Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ece1e4cd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ece1e4cd
编写于
11月 16, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
11月 16, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add weighted random sampler (#28545)
* add WeightedRandomSampler. test=develop
上级
2cb71c0c
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
171 addition
and
11 deletion
+171
-11
python/paddle/fluid/dataloader/sampler.py
python/paddle/fluid/dataloader/sampler.py
+86
-1
python/paddle/fluid/tests/unittests/test_batch_sampler.py
python/paddle/fluid/tests/unittests/test_batch_sampler.py
+83
-9
python/paddle/io/__init__.py
python/paddle/io/__init__.py
+2
-1
未找到文件。
python/paddle/fluid/dataloader/sampler.py
浏览文件 @
ece1e4cd
...
...
@@ -16,8 +16,11 @@ from __future__ import print_function
from
__future__
import
division
import
numpy
as
np
from
..
import
core
__all__
=
[
"Sampler"
,
"SequenceSampler"
,
"RandomSampler"
]
__all__
=
[
"Sampler"
,
"SequenceSampler"
,
"RandomSampler"
,
"WeightedRandomSampler"
]
class
Sampler
(
object
):
...
...
@@ -234,3 +237,85 @@ class RandomSampler(Sampler):
def
__len__
(
self
):
return
self
.
num_samples
def
_weighted_sample
(
weights
,
num_samples
,
replacement
=
True
):
if
isinstance
(
weights
,
core
.
LoDTensor
):
weights
=
weights
.
numpy
()
if
isinstance
(
weights
,
(
list
,
tuple
)):
weights
=
np
.
array
(
weights
)
assert
isinstance
(
weights
,
np
.
ndarray
),
\
"weights should be paddle.Tensor, numpy.ndarray, list or tuple"
assert
len
(
weights
.
shape
)
<=
2
,
\
"weights should be a 1-D or 2-D array"
weights
=
weights
.
reshape
((
-
1
,
weights
.
shape
[
-
1
]))
assert
np
.
all
(
weights
>=
0.
),
\
"weights should be positive value"
assert
not
np
.
any
(
weights
==
np
.
inf
),
\
"weights shoule not be INF"
assert
not
np
.
any
(
weights
==
np
.
nan
),
\
"weights shoule not be NaN"
non_zeros
=
np
.
sum
(
weights
>
0.
,
axis
=
1
)
assert
np
.
all
(
non_zeros
>
0
),
\
"weights should have positive values"
if
not
replacement
:
assert
np
.
all
(
non_zeros
>=
num_samples
),
\
"weights positive value number should not "
\
"less than num_samples when replacement=False"
weights
=
weights
/
weights
.
sum
(
axis
=
1
)
rets
=
[]
for
i
in
range
(
weights
.
shape
[
0
]):
ret
=
np
.
random
.
choice
(
weights
.
shape
[
1
],
num_samples
,
replacement
,
weights
[
i
])
rets
.
append
(
ret
)
return
np
.
array
(
rets
)
class
WeightedRandomSampler
(
Sampler
):
"""
Random sample with given weights (probabilities), sampe index will be in range
[0, len(weights) - 1], if :attr:`replacement` is True, index can be sampled
multiple times.
Args:
weights(numpy.ndarray|paddle.Tensor|list|tuple): sequence of weights,
should be numpy array, paddle.Tensor, list or tuple
num_samples(int): set sample number to draw from sampler.
replacement(bool): Whether to draw sample with replacements, default True
Returns:
Sampler: a Sampler yield sample index randomly by given weights
Examples:
.. code-block:: python
from paddle.io import WeightedRandomSampler
sampler = WeightedRandomSampler(weights=[0.1, 0.3, 0.5, 0.7, 0.2],
num_samples=5,
replacement=True)
for index in sampler:
print(index)
"""
def
__init__
(
self
,
weights
,
num_samples
,
replacement
=
True
):
if
not
isinstance
(
num_samples
,
int
)
or
num_samples
<=
0
:
raise
ValueError
(
"num_samples should be a positive integer"
)
if
not
isinstance
(
replacement
,
bool
):
raise
ValueError
(
"replacement should be a boolean value"
)
self
.
weights
=
weights
self
.
num_samples
=
num_samples
self
.
replacement
=
replacement
def
__iter__
(
self
):
idxs
=
_weighted_sample
(
self
.
weights
,
self
.
num_samples
,
self
.
replacement
)
return
iter
(
idxs
.
reshape
((
-
1
)).
tolist
())
def
__len__
(
self
):
mul
=
np
.
prod
(
self
.
weights
.
shape
)
//
self
.
weights
.
shape
[
-
1
]
return
self
.
num_samples
*
mul
python/paddle/fluid/tests/unittests/test_batch_sampler.py
浏览文件 @
ece1e4cd
...
