Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ed2d7d7d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ed2d7d7d
编写于
4月 13, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into feature/mix_cpu_gpu_op
上级
4452ff76
925c17ab
变更
16
显示空白变更内容
内联
并排
Showing
16 changed file
with
254 addition
and
124 deletion
+254
-124
cmake/cblas.cmake
cmake/cblas.cmake
+1
-1
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+65
-39
paddle/fluid/framework/executor.h
paddle/fluid/framework/executor.h
+10
-0
paddle/fluid/framework/threadpool.cc
paddle/fluid/framework/threadpool.cc
+19
-0
paddle/fluid/framework/threadpool.h
paddle/fluid/framework/threadpool.h
+36
-20
paddle/fluid/inference/io.cc
paddle/fluid/inference/io.cc
+1
-1
paddle/fluid/inference/tests/book/test_inference_image_classification.cc
...ference/tests/book/test_inference_image_classification.cc
+4
-4
paddle/fluid/inference/tests/test_helper.h
paddle/fluid/inference/tests/test_helper.h
+19
-5
paddle/fluid/operators/detail/grpc_client.cc
paddle/fluid/operators/detail/grpc_client.cc
+7
-5
paddle/fluid/operators/detail/grpc_server.cc
paddle/fluid/operators/detail/grpc_server.cc
+1
-1
paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
.../fluid/operators/reader/create_double_buffer_reader_op.cc
+22
-40
paddle/fluid/operators/reshape_op.h
paddle/fluid/operators/reshape_op.h
+2
-0
paddle/fluid/operators/uniform_random_op.cc
paddle/fluid/operators/uniform_random_op.cc
+13
-1
paddle/fluid/operators/uniform_random_op.cu
paddle/fluid/operators/uniform_random_op.cu
+13
-1
python/paddle/fluid/tests/book/test_recognize_digits.py
python/paddle/fluid/tests/book/test_recognize_digits.py
+0
-1
python/paddle/fluid/tests/unittests/test_uniform_random_op.py
...on/paddle/fluid/tests/unittests/test_uniform_random_op.py
+41
-5
未找到文件。
cmake/cblas.cmake
浏览文件 @
ed2d7d7d
...
...
@@ -78,7 +78,7 @@ if(NOT CMAKE_CROSSCOMPILING)
/usr/lib/reference/
)
else
()
# Diable the finding of reference cblas under host's system path
# Di
s
able the finding of reference cblas under host's system path
set
(
REFERENCE_CBLAS_INCLUDE_SEARCH_PATHS
${
REFERENCE_CBLAS_ROOT
}
/include
)
set
(
REFERENCE_CBLAS_LIB_SEARCH_PATHS
${
REFERENCE_CBLAS_ROOT
}
/lib
)
endif
()
...
...
paddle/fluid/framework/executor.cc
浏览文件 @
ed2d7d7d
...
...
@@ -83,8 +83,8 @@ static void CheckTensorNANOrInf(const std::string& name,
if
(
tensor
.
memory_size
()
==
0
)
{
return
;
}
if
(
tensor
.
type
().
hash_code
()
!=
typeid
(
float
).
hash_code
()
&&
tensor
.
type
().
hash_code
()
!=
typeid
(
double
).
hash_code
())
{
if
(
tensor
.
type
().
hash_code
()
!=
typeid
(
float
).
hash_code
()
&&
// NOLINT
tensor
.
type
().
hash_code
()
!=
typeid
(
double
).
hash_code
())
{
// NOLINT
return
;
}
PADDLE_ENFORCE
(
!
framework
::
TensorContainsInf
(
tensor
),
...
...
@@ -145,12 +145,13 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
// Return true if the block has feed operators and holder of matching info.
static
bool
has_feed_operators
(
const
BlockDesc
&
block
,
std
::
map
<
std
::
string
,
const
LoDTensor
*>&
feed_targets
,
const
std
::
map
<
std
::
string
,
const
LoDTensor
*>&
feed_targets
,
const
std
::
string
&
feed_holder_name
)
{
size_t
feed_count
=
0
;
for
(
auto
*
op
:
block
.
AllOps
())
{
if
(
op
->
Type
()
==
kFeedOpType
)
{
feed_count
++
;
// The input variable's name of feed_op should be feed_holder_name.
PADDLE_ENFORCE_EQ
(
op
->
Input
(
"X"
)[
0
],
feed_holder_name
,
"Input to feed op should be '%s'"
,
feed_holder_name
);
std
::
string
feed_target_name
=
op
->
Output
(
"Out"
)[
0
];
...
