Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ec252914
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ec252914
编写于
9月 11, 2021
作者:
B
Baibaifan
提交者:
GitHub
9月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add cpu npu cembedding (#35467)
上级
4f4962cb
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
568 addition
and
116 deletion
+568
-116
paddle/fluid/operators/collective/c_embedding_op.cc
paddle/fluid/operators/collective/c_embedding_op.cc
+34
-2
paddle/fluid/operators/collective/c_embedding_op.cu
paddle/fluid/operators/collective/c_embedding_op.cu
+3
-0
paddle/fluid/operators/collective/c_embedding_op.h
paddle/fluid/operators/collective/c_embedding_op.h
+105
-2
paddle/fluid/operators/collective/c_embedding_op_npu.cc
paddle/fluid/operators/collective/c_embedding_op_npu.cc
+244
-0
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+10
-81
python/paddle/fluid/tests/unittests/c_embedding_op_base.py
python/paddle/fluid/tests/unittests/c_embedding_op_base.py
+132
-0
python/paddle/fluid/tests/unittests/npu/test_c_embedding_op_npu.py
...ddle/fluid/tests/unittests/npu/test_c_embedding_op_npu.py
+36
-0
python/paddle/fluid/tests/unittests/test_c_embedding_op.py
python/paddle/fluid/tests/unittests/test_c_embedding_op.py
+4
-31
未找到文件。
paddle/fluid/operators/collective/c_embedding_op.cc
浏览文件 @
ec252914
...
...
@@ -46,6 +46,17 @@ class CEmbeddingOp : public framework::OperatorWithKernel {
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
ctx
->
ShareLoD
(
"Ids"
,
/*->*/
"Out"
);
}
// check valid
const
int64_t
height
=
table_dims
[
0
];
const
int64_t
width
=
table_dims
[
1
];
const
int64_t
start_idx
=
ctx
->
Attrs
().
Get
<
int64_t
>
(
"start_index"
);
PADDLE_ENFORCE_EQ
(
(
height
>
0
&&
width
>
0
&&
start_idx
>=
0
),
true
,
platform
::
errors
::
InvalidArgument
(
"height:%ld width:%ld start_idx:%ld must not have negtive values"
,
height
,
width
,
start_idx
));
}
protected:
...
...
@@ -63,7 +74,7 @@ class CEmbeddingOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor) The input represents embedding tensors, "
"which is a learnable parameter."
);
AddInput
(
"Ids"
,
"An input with type int
64
"
"An input with type int
32 or int64 in CPU and GPU, int32 in NPU
"
"contains the ids to be looked up in W."
);
AddOutput
(
"Out"
,
"The lookup results, which have the same type as W."
);
...
...
@@ -111,6 +122,21 @@ class CEmbeddingOpGrad : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
auto
table_dims
=
ctx
->
GetInputDim
(
"W"
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
table_dims
);
// check valid
PADDLE_ENFORCE_EQ
(
table_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"Only accept the dims of table_t == 2"
));
const
int64_t
start_idx
=
ctx
->
Attrs
().
Get
<
int64_t
>
(
"start_index"
);
const
int64_t
height
=
table_dims
[
0
];
const
int64_t
width
=
table_dims
[
1
];
PADDLE_ENFORCE_EQ
(
(
height
>
0
&&
width
>
0
&&
start_idx
>=
0
),
true
,
platform
::
errors
::
InvalidArgument
(
"height:%ld width:%ld start_idx:%ld must not have negtive values"
,
height
,
width
,
start_idx
));
}
protected:
...
...
@@ -137,6 +163,7 @@ class CEmbeddingOpGradVarTypeInference : public framework::VarTypeInference {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OPERATOR
(
c_embedding
,
ops
::
CEmbeddingOp
,
ops
::
CEmbeddingOpMaker
,
ops
::
CEmbeddingGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
CEmbeddingGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
...
...
@@ -146,4 +173,9 @@ REGISTER_OPERATOR(c_embedding_grad, ops::CEmbeddingOpGrad,
ops
::
CEmbeddingOpGradVarTypeInference
);
REGISTER_OP_CPU_KERNEL
(
c_embedding
,
ops
::
CEmbeddingOpCPUKernel
<
float
>
,
ops
::
CEmbeddingOpCPUKernel
<
double
>
);
ops
::
CEmbeddingOpCPUKernel
<
double
>
,
ops
::
CEmbeddingOpCPUKernel
<
plat
::
float16
>
);
REGISTER_OP_CPU_KERNEL
(
c_embedding_grad
,
ops
::
CEmbeddingGradOpCPUKernel
<
float
>
,
ops
::
CEmbeddingGradOpCPUKernel
<
double
>
,
ops
::
CEmbeddingGradOpCPUKernel
<
plat
::
float16
>
);
paddle/fluid/operators/collective/c_embedding_op.cu
浏览文件 @
ec252914
...
