VarBase
(
const
std
::
string
&
name
,
framework
::
proto
::
VarType
::
Type
dtype
,
const
framework
::
DDim
&
shape
,
const
platform
::
Place
&
place
,
std
::
unique_ptr
<
framework
::
Variable
>
var
,
VarBase
*
grad
,
bool
stop_gradient
,
bool
persistable
)
bool
stop_gradient
,
bool
persistable
,
bool
need_initialize
)
:
name_
(
name
),
type_
(
framework
::
proto
::
VarType
::
LOD_TENSOR
),
place_
(
place
),
var_
(
std
::
move
(
var
)),
grads_
(
grad
),
dtype_
(
dtype
),
stop_gradient_
(
stop_gradient
),
persistable_
(
persistable
),
pre_op_
(
nullptr
),
...
...
@@ -159,8 +168,16 @@ class VarBase {
}
auto
tensor
=
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
shape
);
if
(
need_initialize
)
{
tensor
->
mutable_data
(
place
,
dtype
);
VLOG
(
10
)
<<
"create varbase: "
<<
name_
<<
" type: "
<<
dtype
is_initialized_
=
true
;
VLOG
(
2
)
<<
"initialized varbase: "
<<
name_
<<
" type: "
<<
dtype
<<
" place: "
<<
place
;
}
else
{
is_initialized_
=
false
;
VLOG
(
2
)
<<
"not initialized varbase: "
<<
name_
;
}
VLOG
(
2
)
<<
"create varbase: "
<<
name_
<<
" type: "
<<
dtype
<<
" place: "
<<
place
;
}
...
...
@@ -173,10 +190,12 @@ class VarBase {
pre_op_
=
nullptr
;
pre_op_out_idx_
=
-
1
;
VLOG
(
2
)
<<
"destruct varbase: "
<<
name_
;
}
inline
void
SetName
(
const
std
::
string
&
name
)
{
name_
=
name
;
}
inline
std
::
string
Name
()
const
{
return
name_
;
}
inline
bool
IsInitialize
()
const
{
return
is_initialized_
;
}
inline
std
::
vector
<
int64_t
>
Shape
()
const
{
if
(
var_
->
IsInitialized
())
{
...
...
@@ -211,7 +230,7 @@ class VarBase {
inline
void
SetPersistable
(
bool
persistable
)
{
persistable_
=
persistable
;
}
inline
bool
IsPersistable
()
const
{
return
persistable_
;
}
inline
platform
::
Place
GetPlace
()
{
return
place_
;
}
inline
OpBase
*
PreOp
()
const
{
return
pre_op_
;
}
inline
int
PreOpOutIdx
()
const
{
return
pre_op_out_idx_
;
}
...
...
@@ -225,6 +244,17 @@ class VarBase {
}
}
void
InitBuffer
()
{
if
(
!
is_initialized_
)
{
var_
->
GetMutable
<
framework
::
LoDTensor
>
()
->
mutable_data
(
place_
,
dtype_
);
is_initialized_
=
true
;
VLOG
(
2
)
<<
"initialized varbase: "
<<
name_
<<
" type: "
<<
dtype_
<<
" place: "
<<
place_
;
}
else
{
VLOG
(
2
)
<<
"var: "
<<
name_
<<
" has already been initialized "
;
}
}
void
TrackPreOp
(
OpBase
*
pre_op
,
const
std
::
string
&
pre_op_out_name
,
int
pre_op_out_idx
,
bool
pre_op_stop_gradient
)
{
pre_op_
=
pre_op
;
...
...
@@ -263,9 +293,10 @@ class VarBase {
VarBase
*
grads_
;
private:
framework
::
proto
::
VarType
::
Type
dtype_
;
bool
stop_gradient_
;
bool
persistable_
;
bool
is_initialized_
;
OpBase
*
pre_op_
;
std
::
string
pre_op_out_name_
;
int
pre_op_out_idx_
;
...
...
paddle/fluid/imperative/tracer.cc
浏览文件 @
effc5559
...
...
@@ -46,7 +46,7 @@ void CreateGradOp(const framework::OpDesc& op_desc,
}
}
void
Init
Grad
(
VarBase
*
var
,
platform
::
DeviceContext
*
dev_ctx
)
{
void
CreateNoBuffuer
Grad
(
VarBase
*
var
,
platform
::
DeviceContext
*
dev_ctx
)
{
PADDLE_ENFORCE_NOT_NULL
(
var
,
"Could not get valid var base"
);
PADDLE_ENFORCE_NOT_NULL
(
dev_ctx
,
"Could not get valid device from forward op"
);
...
...
@@ -55,9 +55,7 @@ void InitGrad(VarBase* var, platform::DeviceContext* dev_ctx) {
auto
&
var_t
=
var
->
var_
->
Get
<
framework
::
LoDTensor
>
();
var
->
grads_
=
new
VarBase
(
var
->
GradName
(),
framework
::
proto
::
VarType
::
FP32
,
framework
::
vectorize
(
var_t
.
dims
()),
dev_ctx
->
GetPlace
(),
true
,
false
);
auto
grad_t
=
var
->
grads_
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
operators
::
math
::
set_constant
(
*
dev_ctx
,
grad_t
,
0.0
);
dev_ctx
->
GetPlace
(),
true
,
false
,
false
);
}
}
...