...
@@ -166,7 +167,8 @@ static bool has_feed_operators(
feed_count
,
feed_targets
.
size
(),
"The number of feed operators should match 'feed_targets'"
);
// When feed operator are present, so should be feed_holder
if
(
!
feed_holder_name
.
empty
())
{
// When feed operator are present, so should be feed_holder.
auto
var
=
block
.
FindVar
(
feed_holder_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
"Block should already have a '%s' variable"
,
feed_holder_name
);
...
...
@@ -174,6 +176,7 @@ static bool has_feed_operators(
"'%s' variable should be 'FEED_MINIBATCH' type"
,
feed_holder_name
);
}
}
return
feed_count
>
0
;
}
...
...
@@ -185,12 +188,14 @@ static bool has_feed_operators(
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static
bool
has_fetch_operators
(
const
BlockDesc
&
block
,
std
::
map
<
std
::
string
,
LoDTensor
*>&
fetch_targets
,
const
BlockDesc
&
block
,
const
std
::
map
<
std
::
string
,
LoDTensor
*>&
fetch_targets
,
const
std
::
string
&
fetch_holder_name
)
{
size_t
fetch_count
=
0
;
for
(
auto
*
op
:
block
.
AllOps
())
{
if
(
op
->
Type
()
==
kFetchOpType
)
{
fetch_count
++
;
// The output variable's name of fetch_op should be fetch_holder_name.
PADDLE_ENFORCE_EQ
(
op
->
Output
(
"Out"
)[
0
],
fetch_holder_name
,
"Output of fetch op should be '%s'"
,
fetch_holder_name
);
std
::
string
fetch_target_name
=
op
->
Input
(
"X"
)[
0
];
...
...
@@ -206,7 +211,8 @@ static bool has_fetch_operators(
fetch_count
,
fetch_targets
.
size
(),
"The number of fetch operators should match 'fetch_targets'"
);
// When fetch operator are present, so should be fetch_holder
if
(
!
fetch_holder_name
.
empty
())
{
// When fetch operator are present, so should be fetch_holder.
auto
var
=
block
.
FindVar
(
fetch_holder_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
"Block should already have a '%s' variable"
,
fetch_holder_name
);
...
...
@@ -214,6 +220,7 @@ static bool has_fetch_operators(
"'%s' variable should be 'FETCH_LIST' type"
,
fetch_holder_name
);
}
}
return
fetch_count
>
0
;
}
...
...
@@ -259,16 +266,6 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
}
}
// map the data of feed_targets to feed_holder
for
(
auto
*
op
:
global_block
->
AllOps
())
{
if
(
op
->
Type
()
==
kFeedOpType
)
{
std
::
string
feed_target_name
=
op
->
Output
(
"Out"
)[
0
];
int
idx
=
boost
::
get
<
int
>
(
op
->
GetAttr
(
"col"
));
SetFeedVariable
(
scope
,
*
feed_targets
[
feed_target_name
],
feed_holder_name
,
idx
);
}
}
if
(
!
has_fetch_ops
)
{
// create fetch_holder variable
auto
*
fetch_holder
=
global_block
->
Var
(
fetch_holder_name
);
...
...
@@ -292,17 +289,9 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
}
}
Run
(
*
copy_program
,
scope
,
0
,
create_vars
,
create_vars
);
// obtain the data of fetch_targets from fetch_holder
for
(
auto
*
op
:
global_block
->
AllOps
())
{
if
(
op
->
Type
()
==
kFetchOpType
)
{
std
::
string
fetch_target_name
=
op
->
Input
(
"X"
)[
0
];
int
idx
=
boost
::
get
<
int
>
(
op
->
GetAttr
(
"col"
));
*
fetch_targets
[
fetch_target_name
]
=
GetFetchVariable
(
*
scope
,
fetch_holder_name
,
idx
);
}
}
auto
ctx
=
Prepare
(
*
copy_program
,
0
);
RunPreparedContext
(
ctx
.
get
(),
scope
,
feed_targets
,
fetch_targets
,
create_vars
,
feed_holder_name
,
fetch_holder_name
);
}
std
::
unique_ptr
<
ExecutorPrepareContext
>
Executor
::
Prepare
(
...
...