...
@@ -105,6 +105,9 @@ class CEmbeddingCUDAKernel : public framework::OpKernel<T> {
CEmbedding
<
T
,
int64_t
><<<
blocks
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
output
,
table
,
ids_t
->
data
<
int64_t
>
(),
K
,
D
,
N
,
start_idx
,
end_idx
,
limit
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"GPU c_embedding ids only support int32 or int64."
));
}
}
};
...
...
paddle/fluid/operators/collective/c_embedding_op.h
浏览文件 @
ec252914
...
...
@@ -27,12 +27,115 @@ namespace operators {
using
LoDTensor
=
framework
::
LoDTensor
;
inline
void
CheckTableValid
()
{}
template
<
typename
TIds
,
typename
TData
>
void
GetIdsEmbedding
(
const
TIds
*
ids
,
size_t
ids_len
,
int64_t
start_idx
,
const
TData
*
table
,
int64_t
height
,
int64_t
width
,
TData
*
out
)
{
for
(
size_t
i
=
0
;
i
<
ids_len
;
i
++
)
{
TIds
id
=
ids
[
i
];
int64_t
local
=
id
-
start_idx
;
if
(
local
>=
0
&&
local
<
height
)
{
// for (int64_t w = 0; w < width; w++) {
// out[i * width + w] = table[local * width + w];
// }
memcpy
(
out
+
i
*
width
,
table
+
local
*
width
,
width
*
sizeof
(
TData
));
}
else
{
memset
(
out
+
i
*
width
,
0
,
width
*
sizeof
(
TData
));
}
}
}
template
<
typename
T
>
class
CEmbeddingOpCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
table_t
=
ctx
.
Input
<
LoDTensor
>
(
"W"
);
auto
*
ids_t
=
ctx
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
output_t
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
const
int64_t
start_idx
=
ctx
.
Attr
<
int64_t
>
(
"start_index"
);
VLOG
(
10
)
<<
"table_dims:"
<<
table_t
->
dims
();
const
T
*
table_data
=
table_t
->
data
<
T
>
();
T
*
output_data
=
output_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
int64_t
height
=
table_t
->
dims
()[
0
];
const
int64_t
width
=
table_t
->
dims
()[
1
];
const
auto
&
index_type
=
ids_t
->
type
();
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
GetIdsEmbedding
(
ids_t
->
data
<
int32_t
>
(),
ids_t
->
numel
(),
start_idx
,
table_data
,
height
,
width
,
output_data
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
GetIdsEmbedding
(
ids_t
->
data
<
int64_t
>
(),
ids_t
->
numel
(),
start_idx
,
table_data
,
height
,
width
,
output_data
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Do not support c_embedding for cpu kernel now."
));
"CPU c_embedding ids only support int32 or int64."
));
}
}
};
template
<
typename
TIds
,
typename
TData
>
void
UpdateEmbedding
(
const
TIds
*
ids
,
size_t
ids_len
,
int64_t
start_idx
,
TData
*
table
,
int64_t
height
,
int64_t
width
,
const
TData
*
out
)
{
for
(
size_t
i
=
0
;
i
<
ids_len
;
i
++
)
{
TIds
id
=
ids
[
i
];
int64_t
local
=
id
-
start_idx
;
if
(
local
>=
0
&&
local
<
height
)
{
for
(
int64_t
w
=
0
;
w
<
width
;
w
++
)
{
table
[
local
*
width
+
w
]
+=
out
[
i
*
width
+
w
];
}
}
}
}
template
<
typename
T
>
class
CEmbeddingGradOpCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
int64_t
start_idx
=
context
.
Attr
<
int64_t
>
(
"start_index"
);
auto
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
d_output_t
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
table_t
=
context
.
Input
<
LoDTensor
>
(
"W"
);
auto
table_grad_t
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"W"
));
T
*
table_grad_data
=
table_grad_t
->
mutable_data
<
T
>
(
table_t
->
dims
(),
context
.
