Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
efae51ce
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
efae51ce
编写于
7月 07, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add the mobilenet gpu acceleration, cpu is in the process
上级
eeb17c26
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
130 addition
and
102 deletion
+130
-102
paddle/function/DepthwiseConvOp.cpp
paddle/function/DepthwiseConvOp.cpp
+9
-10
paddle/function/DepthwiseConvOp.h
paddle/function/DepthwiseConvOp.h
+2
-5
paddle/function/DepthwiseConvOpGpu.cu
paddle/function/DepthwiseConvOpGpu.cu
+115
-86
paddle/gserver/layers/ConvBaseLayer.cpp
paddle/gserver/layers/ConvBaseLayer.cpp
+2
-1
paddle/gserver/layers/DepthwiseConvLayer.cpp
paddle/gserver/layers/DepthwiseConvLayer.cpp
+2
-0
未找到文件。
paddle/function/DepthwiseConvOp.cpp
浏览文件 @
efae51ce
...
...
@@ -18,11 +18,6 @@ limitations under the License. */
namespace
paddle
{
/*
* imData = [input_channels, input_height, input_width]
* colData = [input_channels, filter_height, filter_width,
* output_height, output_width]
*/
template
<
class
T
>
class
DepthwiseConvFunctor
<
DEVICE_TYPE_CPU
,
T
>
{
public:
...
...
@@ -33,6 +28,8 @@ public:
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
inputHeight
,
int
inputWidth
,
int
filterHeight
,
int
filterWidth
,
int
strideH
,
...
...
@@ -40,7 +37,7 @@ public:
int
paddingH
,
int
paddingW
,
T
*
outputData
)
{
//
NO_IMPLEMENTATION
//
TODO(zhaolong) : cpu implementation of depthwise convolution
}
};
...
...
@@ -118,8 +115,8 @@ public:
size_t
batchSize
=
input
[
0
];
// size_t inputChannels = input[1];
//
size_t inputHeight = input[2];
//
size_t inputWidth = input[3];
size_t
inputHeight
=
input
[
2
];
size_t
inputWidth
=
input
[
3
];
size_t
filterHeight
=
getFilterHeight
(
filter
);
size_t
filterWidth
=
getFilterWidth
(
filter
);
size_t
outputChannels
=
output
[
1
];
...
...
@@ -139,6 +136,8 @@ public:
outputChannels
,
outputHeight
,
outputWidth
,
inputHeight
,
inputWidth
,
filterHeight
,
filterWidth
,
strideH
(),
...
...
@@ -233,8 +232,8 @@ public:
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
//
CHECK_EQ(numInputs_, inputs.size());
//
CHECK_EQ(numOutputs_, outputs.size());
check
(
inputs
,
outputs
);
const
TensorShape
&
output
=
inputs
[
0
].
shape
();
const
TensorShape
&
input
=
inputs
[
1
].
shape
();
...
...
paddle/function/DepthwiseConvOp.h
浏览文件 @
efae51ce
...
...
@@ -18,11 +18,6 @@ limitations under the License. */
namespace
paddle
{
/*
* imData = [input_channels, input_height, input_width]
* colData = [input_channels, filter_height, filter_width,
* output_height, output_width]
*/
template
<
DeviceType
Device
,
class
T
>
class
DepthwiseConvFunctor
{
public:
...
...
@@ -33,6 +28,8 @@ public:
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
inputHeight
,
int
intputWidth
,
int
filterHeight
,
int
filterWidth
,
int
strideH
,
...
...
paddle/function/DepthwiseConvOpGpu.cu
浏览文件 @
efae51ce
...
...