@@ -370,5 +359,42 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
}
}
void
Executor
::
RunPreparedContext
(
ExecutorPrepareContext
*
ctx
,
Scope
*
scope
,
std
::
map
<
std
::
string
,
const
LoDTensor
*>&
feed_targets
,
std
::
map
<
std
::
string
,
LoDTensor
*>&
fetch_targets
,
bool
create_vars
,
const
std
::
string
&
feed_holder_name
,
const
std
::
string
&
fetch_holder_name
)
{
auto
&
global_block
=
ctx
->
prog_
.
Block
(
ctx
->
block_id_
);
PADDLE_ENFORCE
(
has_feed_operators
(
global_block
,
feed_targets
,
feed_holder_name
),
"Program in ExecutorPrepareContext should has feed_ops."
);
PADDLE_ENFORCE
(
has_fetch_operators
(
global_block
,
fetch_targets
,
fetch_holder_name
),
"Program in the prepared context should has fetch_ops."
);
// map the data of feed_targets to feed_holder
for
(
auto
*
op
:
global_block
.
AllOps
())
{
if
(
op
->
Type
()
==
kFeedOpType
)
{
std
::
string
feed_target_name
=
op
->
Output
(
"Out"
)[
0
];
int
idx
=
boost
::
get
<
int
>
(
op
->
GetAttr
(
"col"
));
SetFeedVariable
(
scope
,
*
feed_targets
[
feed_target_name
],
feed_holder_name
,
idx
);
}
}
RunPreparedContext
(
ctx
,
scope
,
create_vars
,
create_vars
);
// obtain the data of fetch_targets from fetch_holder
for
(
auto
*
op
:
global_block
.
AllOps
())
{
if
(
op
->
Type
()
==
kFetchOpType
)
{
std
::
string
fetch_target_name
=
op
->
Input
(
"X"
)[
0
];
int
idx
=
boost
::
get
<
int
>
(
op
->
GetAttr
(
"col"
));
*
fetch_targets
[
fetch_target_name
]
=
GetFetchVariable
(
*
scope
,
fetch_holder_name
,
idx
);
}
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/executor.h
浏览文件 @
ed2d7d7d
...
...
@@ -14,6 +14,9 @@ limitations under the License. */
#pragma once
#include <map>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
...
...
@@ -70,6 +73,13 @@ class Executor {
bool
create_local_scope
=
true
,
bool
create_vars
=
true
);
void
RunPreparedContext
(
ExecutorPrepareContext
*
ctx
,
Scope
*
scope
,
std
::
map
<
std
::
string
,
const
LoDTensor
*>&
feed_targets
,
std
::
map
<
std
::
string
,
LoDTensor
*>&
fetch_targets
,
bool
create_vars
=
true
,
const
std
::
string
&
feed_holder_name
=
"feed"
,
const
std
::
string
&
fetch_holder_name
=
"fetch"
);
private:
const
platform
::
Place
place_
;
};
...
...
paddle/fluid/framework/threadpool.cc
浏览文件 @
ed2d7d7d
...
...
@@ -14,8 +14,12 @@
#include "paddle/fluid/framework/threadpool.h"
#include "gflags/gflags.h"
#include "paddle/fluid/platform/enforce.h"
DEFINE_int32
(
io_threadpool_size
,
100
,
"number of threads used for doing IO, default 100"
);
namespace
paddle
{
namespace
framework
{
...
...
@@ -91,5 +95,20 @@ void ThreadPool::TaskLoop() {
}
}
std
::
unique_ptr
<
ThreadPool
>
ThreadPoolIO
::
io_threadpool_
(
nullptr
);
std
::
once_flag
ThreadPoolIO
::
io_init_flag_
;
ThreadPool
*
ThreadPoolIO
::
GetInstanceIO
()
{
std
::
call_once
(
io_init_flag_
,
&
ThreadPoolIO
::
InitIO
);
return
io_threadpool_
.
get
();
}
void
ThreadPoolIO
::
InitIO
()
{
if
(
io_threadpool_
.
get
()
==
nullptr
)
{
// TODO(typhoonzero1986): make this configurable
io_threadpool_
.
reset
(
new
ThreadPool
(
FLAGS_io_threadpool_size
));
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/threadpool.h
浏览文件 @
ed2d7d7d
...
...
@@ -14,12 +14,12 @@ limitations under the License. */
#pragma once
#include <condition_variable>
#include <condition_variable>
// NOLINT
#include <functional>
#include <future>
#include <mutex>
#include <future>
// NOLINT
#include <mutex>
// NOLINT
#include <queue>
#include <thread>
#include <thread>
// NOLINT
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"
...