GetPlace
());
size_t
table_t_mem_size
=
table_t
->
numel
()
*
framework
::
SizeOfType
(
table_grad_t
->
type
());
size_t
table_grad_t_mem_size
=
table_grad_t
->
numel
()
*
framework
::
SizeOfType
(
table_grad_t
->
type
());
VLOG
(
10
)
<<
"table_dims:"
<<
table_t
->
dims
()
<<
", table_t memory_size:"
<<
table_t_mem_size
<<
", table_grad_t memory_size:"
<<
table_grad_t_mem_size
<<
", start_index:"
<<
start_idx
;
memset
(
table_grad_data
,
0
,
table_grad_t_mem_size
);
const
T
*
d_output_data
=
d_output_t
->
data
<
T
>
();
const
int64_t
height
=
table_t
->
dims
()[
0
];
const
int64_t
width
=
table_t
->
dims
()[
1
];
const
auto
&
index_type
=
ids_t
->
type
();
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
UpdateEmbedding
(
ids_t
->
data
<
int32_t
>
(),
ids_t
->
numel
(),
start_idx
,
table_grad_data
,
height
,
width
,
d_output_data
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
UpdateEmbedding
(
ids_t
->
data
<
int64_t
>
(),
ids_t
->
numel
(),
start_idx
,
table_grad_data
,
height
,
width
,
d_output_data
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"CPU c_embedding ids only support int32 or int64."
));
}
}
};
...
...
paddle/fluid/operators/collective/c_embedding_op_npu.cc
0 → 100644
浏览文件 @
ec252914
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/collective/c_embedding_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/platform/npu_info.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
inline
void
FillNPU
(
Tensor
*
dst
,
T
val
,
const
framework
::
ExecutionContext
&
context
)
{
Tensor
value
(
dst
->
type
());
value
.
mutable_data
<
T
>
({
1
},
context
.
GetPlace
());
FillNpuTensorWithConstant
<
T
>
(
&
value
,
static_cast
<
T
>
(
val
));
auto
stream
=
context
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
const
auto
&
runner
=
NpuOpRunner
(
"FillD"
,
{
value
},
{
*
dst
},
{{
"dims"
,
framework
::
vectorize
(
dst
->
dims
())}});
runner
.
Run
(
stream
);
}
template
<
typename
T
>
void
shard_index
(
const
Tensor
&
table_t
,
const
Tensor
&
ids_t
,
int64_t
start_idx
,
const
Tensor
&
id_t
,
const
framework
::
ExecutionContext
&
context
)
{
const
int
height
=
table_t
.
dims
()[
0
];
auto
stream
=
context
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
framework
::
Tensor
id_t_d
;
id_t_d
.
mutable_data
<
T
>
(
ids_t
.
dims
(),
context
.
GetPlace
());
FillNPU
(
&
id_t_d
,
static_cast
<
T
>
(
0.0
),
context
);
id_t_d
.
Resize
(
ids_t
.
dims
());
framework
::
Tensor
id_t_u
;
id_t_u
.
mutable_data
<
T
>
(
ids_t
.
dims
(),
context
.
GetPlace
());
FillNPU
(
&
id_t_u
,
static_cast
<
T
>
(
height
-
1
),
context
);
id_t_u
.
Resize
(
ids_t
.
dims
());
framework
::
Tensor
id_matched_d
;
id_matched_d
.
mutable_data
<
bool
>
(
ids_t
.
dims
(),
context
.
GetPlace
());
framework
::
Tensor
id_matched_u
;
id_matched_u
.
mutable_data
<
bool
>
(
ids_t
.
dims
(),
context
.
GetPlace
());
framework
::
Tensor
ignore_tensor
;
ignore_tensor
.
mutable_data
<
T
>
(
ids_t
.
dims
(),
context
.
GetPlace
());
FillNPU
(
&
ignore_tensor
,
static_cast
<
T
>
(
height
),
context
);
ignore_tensor
.
Resize
(
ids_t
.
dims
());
NpuOpRunner
sub_runner
;
sub_runner
.
SetType
(
"Sub"
)
.
AddInput
(
ids_t
)
.
AddInput
(
std
::
vector
<
T
>
{
static_cast
<
T
>
(
start_idx
)})
.
AddOutput
(
id_t
);
sub_runner
.
Run
();
NpuOpRunner
lessequal1_runner
;
lessequal1_runner
.
