Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
eb97f4f0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
eb97f4f0
编写于
5月 12, 2023
作者:
W
Wilber
提交者:
GitHub
5月 12, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Inference] Update switch stream logical. (#53589)
上级
05d3fc81
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
295 addition
and
189 deletion
+295
-189
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+74
-62
paddle/fluid/inference/api/resource_manager.cc
paddle/fluid/inference/api/resource_manager.cc
+21
-116
paddle/fluid/inference/api/resource_manager.h
paddle/fluid/inference/api/resource_manager.h
+1
-11
test/cpp/inference/api/CMakeLists.txt
test/cpp/inference/api/CMakeLists.txt
+16
-0
test/cpp/inference/api/trt_rebind_stream_test.cc
test/cpp/inference/api/trt_rebind_stream_test.cc
+183
-0
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
eb97f4f0
...
...
@@ -94,6 +94,61 @@
#endif
namespace
paddle
{
namespace
{
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
void
UpdatePrivateDeviceContext
(
InferGPUContext
*
gpu_context
,
GPUContextResource
*
gpu_resource
,
Place
place_
)
{
gpu_context
->
SetAllocator
(
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
place_
,
gpu_resource
->
GetStream
())
.
get
());
gpu_context
->
SetPinnedAllocator
(
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
paddle
::
platform
::
CUDAPinnedPlace
())
.
get
());
gpu_context
->
SetHostAllocator
(
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
platform
::
CPUPlace
())
.
get
());
gpu_context
->
SetZeroAllocator
(
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetZeroAllocator
(
place_
)
.
get
());
gpu_context
->
SetHostZeroAllocator
(
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetZeroAllocator
(
platform
::
CPUPlace
())
.
get
());
gpu_context
->
SetGenerator
(
phi
::
DefaultCUDAGenerator
(
place_
.
GetDeviceId
()).
get
());
gpu_context
->
SetHostGenerator
(
phi
::
DefaultCPUGenerator
().
get
());
gpu_context
->
SetStream
(
gpu_resource
->
GetStream
());
gpu_context
->
SetBlasHandle
(
gpu_resource
->
GetBlasHandleCreator
());
gpu_context
->
SetBlasTensorCoreHandle
(
gpu_resource
->
GetBlasTensorCoreHandleCreator
());
gpu_context
->
SetBlasTF32Handle
(
gpu_resource
->
GetBlasTF32TensorCoreHandleCreator
());
gpu_context
->
SetDnnHandle
(
gpu_resource
->
GetDnnHandleCreator
());
gpu_context
->
SetSolverHandle
(
gpu_resource
->
GetSolverDnHandleCreator
());
gpu_context
->
SetSparseHandle
(
gpu_resource
->
GetSparseHandleCreator
());
gpu_context
->
SetEigenDevice
(
gpu_resource
->
GetGpuEigenDevice
());
gpu_context
->
SetComputeCapability
(
gpu_resource
->
GetGpuComputeCapability
());
gpu_context
->
SetMaxThreadsPerBlock
(
gpu_resource
->
GetGpuMaxThreadsPerBlock
());
gpu_context
->
SetMaxThreadsPerMultiProcessor
(
gpu_resource
->
GetGpuMaxThreadsPerMp
());
gpu_context
->
SetMaxGridDimSize
(
gpu_resource
->
GetGpuMaxGridDimSize
());
gpu_context
->
SetMultiProcessors
(
gpu_resource
->
GetGPUMultiProcessors
());
gpu_context
->
SetDriverVersion
(
gpu_resource
->
GetGpuDriverVersion
());
gpu_context
->
SetRuntimeVersion
(
gpu_resource
->
GetGpuRuntimeVersion
());
VLOG
(
1
)
<<
"thread id is "
<<
std
::
this_thread
::
get_id
()
<<
", stream id is "
<<
reinterpret_cast
<
void
*>
(
gpu_resource
->
GetStream
())
<<
", allotor ptr is "
<<
reinterpret_cast
<
void
*>
(
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
place_
,
gpu_resource
->
GetStream
())
.
get
());
}
#endif
}
// namespace
using
inference
::
Singleton
;
#ifdef PADDLE_WITH_TENSORRT
...
...