...
@@ -28,6 +28,22 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
struct
ExceptionHandler
{
mutable
std
::
future
<
std
::
unique_ptr
<
platform
::
EnforceNotMet
>>
future_
;
explicit
ExceptionHandler
(
std
::
future
<
std
::
unique_ptr
<
platform
::
EnforceNotMet
>>&&
f
)
:
future_
(
std
::
move
(
f
))
{}
void
operator
()()
const
{
auto
ex
=
this
->
future_
.
get
();
if
(
ex
!=
nullptr
)
{
LOG
(
FATAL
)
<<
"The exception is thrown inside the thread pool. You "
"should use RunAndGetException to handle the exception.
\n
"
"The default exception handler is LOG(FATAL)."
<<
ex
->
what
();
}
}
};
// ThreadPool maintains a queue of tasks, and runs them using a fixed
// number of threads.
class
ThreadPool
{
...
...
@@ -87,22 +103,6 @@ class ThreadPool {
void
Wait
();
private:
struct
ExceptionHandler
{
mutable
std
::
future
<
std
::
unique_ptr
<
platform
::
EnforceNotMet
>>
future_
;
explicit
ExceptionHandler
(
std
::
future
<
std
::
unique_ptr
<
platform
::
EnforceNotMet
>>&&
f
)
:
future_
(
std
::
move
(
f
))
{}
void
operator
()()
const
{
auto
ex
=
this
->
future_
.
get
();
if
(
ex
!=
nullptr
)
{
LOG
(
FATAL
)
<<
"The exception is thrown inside the thread pool. You "
"should use RunAndGetException to handle the exception.
\n
"
"The default exception handler is LOG(FATAL)."
<<
ex
->
what
();
}
}
};
DISABLE_COPY_AND_ASSIGN
(
ThreadPool
);
// If the task queue is empty and avaialbe is equal to the number of
...
...
@@ -135,6 +135,17 @@ class ThreadPool {
std
::
condition_variable
completed_
;
};
class
ThreadPoolIO
:
ThreadPool
{
public:
static
ThreadPool
*
GetInstanceIO
();
static
void
InitIO
();
private:
// NOTE: threadpool in base will be inhereted here.
static
std
::
unique_ptr
<
ThreadPool
>
io_threadpool_
;
static
std
::
once_flag
io_init_flag_
;
};
// Run a function asynchronously.
// NOTE: The function must return void. If the function need to return a value,
// you can use lambda to capture a value pointer.
...
...
@@ -143,5 +154,10 @@ std::future<void> Async(Callback callback) {
return
ThreadPool
::
GetInstance
()
->
Run
(
callback
);
}
template
<
typename
Callback
>
std
::
future
<
void
>
AsyncIO
(
Callback
callback
)
{
return
ThreadPoolIO
::
GetInstanceIO
()
->
Run
(
callback
);
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/inference/io.cc
浏览文件 @
ed2d7d7d
...
...
@@ -23,7 +23,7 @@ limitations under the License. */
namespace
paddle
{
namespace
inference
{
// Temporaril
l
y add this function for exposing framework::InitDevices() when
// Temporarily add this function for exposing framework::InitDevices() when
// linking the inference shared library.
void
Init
(
bool
init_p2p
)
{
framework
::
InitDevices
(
init_p2p
);
}
...
...
paddle/fluid/inference/tests/book/test_inference_image_classification.cc
浏览文件 @
ed2d7d7d
...
...
@@ -46,8 +46,8 @@ TEST(inference, image_classification) {
// Run inference on CPU
LOG
(
INFO
)
<<
"--- CPU Runs: ---"
;
TestInference
<
paddle
::
platform
::
CPUPlace
,
false
>
(
dirname
,
cpu_feeds
,
cpu_fetchs1
,
FLAGS_repeat
);
TestInference
<
paddle
::
platform
::
CPUPlace
,
false
,
true
>
(
dirname
,
cpu_feeds
,
cpu_fetchs1
,
FLAGS_repeat
);
LOG
(
INFO
)
<<
output1
.
dims
();
#ifdef PADDLE_WITH_CUDA
...
...