@@ -14,73 +14,95 @@ limitations under the License. */
#include "ConvOp.h"
#include "DepthwiseConvOp.h"
#include "GemmFunctor.h"
#include "paddle/math/MemoryHandle.h"
namespace
paddle
{
template
<
class
T
>
__global__
void
ConvolutionDepthwiseWeightForward
(
const
int
nthreads
,
const
T
*
const
bottom_data
,
const
T
*
const
weight_data
,
const
int
num
,
const
int
channels
,
const
int
top_height
,
const
int
top_width
,
const
int
bottom_height
,
const
int
bottom_width
,
const
int
kernel_h
,
const
int
kernel_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
pad_h
,
const
int
pad_w
,
const
int
dilation_h
,
const
int
dilation_w
,
T
*
const
top_data
)
{
__global__
void
ConvolutionDepthwiseForward
(
const
int
nthreads
,
const
T
*
const
inputData
,
const
T
*
const
filterData
,
const
int
batchSize
,
const
int
outputChannels
,
const
int
outputHeight
,
const
int
outputWidth
,
const
int
inputHeight
,
const
int
inputWidth
,
const
int
filterHeight
,
const
int
filterWidth
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingH
,
const
int
paddingW
,
T
*
const
outputData
)
{
int
index
=
(
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
)
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
const
int
n
=
index
/
channels
/
top_height
/
top_w
idth
;
const
int
c
=
(
index
/
top_height
/
top_width
)
%
c
hannels
;
const
int
h
=
(
index
/
top_width
)
%
top_h
eight
;
const
int
w
=
index
%
top_w
idth
;
const
T
*
weight
=
weight_data
+
c
*
kernel_h
*
kernel_w
;
const
int
n
=
index
/
outputChannels
/
outputHeight
/
outputW
idth
;
const
int
c
=
(
index
/
outputHeight
/
outputWidth
)
%
outputC
hannels
;
const
int
h
=
(
index
/
outputWidth
)
%
outputH
eight
;
const
int
w
=
index
%
outputW
idth
;
const
T
*
weight
=
filterData
+
c
*
filterHeight
*
filterWidth
;
T
value
=
0
;
for
(
int
kh
=
0
;
kh
<
kernel_h
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
kernel_w
;
++
kw
)
{
const
int
h_in
=
-
pad_h
+
h
*
stride_h
+
kh
*
dilation_h
;
const
int
w_in
=
-
pad_w
+
w
*
stride_w
+
kw
*
dilation_w
;
if
((
h_in
>=
0
)
&&
(
h_in
<
bottom_height
)
&&
(
w_in
>=
0
)
&&
(
w_in
<
bottom_width
))
{
const
int
offset
=
((
n
*
channels
+
c
)
*
bottom_height
+
h_in
)
*
bottom_width
+
w_in
;
value
+=
(
*
weight
)
*
bottom_data
[
offset
];
const
int
h_in_start
=
-
paddingH
+
h
*
strideH
;
const
int
w_in_start
=
-
paddingW
+
w
*
strideW
;
const
int
h_in_end
=
-
paddingH
+
h
*
strideH
+
filterHeight
-
1
;
const
int
w_in_end
=
-
paddingW
+
w
*
strideW
+
filterWidth
-
1
;
if
((
h_in_start
>=
0
)
&&
(
h_in_end
<
inputHeight
)
&&
(
w_in_start
>=
0
)
&&
(
w_in_end
<
inputWidth
))
{
for
(
int
kh
=
0
;
kh
<
filterHeight
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filterWidth
;
++
kw
)
{
const
int
h_in
=
-
paddingH
+
h
*
strideH
+
kh
;
const
int
w_in
=
-
paddingW
+
w
*
strideW
+
kw
;
const
int
offset
=
((
n
*
outputChannels
+
c
)
*
inputHeight
+
h_in
)
*
inputWidth
+
w_in
;
value
+=
(
*
weight
)
*
inputData
[
offset
];
++
weight
;
}
}
}
else
{
for
(
int
kh
=
0
;
kh
<
filterHeight
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filterWidth
;
++
kw
)
{
const
int
h_in
=
-
paddingH
+
h
*
strideH
+
kh
;
const
int
w_in
=
-
paddingW