@@ -451,60 +506,7 @@ void AnalysisPredictor::InitDeviceContexts() {
auto
*
gpu_resource
=
ResourceManager
::
Instance
().
GetGPUResource
(
predictor_stream_
);
auto
*
gpu_context
=
new
InferGPUContext
(
place_
);
gpu_context
->
SetAllocator
(
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
place_
,
gpu_resource
->
GetStream
())
.
get
());
gpu_context
->
SetPinnedAllocator
(
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
paddle
::
platform
::
CUDAPinnedPlace
())
.
get
());
gpu_context
->
SetHostAllocator
(
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
platform
::
CPUPlace
())
.
get
());
gpu_context
->
SetZeroAllocator
(
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetZeroAllocator
(
place_
)
.
get
());
gpu_context
->
SetHostZeroAllocator
(
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetZeroAllocator
(
platform
::
CPUPlace
())
.
get
());
gpu_context
->
SetGenerator
(
phi
::
DefaultCUDAGenerator
(
place_
.
GetDeviceId
()).
get
());
gpu_context
->
SetHostGenerator
(
phi
::
DefaultCPUGenerator
().
get
());
gpu_context
->
SetStream
(
gpu_resource
->
GetStream
());
gpu_context
->
SetBlasHandle
(
gpu_resource
->
GetBlasHandleCreator
());
gpu_context
->
SetBlasTensorCoreHandle
(
gpu_resource
->
GetBlasTensorCoreHandleCreator
());
gpu_context
->
SetBlasTF32Handle
(
gpu_resource
->
GetBlasTF32TensorCoreHandleCreator
());
gpu_context
->
SetDnnHandle
(
gpu_resource
->
GetDnnHandleCreator
());
gpu_context
->
SetSolverHandle
(
gpu_resource
->
GetSolverDnHandleCreator
());
gpu_context
->
SetSparseHandle
(
gpu_resource
->
GetSparseHandleCreator
());
gpu_context
->
SetEigenDevice
(
gpu_resource
->
GetGpuEigenDeviceCreator
());
gpu_context
->
SetComputeCapability
(
gpu_resource
->
GetGpuComputeCapability
());
gpu_context
->
SetMaxThreadsPerBlock
(
gpu_resource
->
GetGpuMaxThreadsPerBlock
());
gpu_context
->
SetMaxThreadsPerMultiProcessor
(
gpu_resource
->
GetGpuMaxThreadsPerMp
());
gpu_context
->
SetMaxGridDimSize
(
gpu_resource
->
GetGpuMaxGridDimSize
());
gpu_context
->
SetMultiProcessors
(
gpu_resource
->
GetGPUMultiProcessors
());
gpu_context
->
SetDriverVersion
(
gpu_resource
->
GetGpuDriverVersion
());
gpu_context
->
SetRuntimeVersion
(
gpu_resource
->
GetGpuRuntimeVersion
());
VLOG
(
1
)
<<
"thread id is "
<<
std
::
this_thread
::
get_id
()
<<
", stream id is "
<<
reinterpret_cast
<
void
*>
(
gpu_resource
->
GetStream
())
<<
", allotor ptr is "
<<
reinterpret_cast
<
void
*>
(
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
place_
,
gpu_resource
->
GetStream
())
.
get
());
UpdatePrivateDeviceContext
(
gpu_context
,
gpu_resource
,
place_
);
return
std
::
unique_ptr
<
phi
::
DeviceContext
>
(
gpu_context
);
}));
}
...
...
@@ -2083,17 +2085,27 @@ bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
#else
cudaStreamSynchronize
(
static_cast
<
gpuStream_t
>
(
predictor_stream_
));
#endif
ResourceManager
::
Instance
().
GpuResource
ReBind
Stream
(
predictor_stream_
,
ResourceManager
::
Instance
().