@@ -57,8 +57,8 @@ TEST(inference, image_classification) {
// Run inference on CUDA GPU
LOG
(
INFO
)
<<
"--- GPU Runs: ---"
;
TestInference
<
paddle
::
platform
::
CUDAPlace
,
false
>
(
dirname
,
cpu_feeds
,
cpu_fetchs2
,
FLAGS_repeat
);
TestInference
<
paddle
::
platform
::
CUDAPlace
,
false
,
true
>
(
dirname
,
cpu_feeds
,
cpu_fetchs2
,
FLAGS_repeat
);
LOG
(
INFO
)
<<
output2
.
dims
();
CheckError
<
float
>
(
output1
,
output2
);
...
...
paddle/fluid/inference/tests/test_helper.h
浏览文件 @
ed2d7d7d
...
...
@@ -89,7 +89,7 @@ void CheckError(const paddle::framework::LoDTensor& output1,
EXPECT_EQ
(
count
,
0U
)
<<
"There are "
<<
count
<<
" different elements."
;
}
template
<
typename
Place
,
bool
CreateVars
=
true
>
template
<
typename
Place
,
bool
CreateVars
=
true
,
bool
PrepareContext
=
false
>
void
TestInference
(
const
std
::
string
&
dirname
,
const
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>&
cpu_feeds
,
const
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>&
cpu_fetchs
,
...
...
@@ -175,8 +175,15 @@ void TestInference(const std::string& dirname,
}
// Ignore the profiling results of the first run
std
::
unique_ptr
<
paddle
::
framework
::
ExecutorPrepareContext
>
ctx
;
if
(
PrepareContext
)
{
ctx
=
executor
.
Prepare
(
*
inference_program
,
0
);
executor
.
RunPreparedContext
(
ctx
.
get
(),
scope
,
feed_targets
,
fetch_targets
,
CreateVars
);
}
else
{
executor
.
Run
(
*
inference_program
,
scope
,
feed_targets
,
fetch_targets
,
CreateVars
);
}
// Enable the profiler
paddle
::
platform
::
EnableProfiler
(
state
);
...
...
@@ -187,9 +194,16 @@ void TestInference(const std::string& dirname,
"run_inference"
,
paddle
::
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
if
(
PrepareContext
)
{
// Note: if you change the inference_program, you need to call
// executor.Prepare() again to get a new ExecutorPrepareContext.
executor
.
RunPreparedContext
(
ctx
.
get
(),
scope
,
feed_targets
,
fetch_targets
,
CreateVars
);
}
else
{
executor
.
Run
(
*
inference_program
,
scope
,
feed_targets
,
fetch_targets
,
CreateVars
);
}
}
// Disable the profiler and print the timing information
paddle
::
platform
::
DisableProfiler
(
...
...
paddle/fluid/operators/detail/grpc_client.cc
浏览文件 @
ed2d7d7d
...
...
@@ -35,7 +35,8 @@ bool RPCClient::AsyncSendVariable(const std::string& ep,
const
framework
::
Scope
*
p_scope
=
&
scope
;
const
auto
ch
=
GetChannel
(
ep_val
);
framework
::
Async
([
var_name_val
,
p_ctx
,
ep_val
,
p_scope
,
time_out
,
ch
,
this
]
{
framework
::
AsyncIO
([
var_name_val
,
p_ctx
,
ep_val
,
p_scope
,
time_out
,
ch
,
this
]
{
auto
*
var
=
p_scope
->
FindVar
(
var_name_val
);
::
grpc
::
ByteBuffer
req
;
...
...
@@ -89,7 +90,8 @@ bool RPCClient::AsyncGetVariable(const std::string& ep,
const
framework
::
Scope
*
p_scope
=
&
scope
;
const
auto
ch
=
GetChannel
(
ep_val
);
framework
::
Async
([
var_name_val
,
ep_val
,
p_scope
,
p_ctx
,
time_out
,
ch
,
this
]
{
framework
::
AsyncIO
([
var_name_val
,
ep_val
,
p_scope
,
p_ctx
,
time_out
,
ch
,
this
]
{
// prepare input
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
var_name_val
);
...
...
@@ -132,7 +134,7 @@ bool RPCClient::AsyncPrefetchVariable(const std::string& ep,
const
framework
::
Scope
*
p_scope
=
&
scope
;
const
auto
ch
=
GetChannel
(
ep_val
);
framework
::
Async
([
in_var_name_val
,
out_var_name_val
,
ep_val
,
p_scope
,
p_ctx
,
framework
::
Async
IO
([
in_var_name_val
,
out_var_name_val
,
ep_val
,
p_scope
,
p_ctx
,
time_out
,
ch
,
this
]
{
auto
*
var
=
p_scope
->
FindVar
(
in_var_name_val
);
...