SetType
(
"LessEqual"
)
.
AddInput
(
id_t
)
.
AddInput
(
id_t_u
)
.
AddOutput
(
id_matched_u
);
lessequal1_runner
.
Run
();
NpuOpRunner
lessequal2_runner
;
lessequal2_runner
.
SetType
(
"LessEqual"
)
.
AddInput
(
id_t_d
)
.
AddInput
(
id_t
)
.
AddOutput
(
id_matched_d
);
lessequal2_runner
.
Run
();
NpuOpRunner
(
"Equal"
,
{
id_matched_u
,
id_matched_d
},
{
id_matched_d
},
{})
.
Run
(
stream
);
NpuOpRunner
(
"Select"
,
{
id_matched_d
,
id_t
,
ignore_tensor
},
{
id_t
},
{})
.
Run
(
stream
);
}
template
<
typename
TIds
,
typename
T
>
void
NPUGetIdsEmbedding
(
const
framework
::
ExecutionContext
&
context
)
{
auto
*
table_t
=
context
.
Input
<
LoDTensor
>
(
"W"
);
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
const
int64_t
start_idx
=
context
.
Attr
<
int64_t
>
(
"start_index"
);
auto
stream
=
context
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
framework
::
Tensor
ids_t_local
;
ids_t_local
.
mutable_data
<
TIds
>
(
ids_t
->
dims
(),
context
.
GetPlace
());
shard_index
<
TIds
>
(
*
table_t
,
*
ids_t
,
start_idx
,
ids_t_local
,
context
);
auto
pad_shape
=
framework
::
make_ddim
({
table_t
->
dims
()[
0
]
+
1
,
table_t
->
dims
()[
1
]});
framework
::
LoDTensor
table_t_pad
;
size_t
mem_size
=
table_t
->
numel
()
*
framework
::
SizeOfType
(
table_t
->
type
());
size_t
line_mem_size
=
table_t
->
dims
()[
1
]
*
framework
::
SizeOfType
(
table_t
->
type
());
PADDLE_ENFORCE_EQ
(
line_mem_size
%
64
,
0
,
platform
::
errors
::
InvalidArgument
(
"NPU only accept the second dim must align by 64"
));
VLOG
(
10
)
<<
"mem_size:"
<<
mem_size
<<
",line_mem_size:"
<<
line_mem_size
<<
", pad_shape:"
<<
pad_shape
<<
", table_dims:"
<<
table_t
->
dims
();
uint8_t
*
pad_data
=
reinterpret_cast
<
uint8_t
*>
(
table_t_pad
.
mutable_data
<
T
>
(
pad_shape
,
context
.
GetPlace
()));
PADDLE_ENFORCE_NPU_SUCCESS
(
aclrtMemcpyAsync
(
pad_data
,
mem_size
,
table_t
->
data
<
T
>
(),
mem_size
,
ACL_MEMCPY_DEVICE_TO_DEVICE
,
stream
));
PADDLE_ENFORCE_NPU_SUCCESS
(
aclrtMemsetAsync
(
pad_data
+
mem_size
,
line_mem_size
,
0
,
line_mem_size
,
stream
));
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
NpuOpRunner
runner
;
runner
.
SetType
(
"GatherV2"
)
.
AddInput
(
table_t_pad
)
.
AddInput
(
ids_t_local
)
.
AddInput
(
std
::
vector
<
int32_t
>
{
0
})
.
AddOutput
(
*
output_t
);
runner
.
Run
();
}
template
<
typename
T
>
class
CEmbeddingNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
const
auto
&
index_type
=
ids_t
->
type
();
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
NPUGetIdsEmbedding
<
int32_t
,
T
>
(
context
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"NPU c_embedding ids only support int32."
));
}
}
};
template
<
typename
TIds
,
typename
T
>
void
NPUUpdateEmbedding
(
const
framework
::
ExecutionContext
&
context
)
{
// get inputs
const
int64_t
start_idx
=
context
.
Attr
<
int64_t
>
(
"start_index"
);
auto
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
d_output_t
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
table_t
=
context
.
Input
<
Tensor
>
(
"W"
);
auto
table_grad_t
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"W"
));
VLOG
(
10
)
<<
"ids_t:"
<<
ids_t
<<
", d_output_t:"
<<
d_output_t
<<
", table_t:"
<<
table_t
<<
", table_grad_t"
<<
table_grad_t
;
auto
stream
=
context
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
// convert ids_t to local valid
framework
::
Tensor
ids_t_local
;
ids_t_local
.
mutable_data
<
TIds
>
(
ids_t
->
dims
(),
context
.
