Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ec814cf5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ec814cf5
编写于
2月 27, 2023
作者:
C
csy0225
提交者:
GitHub
2月 27, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
revert operator.cc (#50895)
上级
cf209204
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
27 addition
and
63 deletion
+27
-63
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+26
-61
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+1
-2
未找到文件。
paddle/fluid/framework/operator.cc
浏览文件 @
ec814cf5
...
...
@@ -1618,57 +1618,6 @@ void OperatorWithKernel::CheckWhetherPreparePhiData(
}
}
// When do we need to reset runtime context?
// 1. When enable cache runtime context, if the program runs for the first time,
// runtime_ctx_.get() == nullptr, we need to create a new runtime context.
// 2. When enable cache runtime context, if the program is not running for the
// first time,
// but the input shape or tensor layout of the operator has changed, we cannot
// use the runtime context stored in the cache at this time, and need to
// create a new one.
bool
OperatorWithKernel
::
NeedResetRuntimeContext
(
const
Scope
&
scope
)
const
{
if
(
runtime_ctx_
.
get
()
==
nullptr
)
return
true
;
const
auto
&
name_map
=
Inputs
();
for
(
auto
&
var_name_item
:
name_map
)
{
auto
&
name_vec
=
var_name_item
.
second
;
std
::
vector
<
Variable
*>&
cache_input_vars
=
runtime_ctx_
->
inputs
[
var_name_item
.
first
];
PADDLE_ENFORCE_EQ
(
name_vec
.
size
(),
cache_input_vars
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of input variable names (%d) must be equal to "
"the size of cache input variable ptrs (%d)."
,
name_vec
.
size
(),
cache_input_vars
.
size
()));
for
(
size_t
i
=
0
;
i
<
name_vec
.
size
();
i
++
)
{
auto
var_name
=
name_vec
[
i
];
auto
*
cache_input_var
=
cache_input_vars
[
i
];
if
(
!
VarIsTensor
(
*
cache_input_var
))
continue
;
auto
*
cache_input_tensor
=
GetMutableLoDTensorOrSelectedRowsValueFromVar
(
cache_input_var
);
auto
cache_input_tensor_dims
=
cache_input_tensor
->
dims
();
auto
*
current_input_var
=
scope
.
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
current_input_var
,
platform
::
errors
::
NotFound
(
"The variable %s is not found when "
"enable_cache_runtime_context_cache in origin scope."
,
var_name
));
auto
*
current_input_tensor
=
GetMutableLoDTensorOrSelectedRowsValueFromVar
(
current_input_var
);
auto
current_input_tensor_dims
=
current_input_tensor
->
dims
();
if
(
cache_input_tensor_dims
!=
current_input_tensor_dims
||
NeedTransformLayout
(
current_input_tensor
->
layout
(),
cache_input_tensor
->
layout
()))
{
need_prepare_data_
=
true
;
return
true
;
}
}
}
return
false
;
}
void
OperatorWithKernel
::
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
// To reduce the elapsed time of HasAttr, we use bool variable to record the
...
...
@@ -1678,6 +1627,7 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
if
(
!
all_kernels_must_compute_runtime_shape_
&&
HasAttr
(
kAllKernelsMustComputeRuntimeShape
))
all_kernels_must_compute_runtime_shape_
=
true
;
const
Scope
*
cur_scope
=
&
scope
;
CheckWhetherPreparePhiData
(
Inputs
(),
Outputs
(),
scope
);
if
(
!
enable_cache_runtime_context_
)
{
RuntimeContext
ctx
(
Inputs
(),
Outputs
(),
scope
);
...
...
@@ -1689,9 +1639,12 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
}
(
*
phi_kernel_
)(
impl_
->
getKernelContext
());
}
else
{
if
(
NeedResetRuntimeContext
(
scope
)
)
{
if
(
runtime_ctx_
.
get
()
==
nullptr
||
pre_scope_
!=
cur_scope
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
cache_update_mutex_
);
if
(
runtime_ctx_
.
get
()
==
nullptr
||
pre_scope_
!=
cur_scope
)
{
runtime_ctx_
.
reset
(
new
RuntimeContext
(
Inputs
(),
Outputs
(),
scope
));
pre_scope_
=
cur_scope
;
}
}
RunImpl
(
scope
,
place
,
runtime_ctx_
.
get
());
}
...
...
@@ -2086,9 +2039,8 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
// To solve issue #15032, have a discussion with @Luotao for cpu inference,
// do not cache transfer scope, hence in this case delete transfer scope
// after run to avoid memory leak
if
(
cache_transfer_scope_
&&
!
run_by_executor_
&&
!
enable_cache_transfer_scope_
)
{
scope
.