...
@@ -196,7 +198,7 @@ bool RPCClient::Wait() {
std
::
vector
<
std
::
future
<
void
>>
waits
(
req_count_
);
for
(
int
i
=
0
;
i
<
req_count_
;
i
++
)
{
waits
[
i
]
=
framework
::
Async
([
i
,
&
a
,
this
]
{
a
[
i
]
=
Proceed
();
});
waits
[
i
]
=
framework
::
Async
IO
([
i
,
&
a
,
this
]
{
a
[
i
]
=
Proceed
();
});
}
for
(
int
i
=
0
;
i
<
req_count_
;
i
++
)
{
...
...
paddle/fluid/operators/detail/grpc_server.cc
浏览文件 @
ed2d7d7d
...
...
@@ -217,10 +217,10 @@ void AsyncGRPCServer::RunSyncUpdate() {
std
::
function
<
void
()
>
prefetch_register
=
std
::
bind
(
&
AsyncGRPCServer
::
TryToRegisterNewPrefetchOne
,
this
);
// TODO(wuyi): Run these "HandleRequest" in thread pool
t_send_
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
AsyncGRPCServer
::
HandleRequest
,
this
,
cq_send_
.
get
(),
"cq_send"
,
send_register
)));
t_get_
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
AsyncGRPCServer
::
HandleRequest
,
this
,
cq_get_
.
get
(),
"cq_get"
,
get_register
)));
...
...
paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
浏览文件 @
ed2d7d7d
...
...
@@ -33,28 +33,14 @@ static constexpr size_t kChannelSize = 0; // kCacheSize - 2
class
DoubleBufferReader
:
public
framework
::
DecoratedReader
{
public:
struct
Item
{
Item
()
:
ctx_
(
nullptr
)
{}
Item
(
Item
&&
b
)
{
payloads_
=
std
::
move
(
b
.
payloads_
);
ctx_
=
std
::
move
(
b
.
ctx_
);
}
Item
&
operator
=
(
Item
&&
b
)
{
payloads_
=
std
::
move
(
b
.
payloads_
);
ctx_
=
std
::
move
(
b
.
ctx_
);
return
*
this
;
}
std
::
vector
<
framework
::
LoDTensor
>
payloads_
;
platform
::
DeviceContext
*
ctx_
;
};
explicit
DoubleBufferReader
(
ReaderBase
*
reader
,
platform
::
Place
target_place
=
platform
::
CPUPlace
())
:
DecoratedReader
(
reader
),
place_
(
target_place
)
{
cpu_tensor_cache_
.
resize
(
kCacheSize
);
gpu_tensor_cache_
.
resize
(
kCacheSize
);
#ifdef PADDLE_WITH_CUDA
for
(
size_t
i
=
0
;
i
<
kCacheSize
;
++
i
)
{
if
(
platform
::
is_gpu_place
(
place_
))
{
for
(
size_t
i
=
0
;
i
<
kCacheSize
;
++
i
)
{
ctxs_
.
emplace_back
(
new
platform
::
CUDADeviceContext
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place_
)));
}
...
...
@@ -72,7 +58,7 @@ class DoubleBufferReader : public framework::DecoratedReader {
bool
HasNext
()
const
;
void
StartPrefetcher
()
{
channel_
=
framework
::
MakeChannel
<
Item
>
(
kChannelSize
);
channel_
=
framework
::
MakeChannel
<
size_t
>
(
kChannelSize
);
prefetcher_
=
std
::
thread
([
this
]
{
PrefetchThreadFunc
();
});
}
...
...
@@ -88,8 +74,10 @@ class DoubleBufferReader : public framework::DecoratedReader {
void
PrefetchThreadFunc
();
std
::
thread
prefetcher_
;
framework
::
Channel
<
Item
>*
channel_
;
framework
::
Channel
<
size_t
>*
channel_
;
platform
::
Place
place_
;
std
::
vector
<
std
::
vector
<
framework
::
LoDTensor
>>
cpu_tensor_cache_
;
std
::
vector
<
std
::
vector
<
framework
::
LoDTensor
>>
gpu_tensor_cache_
;
std
::
vector
<
std
::
unique_ptr
<
platform
::
DeviceContext
>>
ctxs_
;
};
...