GetPlace
());
shard_index
<
TIds
>
(
*
table_t
,
*
ids_t
,
start_idx
,
ids_t_local
,
context
);
// padding table_t -> table_t_pad
auto
pad_shape
=
framework
::
make_ddim
({
table_t
->
dims
()[
0
]
+
1
,
table_t
->
dims
()[
1
]});
framework
::
LoDTensor
table_t_pad
;
// set table_t_pad to zero
uint8_t
*
pad_data
=
reinterpret_cast
<
uint8_t
*>
(
table_t_pad
.
mutable_data
<
T
>
(
pad_shape
,
context
.
GetPlace
()));
size_t
table_t_pad_mem_size
=
table_t_pad
.
numel
()
*
framework
::
SizeOfType
(
table_t_pad
.
type
());
PADDLE_ENFORCE_NPU_SUCCESS
(
aclrtMemsetAsync
(
pad_data
,
table_t_pad_mem_size
,
0
,
table_t_pad_mem_size
,
stream
));
// NOTE(zhiqiu): It seems in cann 20.1, the first input and output
// can be different tensor, but in cann 20.2+, it does inplace operation.
// Thus, the first input and output should be same tensor.
const
auto
&
runner_scatter
=
NpuOpRunner
(
"ScatterAdd"
,
{
table_t_pad
,
ids_t_local
,
*
d_output_t
},
{
table_t_pad
},
{{
"use_locking"
,
true
}});
runner_scatter
.
Run
(
stream
);
// copy table_t_pad to table_t
T
*
dst
=
table_grad_t
->
mutable_data
<
T
>
(
table_t
->
dims
(),
context
.
GetPlace
());
const
size_t
mem_size
=
table_grad_t
->
numel
()
*
framework
::
SizeOfType
(
table_grad_t
->
type
());
// check align
size_t
line_mem_size
=
table_grad_t
->
dims
()[
1
]
*
framework
::
SizeOfType
(
table_grad_t
->
type
());
PADDLE_ENFORCE_EQ
(
line_mem_size
%
64
,
0
,
platform
::
errors
::
InvalidArgument
(
"NPU only accept the second dim must align by 64"
));
PADDLE_ENFORCE_NPU_SUCCESS
(
aclrtMemcpyAsync
(
dst
,
mem_size
,
pad_data
,
mem_size
,
ACL_MEMCPY_DEVICE_TO_DEVICE
,
stream
));
}
template
<
typename
T
>
class
CEmbeddingGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
const
auto
&
index_type
=
ids_t
->
type
();
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
NPUUpdateEmbedding
<
int32_t
,
T
>
(
context
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"c_embedding ids only support int32."
));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
c_embedding
,
ops
::
CEmbeddingNPUKernel
<
float
>
,
ops
::
CEmbeddingNPUKernel
<
double
>
,
ops
::
CEmbeddingNPUKernel
<
plat
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
c_embedding_grad
,
ops
::
CEmbeddingGradNPUKernel
<
float
>
,
ops
::
CEmbeddingGradNPUKernel
<
double
>
,
ops
::
CEmbeddingGradNPUKernel
<
plat
::
float16
>
);
python/paddle/distributed/collective.py
浏览文件 @
ec252914
...
...
@@ -1230,65 +1230,6 @@ def _parallel_embedding(x,
return
out
def
_parallel_embedding_npu
(
x
,
per_part_embeddings
,
origin_size
,
param_attr
,
inner_rank
,
num_partitions
,
name
,
group
=
None
):
"""
NPU Parallel Embedding
"""
if
group
is
not
None
and
not
group
.
is_member
():
return
ring_id
=
0
if
group
is
None
else
group
.
id
origin_num_embeddings
=
origin_size
[
0
]
embedding
=
paddle
.
nn
.
Embedding
(
per_part_embeddings
,
origin_size
[
1
],
padding_idx
=
per_part_embeddings
-
1
,
sparse
=
False
,
weight_attr
=
param_attr
,
name
=
name
)
origin_input_shape
=
x
.
shape
if
len
(
origin_input_shape
)
==
2
:
x
=
paddle
.
unsqueeze
(
x
,
axis
=-
1
)
else
:
assert
origin_input_shape
[
-
1
]
==
1
,
(
"The last dimension size of x must be 1."
