Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ed102ea1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ed102ea1
编写于
8月 22, 2020
作者:
W
WangXi
提交者:
GitHub
8月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【API】Add sign and tanh api (#26357)
上级
45711dad
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
202 addition
and
7 deletion
+202
-7
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+1
-4
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+1
-1
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+53
-0
python/paddle/fluid/tests/unittests/test_sign_op.py
python/paddle/fluid/tests/unittests/test_sign_op.py
+28
-0
python/paddle/nn/__init__.py
python/paddle/nn/__init__.py
+1
-0
python/paddle/nn/functional/__init__.py
python/paddle/nn/functional/__init__.py
+1
-0
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+2
-0
python/paddle/nn/layer/activation.py
python/paddle/nn/layer/activation.py
+40
-0
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+75
-2
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
ed102ea1
...
...
@@ -14028,12 +14028,9 @@ def where(condition):
return out
@deprecated(since="2.0.0", update_to="paddle.sign")
def sign(x):
"""
:alias_main: paddle.sign
:alias: paddle.sign,paddle.tensor.sign,paddle.tensor.math.sign
:old_api: paddle.fluid.layers.sign
This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Args:
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
ed102ea1
...
...
@@ -28,11 +28,11 @@ __activations_noattr__ = [
'tanh_shrink'
,
'softplus'
,
'softsign'
,
'tanh'
,
]
__unary_func__
=
[
'exp'
,
'tanh'
,
'atan'
,
'sqrt'
,
'rsqrt'
,
...
...
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
ed102ea1
...
...
@@ -191,6 +191,59 @@ class TestTanh(TestActivation, TestParameter):
self
.
dtype
=
np
.
float32
class
TestTanhAPI
(
unittest
.
TestCase
):
# test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
def
setUp
(
self
):
self
.
dtype
=
'float32'
self
.
x_np
=
np
.
random
.
uniform
(
-
1
,
1
,
[
10
,
12
]).
astype
(
self
.
dtype
)
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
test_static_api
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
[
10
,
12
],
self
.
dtype
)
out1
=
F
.
tanh
(
x
)
th
=
paddle
.
nn
.
Tanh
()
out2
=
th
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out1
,
out2
])
out_ref
=
np
.
tanh
(
self
.
x_np
)
for
r
in
res
:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
),
True
)
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_variable
(
self
.
x_np
)
out1
=
F
.
tanh
(
x
)
out2
=
paddle
.
tanh
(
x
)
th
=
paddle
.
nn
.
Tanh
()
out3
=
th
(
x
)
out_ref
=
np
.
tanh
(
self
.
x_np
)
for
r
in
[
out1
,
out2
,
out3
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
paddle
.
enable_static
()
def
test_fluid_api
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
'X'
,
[
10
,
12
],
self
.
dtype
)
out
=
fluid
.
layers
.
tanh
(
x
)
exe
=
fluid
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out
])
out_ref
=
np
.
tanh
(
self
.
x_np
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
res
[
0
]),
True
)
def
test_errors
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
F
.
tanh
,
1
)
# The input dtype must be float16, float32.
x_int32
=
paddle
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
F
.
tanh
,
x_int32
)
# support the input dtype is float16
x_fp16
=
paddle
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float16'
)
F
.
tanh
(
x_fp16
)
class
TestAtan
(
TestActivation
,
TestParameter
):
def
setUp
(
self
):
self
.
op_type
=
"atan"
...
...
python/paddle/fluid/tests/unittests/test_sign_op.py
浏览文件 @
ed102ea1
...
...
@@ -17,6 +17,7 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
...
...
@@ -54,5 +55,32 @@ class TestSignOpError(unittest.TestCase):
fluid
.
layers
.
sign
(
input4
)
class
TestSignAPI
(
unittest
.
TestCase
):
def
test_dygraph
(
self
):
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
array
([
-
1.
,
0.
,
-
0.
,
1.2
,
1.5
],
dtype
=
'float64'
)
x
=
paddle
.
to_tensor
(
np_x
)
z
=
paddle
.
sign
(
x
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
sign
(
np_x
)
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
def
test_static
(
self
):
with
program_guard
(
Program
(),
Program
()):
# The input type of sign_op must be Variable or numpy.ndarray.
input1
=
12
self
.
assertRaises
(
TypeError
,
paddle
.
tensor
.
math
.
sign
,
input1
)
# The input dtype of sign_op must be float16, float32, float64.
input2
=
fluid
.
layers
.
data
(
name
=
'input2'
,
shape
=
[
12
,
10
],
dtype
=
"int32"
)
input3
=
fluid
.
layers
.
data
(
name
=
'input3'
,
shape
=
[
12
,
10
],
dtype
=
"int64"
)
self
.
assertRaises
(
TypeError
,
paddle
.
tensor
.
math
.
sign
,
input2
)
self
.
assertRaises
(
TypeError
,
paddle
.
tensor
.
math
.
sign
,
input3
)
input4
=
fluid
.
layers
.
data
(
name
=
'input4'
,
shape
=
[
4
],
dtype
=
"float16"
)
paddle
.
sign
(
input4
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/nn/__init__.py
浏览文件 @
ed102ea1
...
...