...
@@ -153,11 +141,14 @@ class CreateDoubleBufferReaderOpMaker : public DecoratedReaderMakerBase {
void
DoubleBufferReader
::
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
{
out
->
clear
();
if
(
HasNext
())
{
Item
batch
;
channel_
->
Receive
(
&
batch
);
*
out
=
batch
.
payloads_
;
if
(
batch
.
ctx_
)
{
batch
.
ctx_
->
Wait
();
size_t
cached_tensor_id
;
channel_
->
Receive
(
&
cached_tensor_id
);
if
(
platform
::
is_gpu_place
(
place_
))
{
*
out
=
gpu_tensor_cache_
[
cached_tensor_id
];
ctxs_
[
cached_tensor_id
]
->
Wait
();
}
else
{
// CPU place
*
out
=
cpu_tensor_cache_
[
cached_tensor_id
];
}
}
}
...
...
@@ -176,42 +167,33 @@ bool DoubleBufferReader::HasNext() const {
void
DoubleBufferReader
::
PrefetchThreadFunc
()
{
VLOG
(
5
)
<<
"A new prefetch thread starts."
;
std
::
vector
<
std
::
vector
<
framework
::
LoDTensor
>>
cpu_tensor_cache
(
kCacheSize
);
std
::
vector
<
std
::
vector
<
framework
::
LoDTensor
>>
gpu_tensor_cache
(
kCacheSize
);
size_t
cached_tensor_id
=
0
;
while
(
true
)
{
Item
batch
;
auto
&
cpu_batch
=
cpu_tensor_cache
[
cached_tensor_id
];
auto
&
cpu_batch
=
cpu_tensor_cache_
[
cached_tensor_id
];
reader_
->
ReadNext
(
&
cpu_batch
);
if
(
cpu_batch
.
empty
())
{
// The underlying reader have no next data.
break
;
}
if
(
platform
::
is_gpu_place
(
place_
))
{
auto
&
gpu_batch
=
gpu_tensor_cache
[
cached_tensor_id
];
auto
&
gpu_batch
=
gpu_tensor_cache
_
[
cached_tensor_id
];
auto
*
gpu_ctx
=
ctxs_
[
cached_tensor_id
].
get
();
gpu_batch
.
resize
(
cpu_batch
.
size
());
for
(
size_t
i
=
0
;
i
<
cpu_batch
.
size
();
++
i
)
{
framework
::
TensorCopy
(
cpu_batch
[
i
],
place_
,
*
gpu_ctx
,
&
gpu_batch
[
i
]);
gpu_batch
[
i
].
set_lod
(
cpu_batch
[
i
].
lod
());
}
batch
.
payloads_
=
gpu_batch
;
batch
.
ctx_
=
gpu_ctx
;
}
else
{
// CPUPlace
batch
.
payloads_
=
cpu_batch
;
}
++
cached_tensor_id
;
cached_tensor_id
%=
kCacheSize
;
try
{
channel_
->
Send
(
&
batch
);
size_t
tmp
=
cached_tensor_id
;
channel_
->
Send
(
&
tmp
);
}
catch
(
paddle
::
platform
::
EnforceNotMet
e
)
{
VLOG
(
5
)
<<
"WARNING: The double buffer channel has been closed. The "
"prefetch thread will terminate."
;
break
;
}
++
cached_tensor_id
;
cached_tensor_id
%=
kCacheSize
;
}
channel_
->
Close
();
VLOG
(
5
)
<<
"Prefetch thread terminates."
;
...
...
paddle/fluid/operators/reshape_op.h
浏览文件 @
ed2d7d7d
...
...
@@ -147,6 +147,7 @@ class ReshapeKernel : public framework::OpKernel<T> {
if
(
!
inplace
)
{
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
TensorCopy
(
*
in
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
out
);
ctx
.
device_context
().
Wait
();
// TensorCopy will resize to in_dims.
out
->
Resize
(
out_dims
);
}
else
{
...
...
@@ -169,6 +170,7 @@ class ReshapeGradKernel : public framework::OpKernel<T> {
auto
in_dims
=
d_x
->
dims
();
if
(
!
inplace
)
{
framework
::
TensorCopy
(
*
d_out
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
d_x
);
ctx
.
device_context
().
Wait
();
d_x
->
Resize
(
in_dims
);
}
else
{
d_x
->
ShareDataWith
(
*
d_out
);
...