+
w
*
strideW
+
kw
;
if
((
h_in
>=
0
)
&&
(
h_in
<
inputHeight
)
&&
(
w_in
>=
0
)
&&
(
w_in
<
inputWidth
))
{
const
int
offset
=
((
n
*
outputChannels
+
c
)
*
inputHeight
+
h_in
)
*
inputWidth
+
w_in
;
value
+=
(
*
weight
)
*
inputData
[
offset
];
}
++
weight
;
}
}
top_data
[
index
]
=
value
;
}
outputData
[
index
]
=
value
;
}
}
template
<
class
T
>
__global__
void
ConvolutionDepthwiseBottomBackward
(
const
int
nthreads
,
__global__
void
ConvolutionDepthwiseInputBackward
(
const
int
nthreads
,
const
T
*
const
top_diff
,
const
T
*
const
weight_data
,
const
int
num
,
const
int
channels
,
const
int
top_h
eight
,
const
int
top_width
,
const
int
bottom_height
,
const
int
bottom_w
idth
,
const
int
kernel_h
,
const
int
kernel_w
,
const
int
stride_h
,
const
int
stride
_w
,
const
int
pad_h
,
const
int
pad_w
,
const
int
dilation_h
,
const
int
dilation_w
,
T
*
const
bottom_diff
)
{
const
int
num
,
const
int
outputChannels
,
const
int
outputH
eight
,
const
int
outputWidth
,
const
int
inputHeight
,
const
int
inputW
idth
,
const
int
filterHeight
,
const
int
filterWidth
,
const
int
strideH
,
const
int
stride
W
,
const
int
paddingH
,
const
int
paddingW
,
T
*
const
bottom_diff
)
{
int
index
=
(
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
)
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
const
int
n
=
index
/
channels
/
bottom_height
/
bottom_w
idth
;
const
int
c
=
(
index
/
bottom_height
/
bottom_width
)
%
c
hannels
;
const
int
h
=
(
index
/
bottom_width
)
%
bottom_h
eight
;
const
int
w
=
index
%
bottom_w
idth
;
const
T
*
weight
=
weight_data
+
c
*
kernel_h
*
kernel_w
;
const
int
n
=
index
/
outputChannels
/
inputHeight
/
inputW
idth
;
const
int
c
=
(
index
/
inputHeight
/
inputWidth
)
%
outputC
hannels
;
const
int
h
=
(
index
/
inputWidth
)
%
inputH
eight
;
const
int
w
=
index
%
inputW
idth
;
const
T
*
weight
=
weight_data
+
c
*
filterHeight
*
filterWidth
;
T
value
=
0
;
for
(
int
kh
=
0
;
kh
<
kernel_h
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
kernel_w
;
++
kw
)
{
const
int
h_out_s
=
h
+
pad
_h
-
kh
*
dilation_
h
;
const
int
w_out_s
=
w
+
pad
_w
-
kw
*
dilation_
w
;
if
(((
h_out_s
%
stride
_h
)
==
0
)
&&
((
w_out_s
%
stride_w
)
==
0
))
{
const
int
h_out
=
h_out_s
/
stride
_h
;
const
int
w_out
=
w_out_s
/
stride
_w
;
//it affect the effectives
if
((
h_out
>=
0
)
&&
(
h_out
<
top_h
eight
)
&&
(
w_out
>=
0
)
&&
(
w_out
<
top_w
idth
))
{
const
int
offset
=
((
n
*
channels
+
c
)
*
top_h
eight
+
h_out
)
*
top_w
idth
+
w_out
;
for
(
int
kh
=
0
;
kh
<
filterHeight
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filterWidth
;
++
kw
)
{
const
int
h_out_s
=
h
+
pad
dingH
-
k
h
;
const
int
w_out_s
=
w
+
pad
dingW
-
k
w
;
if
(((
h_out_s
%
stride
H
)
==
0
)
&&
((
w_out_s
%
strideW
)
==
0
))
{
const
int
h_out
=
h_out_s
/
stride
H
;
const
int
w_out
=
w_out_s
/
stride
W
;
// TODO(zhaolong) : the 'if' affect the effectiveness, it needs to optimize
if
((
h_out
>=
0
)
&&
(
h_out
<
outputH
eight
)
&&
(
w_out
>=
0
)
&&
(
w_out
<
outputW
idth
))
{
const
int
offset
=
((
n
*
outputChannels
+
c
)
*
outputH
eight
+
h_out
)
*
outputW
idth
+
w_out
;
value
+=
(
*
weight
)
*
top_diff
[
offset
];
}
}
...
...