@@ -54,6 +54,7 @@ from .decode import gather_tree #DEFINE_ALIAS
# from .input import Input #DEFINE_ALIAS
from
.layer.activation
import
ELU
from
.layer.activation
import
GELU
from
.layer.activation
import
Tanh
from
.layer.activation
import
Hardshrink
from
.layer.activation
import
Hardtanh
from
.layer.activation
import
PReLU
...
...
python/paddle/nn/functional/__init__.py
浏览文件 @
ed102ea1
...
...
@@ -50,6 +50,7 @@ from .activation import softplus #DEFINE_ALIAS
from
.activation
import
softshrink
#DEFINE_ALIAS
from
.activation
import
softsign
#DEFINE_ALIAS
from
.activation
import
swish
#DEFINE_ALIAS
from
.activation
import
tanh
#DEFINE_ALIAS
from
.activation
import
tanhshrink
#DEFINE_ALIAS
from
.activation
import
thresholded_relu
#DEFINE_ALIAS
from
.activation
import
log_softmax
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/activation.py
浏览文件 @
ed102ea1
...
...
@@ -22,6 +22,7 @@ from ...fluid.layers import soft_relu #DEFINE_ALIAS
from
...fluid.layers
import
swish
#DEFINE_ALIAS
from
...fluid.layers
import
sigmoid
#DEFINE_ALIAS
from
...fluid.layers
import
thresholded_relu
#DEFINE_ALIAS
from
...tensor.math
import
tanh
#DEFINE_ALIAS
__all__
=
[
'brelu'
,
...
...
@@ -47,6 +48,7 @@ __all__ = [
'softsign'
,
'sigmoid'
,
'swish'
,
'tanh'
,
'tanhshrink'
,
'thresholded_relu'
,
'log_softmax'
,
...
...
python/paddle/nn/layer/activation.py
浏览文件 @
ed102ea1
...
...
@@ -18,6 +18,7 @@ __all__ = [
'ELU'
,
'GELU'
,
'Hardshrink'
,
'Tanh'
,
'Hardtanh'
,
'PReLU'
,
'ReLU'
,
...
...
@@ -182,6 +183,45 @@ class Hardshrink(layers.Layer):
return
F
.
hardshrink
(
x
,
self
.
_threshold
,
self
.
_name
)
class
Tanh
(
layers
.
Layer
):
"""
Tanh Activation.
.. math::
Tanh(x) =
\\
frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
Parameters:
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
m = paddle.nn.Tanh()
out = m(x)
print(out.numpy())
# [-0.37994896 -0.19737532 0.09966799 0.29131261]
"""
def
__init__
(
self
,
name
=
None
):
super
(
Tanh
,
self
).
__init__
()
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
tanh
(
x
,
self
.
_name
)
class
Hardtanh
(
layers
.
Layer
):
"""
Hardtanh Activation
...
...
python/paddle/tensor/math.py
浏览文件 @
ed102ea1
...
...
@@ -51,14 +51,12 @@ from ..fluid.layers import reduce_sum #DEFINE_ALIAS
from
..fluid.layers
import
round
#DEFINE_ALIAS
from
..fluid.layers
import
rsqrt
#DEFINE_ALIAS
from
..fluid.layers
import
scale
#DEFINE_ALIAS
from
..fluid.layers
import
sign
#DEFINE_ALIAS
from
..fluid.layers
import
square
#DEFINE_ALIAS
from
..fluid.layers
import
stanh
#DEFINE_ALIAS
from
..fluid.layers
import
atan
#DEFINE_ALIAS
from
..fluid.layers
import
erf
#DEFINE_ALIAS
from
..fluid.layers
import
sqrt
#DEFINE_ALIAS
from
..fluid.layers
import
sin
#DEFINE_ALIAS
from
..fluid.layers
import
tanh
#DEFINE_ALIAS
from
..fluid.layers
import
increment
#DEFINE_ALIAS
from
..fluid.layers
import
multiplex
#DEFINE_ALIAS
...
...
@@ -1747,3 +1745,78 @@ def prod(x, axis=None, keepdim=False, dtype=None, name=None):
x
=
layers
.
cast
(
x
,
dtype
)
return
layers
.
reduce_prod
(
input
=
x
,
dim
=
axis
,
keep_dim
=
keepdim
,
name
=
name
)
def
sign
(
x
,
name
=
None
):
"""
This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Args:
x(Tensor): The input tensor. The data type can be float16, float32 or float64.
name (str, optional): The default value is None. Normally there is no need for user to
set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.
Examples:
.. code-block:: python
import numpy as np
import paddle
data = np.array([3.0, 0.0, -2.0, 1.7], dtype='float32')
paddle.disable_static()
x = paddle.to_tensor(data)
out = paddle.sign(x=x)
print(out) # [1.0, 0.0, -1.0, 1.0]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
sign
(
x
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'sign'
)
helper
=
LayerHelper
(
"sign"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'sign'
,
inputs
=
{
'X'
:
[
x
]},
outputs
=
{
'Out'
:
[
out
]})
return
out
def
tanh
(
x
,
name
=
None
):
"""
Tanh Activation Operator.
.. math::
out =
\\
frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
Args:
x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Output of Tanh operator, a Tensor with same data type and shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_tensor(x_data)
out = paddle.tanh(x)
print(out.numpy())
# [-0.37994896 -0.19737532 0.09966799 0.29131261]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
tanh
(
x
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'tanh'
)
helper
=
LayerHelper
(
'tanh'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'tanh'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
})
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录