...
paddle/fluid/operators/uniform_random_op.cc
浏览文件 @
ed2d7d7d
...
...
@@ -24,7 +24,19 @@ template <typename T>
class
CPUUniformRandomKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
framework
::
Tensor
*
tensor
=
nullptr
;
auto
out_var
=
ctx
.
OutputVar
(
"Out"
);
if
(
out_var
->
IsType
<
framework
::
LoDTensor
>
())
{
tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
if
(
out_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
shape
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
tensor
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
()
->
mutable_value
();
tensor
->
Resize
(
framework
::
make_ddim
(
shape
));
}
else
{
PADDLE_THROW
(
"uniform_random_op's output only"
"supports SelectedRows and Tensor"
);
}
T
*
data
=
tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
ctx
.
Attr
<
int
>
(
"seed"
));
std
::
minstd_rand
engine
;
...
...
paddle/fluid/operators/uniform_random_op.cu
浏览文件 @
ed2d7d7d
...
...
@@ -43,7 +43,19 @@ template <typename T>
class
GPUUniformRandomKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
framework
::
Tensor
*
tensor
=
nullptr
;
auto
out_var
=
context
.
OutputVar
(
"Out"
);
if
(
out_var
->
IsType
<
framework
::
LoDTensor
>
())
{
tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
if
(
out_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
shape
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
tensor
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
()
->
mutable_value
();
tensor
->
Resize
(
framework
::
make_ddim
(
shape
));
}
else
{
PADDLE_THROW
(
"uniform_random_op's output only"
"supports SelectedRows and Tensor"
);
}
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
if
(
seed
==
0
)
{
...
...
python/paddle/fluid/tests/book/test_recognize_digits.py
浏览文件 @
ed2d7d7d
...
...
@@ -157,7 +157,6 @@ def train(nn_type,
for
ip
in
pserver_ips
.
split
(
","
):
eplist
.
append
(
':'
.
join
([
ip
,
port
]))
pserver_endpoints
=
","
.
join
(
eplist
)
# ip:port,ip:port...
pserver_endpoints
=
os
.
getenv
(
"PSERVERS"
)
trainers
=
int
(
os
.
getenv
(
"TRAINERS"
))
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":"
+
port
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_INIT_TRAINER_ID"
))
...
...
python/paddle/fluid/tests/unittests/test_uniform_random_op.py
浏览文件 @
ed2d7d7d
...
...
@@ -15,6 +15,16 @@
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
def
output_hist
(
out
):
hist
,
_
=
np
.
histogram
(
out
,
range
=
(
-
5
,
10
))
hist
=
hist
.
astype
(
"float32"
)
hist
/=
float
(
out
.
size
)
prob
=
0.1
*
np
.
ones
((
10
))
return
hist
,
prob
class
TestUniformRandomOp
(
OpTest
):
...
...
@@ -33,11 +43,37 @@ class TestUniformRandomOp(OpTest):
self
.
check_output_customized
(
self
.
verify_output
)
def
verify_output
(
self
,
outs
):
tensor
=
outs
[
0
]
hist
,
_
=
np
.
histogram
(
outs
[
0
],
range
=
(
-
5
,
10
))
hist
=
hist
.
astype
(
"float32"
)
hist
/=
float
(
outs
[
0
].
size
)
prob
=
0.1
*
np
.
ones
((
10
))
hist
,
prob
=
output_hist
(
np
.
array
(
outs
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
hist
,
prob
,
rtol
=
0
,
atol
=
0.01
),
"hist: "
+
str
(
hist
))
class
TestUniformRandomOpSelectedRows
(
unittest
.
TestCase
):
def
get_places
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
return
places
def
test_check_output
(
self
):
for
place
in
self
.
get_places
():
self
.
check_with_place
(
place
)
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
out
=
scope
.
var
(
"X"
).
get_selected_rows
()
op
=
Operator
(
"uniform_random"
,
Out
=
"X"
,
shape
=
[
4
,
784
],
min
=-
5.0
,
max
=
10.0
,
seed
=
10
)
op
.
run
(
scope
,
place
)
self
.
assertEqual
(
out
.
get_tensor
().
shape
(),
[
4
,
784
])
hist
,
prob
=
output_hist
(
np
.
array
(
out
.
get_tensor
()))
self
.
assertTrue
(
np
.
allclose
(
hist
,
prob
,
rtol
=
0
,
atol
=
0.01
),
"hist: "
+
str
(
hist
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录