)
x_shard
=
paddle
.
shard_index
(
x
,
origin_num_embeddings
,
num_partitions
,
inner_rank
,
per_part_embeddings
-
1
)
if
len
(
origin_input_shape
)
==
2
:
x_shard
=
paddle
.
squeeze
(
x_shard
,
axis
=-
1
)
emb_out
=
embedding
(
x_shard
)
startup_block
=
paddle
.
static
.
default_startup_program
().
global_block
()
main_block
=
paddle
.
static
.
default_main_program
().
global_block
()
startup_block
.
vars
[
embedding
.
weight
.
name
].
is_distributed
=
True
main_block
.
vars
[
embedding
.
weight
.
name
].
is_distributed
=
True
out
=
main_block
.
create_var
(
shape
=
emb_out
.
shape
,
dtype
=
emb_out
.
dtype
,
type
=
emb_out
.
type
,
lod_level
=
emb_out
.
lod_level
,
persistable
=
False
,
is_data
=
False
,
need_check_feed
=
emb_out
.
desc
.
need_check_feed
())
main_block
.
append_op
(
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
emb_out
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
True
,
'use_model_parallel'
:
True
})
return
out
def
split
(
x
,
size
,
operation
,
...
...
@@ -1403,18 +1344,6 @@ def split(x,
"but received vocabulary={} num_partitions={}"
.
format
(
size
[
0
],
num_partitions
)
per_part_size
=
size
[
0
]
//
num_partitions
if
core
.
is_compiled_with_npu
():
emb_out
=
_parallel_embedding_npu
(
x
,
per_part_size
,
size
,
weight_attr
,
inner_rank
,
num_partitions
,
name
,
group
=
None
)
return
emb_out
else
:
emb_out
=
_parallel_embedding
(
x
,
per_part_size
,
...
...
python/paddle/fluid/tests/unittests/c_embedding_op_base.py
0 → 100644
浏览文件 @
ec252914
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.framework
import
core
SEED
=
2021
np
.
random
.
seed
(
SEED
)
def
get_c_embedding
(
start
,
end
,
table
,
ids
):
index
=
ids
.
flatten
()
input_mask
=
(
index
<
start
)
|
(
index
>=
end
)
masked_input
=
index
-
start
masked_input
[
input_mask
]
=
0
output
=
table
[
masked_input
]
output
[
input_mask
]
=
0.0
return
output
class
TestCEmbeddingCPU
(
OpTest
):
def
setUp
(
self
):
self
.
init_dtype
()
self
.
initcase
()
if
core
.
is_compiled_with_npu
():
self
.
__class__
.
use_npu
=
True
elif
core
.
is_compiled_with_cuda
():
self
.
__class__
.
exist_fp64_check_grad
=
True
def
initcase
(
self
):
self
.
op_type
=
"c_embedding"
table
=
np
.
random
.
random
((
17
,
64
)).
astype
(
self
.
dtype
)
ids
=
np
.
random
.
randint
(
low
=
0
,
high
=
17
*
2
,
size
=
(
2
,
4
)).
astype
(
self
.
ids_dtype
)
self
.
start_index
=
10
self
.
end_index
=
self
.
start_index
+
17
self
.
inputs
=
{
'W'
:
table
,
'Ids'
:
ids
}
np_out
=
get_c_embedding
(
self
.
start_index
,
self
.
end_index
,
table
,
ids
)
self
.
outputs
=
{
'Out'
:
np_out
.
reshape
((
2
,
4
,
64
))}
self
.
attrs
=
{
'start_index'
:
self
.
start_index
}
if
core
.
is_compiled_with_npu
():
self
.
__class__
.
use_npu
=
True
def
test_check_cpu
(
self
):
self
.
check_output_with_place
(
core
.
CPUPlace
())
def
test_check_cpu_grad
(
self
):
self
.
check_grad_with_place
(
core
.
CPUPlace
(),
[
'W'
],
'Out'
)
def
init_dtype
(
self
):
self
.
dtype
=
"float32"
self
.
ids_dtype
=
"int64"
class
TestCEmbeddingOpBase
(
TestCEmbeddingCPU
):
def
setUp
(
self
):
self
.
init_dtype
()
self
.
initcase
()
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
check_output_with_place
(
core
.
CUDAPlace
(
0
))
elif
core
.
is_compiled_with_npu
():
self
.
check_output_with_place
(
core
.