GpuResource
Switch
Stream
(
predictor_stream_
,
stream
);
predictor_stream_
=
stream
;
auto
*
dev_ctxs
=
reinterpret_cast
<
const
std
::
map
<
auto
*
dev_ctxs
=
const_cast
<
std
::
map
<
phi
::
Place
,
std
::
shared_future
<
std
::
unique_ptr
<
phi
::
DeviceContext
>>>
*>
(
reinterpret_cast
<
const
std
::
map
<
phi
::
Place
,
std
::
shared_future
<
std
::
unique_ptr
<
phi
::
DeviceContext
>>>
*>
(
this
->
GetDeviceContexts
());
auto
*
dev_ctx
=
static_cast
<
InferGPUContext
*>
(
dev_ctxs
->
at
(
place_
).
get
().
get
());
dev_ctx
->
SetStream
(
stream
);
this
->
GetDeviceContexts
()));
dev_ctxs
->
erase
(
place_
);
dev_ctxs
->
emplace
(
place_
,
std
::
async
(
std
::
launch
::
deferred
,
[
=
]
{
auto
*
gpu_resource
=
ResourceManager
::
Instance
().
GetGPUResource
(
predictor_stream_
);
auto
*
gpu_context
=
new
InferGPUContext
(
place_
);
UpdatePrivateDeviceContext
(
gpu_context
,
gpu_resource
,
place_
);
return
std
::
unique_ptr
<
phi
::
DeviceContext
>
(
gpu_context
);
}));
}
return
ZeroCopyRun
();
...
...
paddle/fluid/inference/api/resource_manager.cc
浏览文件 @
eb97f4f0
...
...
@@ -154,6 +154,7 @@ void GPUContextResource::InitGPUResource(void* stream) {
}
InitGpuProperties
();
InitGpuEigenDevice
();
}
void
GPUContextResource
::
DestroyGPUResource
()
{
...
...
@@ -361,90 +362,6 @@ std::array<int, 3> GPUContextResource::GetGpuMaxGridDimSize() const {
return
max_grid_dim_size_
;
}
void
GPUContextResource
::
ReBindStream
(
gpuStream_t
stream
)
{
owned_stream_
=
false
;
stream_
=
stream
;
}
void
GPUContextResource
::
ReBindDnnHandle
(
gpuStream_t
stream
)
const
{
if
(
dnn_handle_
)
{
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_GPU_SUCCESS
(
phi
::
dynload
::
miopenSetStream
(
dnn_handle_
,
stream
));
#else
PADDLE_RETRY_CUDA_SUCCESS
(
phi
::
dynload
::
cudnnSetStream
(
dnn_handle_
,
stream
));
#endif
}
}
void
GPUContextResource
::
ReBindBlasHandle
(
gpuStream_t
stream
)
const
{
if
(
blas_handle_
)
{
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_GPU_SUCCESS
(
phi
::
dynload
::
rocblas_set_stream
(
blas_handle_
,
stream
));
#else
PADDLE_RETRY_CUDA_SUCCESS
(
phi
::
dynload
::
cublasSetStream
(
blas_handle_
,
stream
));
#endif
}
}
void
GPUContextResource
::
ReBindBlasTensorCoreHandle
(
gpuStream_t
stream
)
const
{
if
(
blas_tensor_core_handle_
)
{
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_GPU_SUCCESS
(
phi
::
dynload
::
rocblas_set_stream
(
blas_tensor_core_handle_
,
stream
));
#else
PADDLE_RETRY_CUDA_SUCCESS
(
phi
::
dynload
::
cublasSetStream
(
blas_tensor_core_handle_
,
stream
));
#endif
}
}
void
GPUContextResource
::
ReBindBlasTF32Handle
(
gpuStream_t
stream
)
const
{
if
(
blas_tf32_tensor_core_handle_
)
{
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_GPU_SUCCESS
(
phi
::
dynload
::
rocblas_set_stream
(
blas_tf32_tensor_core_handle_
,
stream
));
#else
PADDLE_RETRY_CUDA_SUCCESS
(
phi
::
dynload
::
cublasSetStream
(
blas_tf32_tensor_core_handle_
,
stream
));
#endif
}
}
void
GPUContextResource
::
ReBindSolverDnHandle
(
gpuStream_t
stream
)
const
{
if
(
solver_handle_
)
{
#ifndef PADDLE_WITH_HIP
PADDLE_RETRY_CUDA_SUCCESS
(
phi
::
dynload
::
cusolverDnSetStream
(
solver_handle_
,
stream
));
#endif
}
}
void
GPUContextResource
::
ReBindSparseHandle
(
gpuStream_t
stream
)
const
{
if
(
sparse_handle_
)
{
#if defined(PADDLE_WITH_CUDA)
// The generic APIs is supported from CUDA10.1
#if CUDA_VERSION >= 11000
PADDLE_RETRY_CUDA_SUCCESS
(
phi
::
dynload
::
cusparseSetStream
(
sparse_handle_
,
stream
));
#endif
#endif
}
}
void
GPUContextResource
::
ReBindEigenDevice
(
gpuStream_t
stream
,
GPUPlace
place
)
const
{
if
(
eigen_stream_
)
{
auto
*
allocator
=
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
place_
)
.