@@ -92,32 +114,33 @@ __global__ void ConvolutionDepthwiseBottomBackward(const int nthreads,
}
template
<
class
T
>
__global__
void
ConvolutionDepthwiseWeightBackward
(
const
int
num_i
,
const
int
nthreads
,
const
T
*
const
top_diff
,
const
T
*
const
bottom_data
,
const
int
num
,
const
int
channels
,
const
int
top_height
,
const
int
top_width
,
const
int
bottom_height
,
const
int
bottom_width
,
const
int
kernel_h
,
const
int
kernel_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
pad_h
,
const
int
pad_w
,
const
int
dilation_h
,
const
int
dilation_w
,
T
*
const
buffer_data
)
{
__global__
void
ConvolutionDepthwiseFilterBackward
(
const
int
num_i
,
const
int
nthreads
,
const
T
*
const
top_diff
,
const
T
*
const
inputData
,
const
int
num
,
const
int
outputChannels
,
const
int
outputHeight
,
const
int
outputWidth
,
const
int
inputHeight
,
const
int
inputWidth
,
const
int
filterHeight
,
const
int
filterWidth
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingH
,
const
int
paddingW
,
T
*
const
buffer_data
)
{
int
index
=
(
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
)
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
const
int
h
=
(
index
/
top_width
)
%
top_h
eight
;
const
int
w
=
index
%
top_w
idth
;
const
int
kh
=
(
index
/
kernel_w
/
top_height
/
top_w
idth
)
%
kernel_h
;
const
int
kw
=
(
index
/
top_height
/
top_width
)
%
kernel_w
;
const
int
h_in
=
-
pad
_h
+
h
*
stride_h
+
kh
*
dilation_
h
;
const
int
w_in
=
-
pad
_w
+
w
*
stride_w
+
kw
*
dilation_
w
;
if
((
h_in
>=
0
)
&&
(
h_in
<
bottom_h
eight
)
&&
(
w_in
>=
0
)
&&
(
w_in
<
bottom_w
idth
))
{
const
int
c
=
index
/
kernel_h
/
kernel_w
/
top_height
/
top_w
idth
;
const
int
h
=
(
index
/
outputWidth
)
%
outputH
eight
;
const
int
w
=
index
%
outputW
idth
;
const
int
kh
=
(
index
/
filterWidth
/
outputHeight
/
outputW
idth
)
%
filterHeight
;
const
int
kw
=
(
index
/
outputHeight
/
outputWidth
)
%
filterWidth
;
const
int
h_in
=
-
pad
dingH
+
h
*
strideH
+
k
h
;
const
int
w_in
=
-
pad
dingW
+
w
*
strideW
+
k
w
;
if
((
h_in
>=
0
)
&&
(
h_in
<
inputH
eight
)
&&
(
w_in
>=
0
)
&&
(
w_in
<
inputW
idth
))
{
const
int
c
=
index
/
filterHeight
/
filterWidth
/
outputHeight
/
outputW
idth
;
const
int
n
=
num_i
;
const
int
top_offset
=
((
n
*
channels
+
c
)
*
top_h
eight
+
h
)
*
top_w
idth
+
w
;
const
int
bottom_offset
=
((
n
*
channels
+
c
)
*
bottom_h
eight
+
h_in
)
*
bottom_w
idth
+
w_in
;
buffer_data
[
index
]
=
top_diff
[
top_offset
]
*
bottom_d
ata
[
bottom_offset
];
const
int
top_offset
=
((
n
*
outputChannels
+
c
)
*
outputH
eight
+
h
)
*
outputW
idth
+
w
;
const
int
bottom_offset
=
((
n
*
outputChannels
+
c
)
*
inputH
eight
+
h_in
)
*
inputW
idth
+
w_in
;
buffer_data
[
index
]
=
top_diff
[
top_offset
]
*
inputD
ata
[
bottom_offset
];
}
else
{
buffer_data
[
index
]
=
0
;
}
...
...
@@ -134,6 +157,8 @@ public:
int
outputChannels
,
int
outputHeight
,
int
outputWidth
,
int
inputHeight
,
int
inputWidth
,
int
filterHeight
,
int
filterWidth
,
int
strideH
,
...
...
@@ -148,7 +173,7 @@ public:
dim3
threads
(
1024
,
1
);
dim3
grid
(
blockX
,
blockY
);
ConvolutionDepthwise
Weight
Forward
<
T
>
ConvolutionDepthwiseForward
<
T
>
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
outputSize
,
inputData
,
...