DeleteScope
(
cache_transfer_scope_
);
if
(
transfer_scope
&&
!
run_by_executor_
&&
!
enable_cache_transfer_scope_
)
{
scope
.
DeleteScope
(
transfer_scope
);
}
}
...
...
@@ -2623,25 +2575,33 @@ Scope* OperatorWithKernel::PrepareData(
kernel_type_for_var
.
backend
()
==
phi
::
Backend
::
GPUDNN
||
new_expected_kernel_key
->
backend
()
==
phi
::
Backend
::
GPU
||
new_expected_kernel_key
->
backend
()
==
phi
::
Backend
::
GPUDNN
)
{
cache_transfer_scope_
=
TryCreateTransferScope
(
new_scope
=
TryCreateTransferScope
(
kernel_type_for_var
,
*
new_expected_kernel_key
,
&
scope
);
enable_cache_transfer_scope_
=
true
;
new_scope
=
cache_transfer_scope_
;
}
}
else
if
(
kernel_type_for_var
.
backend
()
==
phi
::
Backend
::
GPU
||
kernel_type_for_var
.
backend
()
==
phi
::
Backend
::
GPUDNN
||
expected_kernel_key
.
backend
()
==
phi
::
Backend
::
GPU
||
expected_kernel_key
.
backend
()
==
phi
::
Backend
::
GPUDNN
)
{
cache_transfer_scope_
=
TryCreateTransferScope
(
new_scope
=
TryCreateTransferScope
(
kernel_type_for_var
,
expected_kernel_key
,
&
scope
);
enable_cache_transfer_scope_
=
true
;
new_scope
=
cache_transfer_scope_
;
}
}
if
(
!
new_scope
)
{
new_scope
=
&
scope
.
NewScope
();
}
// For inference, if a gpu model has an op which could only run on CPU,
// each result of different input will be the same with the first one.
// The reason is that if a gpu tensor is the input of a cpu kernel,
// we will create a new cpu tensor in new scope.
// However, if enable_cache_runtime_context_, we get the cpu tensor each
// time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
// to trigger `new RuntimeContext()` in RunImpl().
if
(
enable_cache_runtime_context_
)
{
pre_scope_
=
nullptr
;
}
// Create new var with the same name in transfer scopes
auto
*
trans_var
=
new_scope
->
Var
(
var_name
);
...
...
@@ -2727,13 +2687,18 @@ Scope* OperatorWithKernel::PrepareData(
}
}
// If pre_scope = &scope, it means that scope is cached and the op is not in
// while block. If new_scope = nullptr, it means that for each input of this
// Op, there is no need to do PrepareData. So PrepareData could be skipped at
// the rest iterations to save the elapsed time.
// We do not support skipping PrepareData in while block, because the Op's
// input may be changed by subsequent Ops, which may cause an error.
// For inference, ops that behind conditional branch aren't supported well,
// so disable prepare optimization conservatively.
bool
force_prepare_data
=
HasAttr
(
"inference_force_prepare_data"
)
&&
Attr
<
bool
>
(
"inference_force_prepare_data"
);
if
(
enable_cache_runtime_context_
&&
!
force_prepare_data
)
{
if
(
pre_scope_
==
&
scope
&&
new_scope
==
nullptr
&&
!
force_prepare_data
)
{
need_prepare_data_
=
false
;
}
...
...
paddle/fluid/framework/operator.h
浏览文件 @
ec814cf5
...
...
@@ -781,19 +781,18 @@ class OperatorWithKernel : public OperatorBase {
// used for IndicateOrPromoteVarDataTypes
phi
::
DenseTensor
*
GetTensorFormInputSafely
(
const
ExecutionContext
&
ctx
,
const
std
::
string
&
name
)
const
;
bool
NeedResetRuntimeContext
(
const
Scope
&
scope
)
const
;
protected:
mutable
std
::
unique_ptr
<
OpKernelType
>
kernel_type_
;
mutable
std
::
unique_ptr
<
OpKernelFunc
>
kernel_func_
;
mutable
std
::
unique_ptr
<
RuntimeContext
>
runtime_ctx_
;
mutable
const
Scope
*
pre_scope_
=
nullptr
;
mutable
bool
need_prepare_data_
=
true
;
mutable
bool
need_prepare_phi_data_
=
false
;
mutable
bool
enable_cache_runtime_context_
=
false
;
mutable
bool
all_kernels_must_compute_runtime_shape_
=
false
;
mutable
std
::
mutex
cache_update_mutex_
;
mutable
bool
enable_cache_transfer_scope_
=
false
;
mutable
Scope
*
cache_transfer_scope_
=
nullptr
;
// NOTE(jiahongyu): Whether fallback to plain kernel after calling
// GetExpectedKernelType, use this bool flag to solve mkldnn and cudnn hard
// code
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录