...
@@ -261,7 +259,7 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
grad_in_vars
.
emplace_back
(
fwd_var_it
->
second
);
}
else
{
VarBase
*
var
=
current_vars_map
[
var_it
->
second
];
Init
Grad
(
var
,
prepared_op
.
GetDeviceContext
());
CreateNoBuffuer
Grad
(
var
,
prepared_op
.
GetDeviceContext
());
// Douts.
grad_in_vars
.
emplace_back
(
var
->
grads_
);
}
...
...
@@ -279,7 +277,7 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
"operator %s's stop gradient be True"
,
op
->
Type
());
VarBase
*
var
=
current_vars_map
[
var_it
->
second
];
Init
Grad
(
var
,
prepared_op
.
GetDeviceContext
());
CreateNoBuffuer
Grad
(
var
,
prepared_op
.
GetDeviceContext
());
grad_out_vars
.
push_back
(
var
->
grads_
);
VLOG
(
3
)
<<
"grads output var name: "
<<
var
->
name_
;
}
...
...
@@ -289,6 +287,5 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
return
vars_saved_for_backward
;
}
}
// namespace imperative
}
// namespace paddle
python/paddle/fluid/dygraph/layers.py
浏览文件 @
effc5559
...
...
@@ -147,6 +147,7 @@ class Layer(core.Layer):
def
clear_gradients
(
self
):
for
p
in
self
.
parameters
():
if
p
.
trainable
:
p
.
clear_gradient
()
def
build_once
(
self
,
*
args
):
...
...
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
浏览文件 @
effc5559
...
...
@@ -101,11 +101,11 @@ class TestDygraphGNN(unittest.TestCase):
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
exe
.
run
(
startup
)
static_loss
=
exe
.
run
(
feed
=
{
'features'
:
np
.
zero
s
(
'features'
:
np
.
one
s
(
[
1
,
100
,
50
],
dtype
=
np
.
float32
),
'adj'
:
np
.
zero
s
(
'adj'
:
np
.
one
s
(
[
1
,
100
,
100
],
dtype
=
np
.
float32
),
'labels'
:
np
.
zero
s
(
'labels'
:
np
.
one
s
(
[
100
,
1
],
dtype
=
np
.
int64
)
},
fetch_list
=
[
loss
])[
0
]
...
...
@@ -117,10 +117,10 @@ class TestDygraphGNN(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
features
=
np
.
zero
s
([
1
,
100
,
50
],
dtype
=
np
.
float32
)
features
=
np
.
one
s
([
1
,
100
,
50
],
dtype
=
np
.
float32
)
# Use selected rows when it's supported.
adj
=
np
.
zero
s
([
1
,
100
,
100
],
dtype
=
np
.
float32
)
labels
=
np
.
zero
s
([
100
,
1
],
dtype
=
np
.
int64
)
adj
=
np
.
one
s
([
1
,
100
,
100
],
dtype
=
np
.
float32
)
labels
=
np
.
one
s
([
100
,
1
],
dtype
=
np
.
int64
)
model
=
GCN
(
'test_gcn'
,
50
)
logits
=
model
(
to_variable
(
features
),
to_variable
(
adj
))
...
...
@@ -130,17 +130,20 @@ class TestDygraphGNN(unittest.TestCase):
loss
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
,
to_variable
(
labels
))
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
loss
.
backward
()
adam
=
AdamOptimizer
(
learning_rate
=
1e-3
)
adam
.
minimize
(
loss
)
model
.
clear_gradients
()
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
features2
=
np
.
zero
s
([
1
,
100
,
50
],
dtype
=
np
.
float32
)
features2
=
np
.
one
s
([
1
,
100
,
50
],
dtype
=
np
.
float32
)
# Use selected rows when it's supported.
adj2
=
np
.
zero
s
([
1
,
100
,
100
],
dtype
=
np
.
float32
)
labels2
=
np
.
zero
s
([
100
,
1
],
dtype
=
np
.
int64
)
adj2
=
np
.
one
s
([
1
,
100
,
100
],
dtype
=
np
.
float32
)
labels2
=
np
.
one
s
([
100
,
1
],
dtype
=
np
.
int64
)
model2
=
GCN
(
'test_gcn'
,
50
)
logits2
=
model2
(
to_variable
(
features2
),
to_variable
(
adj2
))
...
...
@@ -150,8 +153,10 @@ class TestDygraphGNN(unittest.TestCase):
loss2
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits2
,
to_variable
(
labels2
))
loss2
=
fluid
.
layers
.
reduce_sum
(
loss2
)
loss2
.
backward
()
adam2
=
AdamOptimizer
(
learning_rate
=
1e-3
)
adam2
.
minimize
(
loss2
)
model2
.
clear_gradients
()
self
.
assertEqual
(
static_loss
,
loss
.
numpy
())
self
.
assertTrue
(
np
.
allclose
(
static_weight
,
model
.
gc
.
weight
.
numpy
()))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录