...
@@ -157,6 +182,8 @@ public:
outputChannels
,
outputHeight
,
outputWidth
,
inputHeight
,
inputWidth
,
filterHeight
,
filterWidth
,
strideH
,
...
...
@@ -193,7 +220,7 @@ public:
dim3
threads
(
1024
,
1
);
dim3
grid
(
blockX
,
blockY
);
ConvolutionDepthwise
Bottom
Backward
<
T
>
ConvolutionDepthwise
Input
Backward
<
T
>
// NOLINT_NEXT_LINE(whitespace/operators)
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
inputSize
,
...
...
@@ -244,10 +271,10 @@ public:
dim3
threads
(
1024
,
1
);
dim3
grid
(
blockX
,
blockY
);
ConvolutionDepthwise
Weight
Backward
<
T
>
ConvolutionDepthwise
Filter
Backward
<
T
>
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
i
,
s
ize
,
num_
i
,
colDataS
ize
,
outputGrad
,
inputData
,
batchSize
,
...
...
@@ -264,8 +291,8 @@ public:
paddingW
,
colData
);
GemmFunctor
<
D
evice
,
real
>
gemm
;
int
M
=
s
ize
/
outputHeight
/
outputWidth
;
GemmFunctor
<
D
EVICE_TYPE_GPU
,
real
>
gemm
;
int
M
=
colDataS
ize
/
outputHeight
/
outputWidth
;
int
N
=
1
;
int
K
=
outputHeight
*
outputWidth
;
gemm
(
CblasNoTrans
,
...
...
@@ -273,23 +300,25 @@ public:
M
,
N
,
K
,
1.0
f
,
(
T
)
1.0
,
colData
,
K
,
multiplierData
,
N
,
1.0
f
,
(
T
)
1.0
,
filterGrad
,
N
);
//gemv
}
};
template
class
DepthwiseConvGradInputFunctor
<
DEVICE_TYPE_GPU
,
float
>;
template
class
DepthwiseConvGradInputFunctor
<
DEVICE_TYPE_GPU
,
double
>;
template
class
DepthwiseConvFunctor
<
DEVICE_TYPE_GPU
,
float
>;
template
class
DepthwiseConvFunctor
<
DEVICE_TYPE_GPU
,
double
>;
template
class
DepthwiseConvGradFilterFunctor
<
DEVICE_TYPE_GPU
,
float
>;
template
class
DepthwiseConvGradFilterFunctor
<
DEVICE_TYPE_GPU
,
double
>;
#ifdef PADDLE_TYPE_DOUBLE
using
real
=
double
;
#else
using
real
=
float
;
#endif
template
class
DepthwiseConvGradInputFunctor
<
DEVICE_TYPE_GPU
,
real
>;
template
class
DepthwiseConvFunctor
<
DEVICE_TYPE_GPU
,
real
>;
template
class
DepthwiseConvGradFilterFunctor
<
DEVICE_TYPE_GPU
,
real
>;
}
// namespace paddle
paddle/gserver/layers/ConvBaseLayer.cpp
浏览文件 @
efae51ce
...
...
@@ -21,7 +21,8 @@ bool ConvBaseLayer::init(const LayerMap& layerMap,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
isDeconv_
=
(
config_
.
type
()
==
"exconv"
||
config_
.
type
()
==
"cudnn_conv"
)
isDeconv_
=
(
config_
.
type
()
==
"exconv"
||
config_
.
type
()
==
"cudnn_conv"
||
config_
.
type
()
==
"depthwise_conv"
)
?
false
:
true
;
...
...
paddle/gserver/layers/DepthwiseConvLayer.cpp
浏览文件 @
efae51ce
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include "DepthwiseConvLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include <iostream>
namespace
paddle
{
...
...
@@ -79,6 +80,7 @@ void DepthwiseConvLayer::forward(PassType passType) {
Layer
::
forward
(
passType
);
size_t
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
// std::cout << "outputSize" << getOutputSize() <<std::endl;
resetOutput
(
batchSize
,
getOutputSize
());
// Calculate the shape of the input, output, and filter.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录