NPUPlace
(
0
))
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
check_grad_with_place
(
core
.
CUDAPlace
(
0
),
[
'W'
],
'Out'
)
elif
core
.
is_compiled_with_npu
():
self
.
check_grad_with_place
(
core
.
NPUPlace
(
0
),
[
'W'
],
'Out'
)
def
init_dtype
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
dtype
=
"float64"
self
.
ids_dtype
=
"int64"
elif
core
.
is_compiled_with_npu
():
self
.
dtype
=
"float32"
self
.
ids_dtype
=
"int32"
class
TestCEmbeddingOpFP32
(
TestCEmbeddingOpBase
):
def
setUp
(
self
):
self
.
init_dtype
()
self
.
initcase
()
def
initcase
(
self
):
self
.
op_type
=
"c_embedding"
table
=
np
.
random
.
random
((
17
,
64
)).
astype
(
self
.
dtype
)
ids
=
np
.
random
.
randint
(
low
=
0
,
high
=
17
*
2
,
size
=
(
2
,
4
)).
astype
(
self
.
ids_dtype
)
self
.
start_index
=
10
ids
[
0
][
1
]
=
12
ids
[
0
][
2
]
=
12
ids
[
1
][
2
]
=
12
ids
[
1
][
3
]
=
12
self
.
end_index
=
self
.
start_index
+
17
self
.
inputs
=
{
'W'
:
table
,
'Ids'
:
ids
}
np_out
=
get_c_embedding
(
self
.
start_index
,
self
.
end_index
,
table
,
ids
)
self
.
outputs
=
{
'Out'
:
np_out
.
reshape
((
2
,
4
,
64
))}
self
.
attrs
=
{
'start_index'
:
self
.
start_index
}
if
core
.
is_compiled_with_npu
():
self
.
__class__
.
use_npu
=
True
elif
core
.
is_compiled_with_cuda
():
self
.
__class__
.
exist_fp64_check_grad
=
True
def
init_dtype
(
self
):
self
.
dtype
=
"float32"
self
.
ids_dtype
=
"int32"
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/npu/test_c_embedding_op_npu.py
0 → 100644
浏览文件 @
ec252914
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.tests.unittests.c_embedding_op_base
import
TestCEmbeddingCPU
,
TestCEmbeddingOpBase
,
TestCEmbeddingOpFP32
paddle
.
enable_static
()
TestCEmbeddingCPU
()
TestCEmbeddingOpBase
()
TestCEmbeddingOpFP32
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_c_embedding_op.py
浏览文件 @
ec252914
...
...
@@ -20,40 +20,13 @@ from op_test import OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.framework
import
core
from
paddle.fluid.tests.unittests.c_embedding_op_base
import
TestCEmbeddingCPU
,
TestCEmbeddingOpBase
,
TestCEmbeddingOpFP32
TestCEmbeddingCPU
()
def
get_c_embedding
(
start
,
end
,
table
,
ids
):
index
=
ids
.
flatten
()
input_mask
=
(
index
<
start
)
|
(
index
>=
end
)
masked_input
=
index
-
start
masked_input
[
input_mask
]
=
0
output
=
table
[
masked_input
]
output
[
input_mask
]
=
0.0
return
output
class
TestCEmbeddingOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"c_embedding"
table
=
np
.
random
.
random
((
17
,
31
)).
astype
(
"float64"
)
ids
=
np
.
random
.
randint
(
low
=
0
,
high
=
17
*
2
,
size
=
(
2
,
4
,
5
)).
astype
(
"int32"
)
self
.
start_index
=
10
self
.
end_index
=
self
.
start_index
+
17
self
.
inputs
=
{
'W'
:
table
,
'Ids'
:
ids
}
np_out
=
get_c_embedding
(
self
.
start_index
,
self
.
end_index
,
table
,
ids
)
self
.
outputs
=
{
'Out'
:
np_out
.
reshape
((
2
,
4
,
5
,
31
))}
self
.
attrs
=
{
'start_index'
:
self
.
start_index
}
def
test_check_output_gpu
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
check_output_with_place
(
core
.
CUDAPlace
(
0
))
def
test_check_grad_gpu
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
check_grad_with_place
(
core
.
CUDAPlace
(
0
),
[
'W'
],
'Out'
)
TestCEmbeddingOpBase
()
TestCEmbeddingOpFP32
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录