...
@@ -16,8 +16,10 @@ from __future__ import division
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.io
import
BatchSampler
,
Dataset
,
Sampler
,
SequenceSampler
,
RandomSampler
from
paddle.io
import
BatchSampler
,
Dataset
,
Sampler
,
SequenceSampler
,
\
RandomSampler
,
WeightedRandomSampler
from
paddle.io
import
DistributedBatchSampler
...
...
@@ -195,14 +197,86 @@ class TestBatchSamplerWithSamplerShuffle(unittest.TestCase):
pass
class
TestDistributedBatchSamplerWithSampler
(
TestBatchSampler
):
def
init_batch_sampler
(
self
):
dataset
=
RandomDataset
(
1000
,
10
)
bs
=
DistributedBatchSampler
(
dataset
=
dataset
,
batch_size
=
self
.
batch_size
,
drop_last
=
self
.
drop_last
)
return
bs
class
TestWeightedRandomSampler
(
unittest
.
TestCase
):
def
init_probs
(
self
,
total
,
pos
):
pos_probs
=
np
.
random
.
random
((
pos
,
)).
astype
(
'float32'
)
probs
=
np
.
zeros
((
total
,
)).
astype
(
'float32'
)
probs
[:
pos
]
=
pos_probs
np
.
random
.
shuffle
(
probs
)
return
probs
def
test_replacement
(
self
):
probs
=
self
.
init_probs
(
20
,
10
)
sampler
=
WeightedRandomSampler
(
probs
,
30
,
True
)
assert
len
(
sampler
)
==
30
for
idx
in
iter
(
sampler
):
assert
probs
[
idx
]
>
0.
def
test_no_replacement
(
self
):
probs
=
self
.
init_probs
(
20
,
10
)
sampler
=
WeightedRandomSampler
(
probs
,
10
,
False
)
assert
len
(
sampler
)
==
10
idxs
=
[]
for
idx
in
iter
(
sampler
):
assert
probs
[
idx
]
>
0.
idxs
.
append
(
idx
)
assert
len
(
set
(
idxs
))
==
len
(
idxs
)
def
test_assert
(
self
):
# all zeros
probs
=
np
.
zeros
((
10
,
)).
astype
(
'float32'
)
sampler
=
WeightedRandomSampler
(
probs
,
10
,
True
)
try
:
for
idx
in
iter
(
sampler
):
pass
self
.
assertTrue
(
False
)
except
AssertionError
:
self
.
assertTrue
(
True
)
# not enough pos
probs
=
self
.
init_probs
(
10
,
5
)
sampler
=
WeightedRandomSampler
(
probs
,
10
,
False
)
try
:
for
idx
in
iter
(
sampler
):
pass
self
.
assertTrue
(
False
)
except
AssertionError
:
self
.
assertTrue
(
True
)
# neg probs
probs
=
-
1.0
*
np
.
ones
((
10
,
)).
astype
(
'float32'
)
sampler
=
WeightedRandomSampler
(
probs
,
10
,
True
)
try
:
for
idx
in
iter
(
sampler
):
pass
self
.
assertTrue
(
False
)
except
AssertionError
:
self
.
assertTrue
(
True
)
def
test_raise
(
self
):
# float num_samples
probs
=
self
.
init_probs
(
10
,
5
)
try
:
sampler
=
WeightedRandomSampler
(
probs
,
2.3
,
True
)
self
.
assertTrue
(
False
)
except
ValueError
:
self
.
assertTrue
(
True
)
# neg num_samples
probs
=
self
.
init_probs
(
10
,
5
)
try
:
sampler
=
WeightedRandomSampler
(
probs
,
-
1
,
True
)
self
.
assertTrue
(
False
)
except
ValueError
:
self
.
assertTrue
(
True
)
# no-bool replacement
probs
=
self
.
init_probs
(
10
,
5
)
try
:
sampler
=
WeightedRandomSampler
(
probs
,
5
,
5
)
self
.
assertTrue
(
False
)
except
ValueError
:
self
.
assertTrue
(
True
)
if
__name__
==
'__main__'
:
...
...
python/paddle/io/__init__.py
浏览文件 @
ece1e4cd
...
...
@@ -27,9 +27,10 @@ __all__ = [
'Sampler'
,
'SequenceSampler'
,
'RandomSampler'
,
'WeightedRandomSampler'
,
]
from
..fluid.io
import
DataLoader
from
..fluid.dataloader
import
Dataset
,
IterableDataset
,
BatchSampler
,
get_worker_info
,
\
TensorDataset
,
Sampler
,
SequenceSampler
,
RandomSampler
,
DistributedBatchSampler
,
\
ComposeDataset
,
ChainDataset
ComposeDataset
,
ChainDataset
,
WeightedRandomSampler
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录