get
();
eigen_stream_
->
Reinitialize
(
stream
,
allocator
,
place
);
}
}
#endif
void
ResourceManager
::
InitCPUResource
()
{
...
...
@@ -486,24 +403,16 @@ void ResourceManager::DestroyGPUResource(void* stream) {
}
void
ResourceManager
::
Decrease
(
void
*
stream
)
{
PADDLE_ENFORCE_EQ
(
ref_count_
.
count
(
stream
),
true
,
platform
::
errors
::
InvalidArgument
(
"The stream[%p] not found in ref_count."
,
stream
));
if
(
ref_count_
.
count
(
stream
)
==
0
)
return
;
--
ref_count_
[
stream
];
if
(
ref_count_
[
stream
]
==
0
)
{
ref_count_
.
erase
(
stream
);
gpu_resources_
.
erase
(
stream
);
if
(
gpu_resources_
.
count
(
stream
)
>
0
)
gpu_resources_
.
erase
(
stream
);
}
}
void
ResourceManager
::
Increase
(
void
*
stream
)
{
PADDLE_ENFORCE_EQ
(
ref_count_
.
count
(
stream
),
true
,
platform
::
errors
::
InvalidArgument
(
"The stream[%p] not found in ref_count."
,
stream
));
++
ref_count_
[
stream
];
}
void
ResourceManager
::
Increase
(
void
*
stream
)
{
++
ref_count_
[
stream
];
}
GPUContextResource
*
ResourceManager
::
GetGPUResource
(
void
*
stream
)
const
{
PADDLE_ENFORCE_EQ
(
gpu_resources_
.
count
(
stream
),
...
...
@@ -513,33 +422,29 @@ GPUContextResource* ResourceManager::GetGPUResource(void* stream) const {
return
gpu_resources_
.
at
(
stream
).
get
();
}
void
ResourceManager
::
GpuResource
ReBind
Stream
(
void
*
old_stream
,
void
ResourceManager
::
GpuResource
Switch
Stream
(
void
*
old_stream
,
void
*
new_stream
)
{
// NOTE: add lock to support stream rebind in multi-thread
std
::
lock_guard
<
std
::
mutex
>
lock_gurad
(
gpu_mutex_
);
if
(
old_stream
==
new_stream
)
return
;
PADDLE_ENFORCE_EQ
(
gpu_resources_
.
count
(
old_stream
),
true
,
platform
::
errors
::
InvalidArgument
(
"The stream[%p] not found in gpu_resources."
,
old_stream
));
auto
gpu_resource
=
std
::
move
(
gpu_resources_
.
at
(
old_stream
));
DestroyGPUResource
(
old_stream
);
PADDLE_ENFORCE_EQ
(
ref_count_
.
count
(
old_stream
),
0
,
platform
::
errors
::
Fatal
(
"gpu resources rebind stream failed."
));
gpu_resource
->
ReBindStream
(
static_cast
<
gpuStream_t
>
(
new_stream
));
gpu_resource
->
ReBindDnnHandle
(
static_cast
<
gpuStream_t
>
(
new_stream
));
gpu_resource
->
ReBindBlasHandle
(
static_cast
<
gpuStream_t
>
(
new_stream
));
gpu_resource
->
ReBindBlasTensorCoreHandle
(
static_cast
<
gpuStream_t
>
(
new_stream
));
gpu_resource
->
ReBindBlasTF32Handle
(
static_cast
<
gpuStream_t
>
(
new_stream
));
gpu_resource
->
ReBindSolverDnHandle
(
static_cast
<
gpuStream_t
>
(
new_stream
));
gpu_resource
->
ReBindSparseHandle
(
static_cast
<
gpuStream_t
>
(
new_stream
));
gpu_resource
->
ReBindEigenDevice
(
static_cast
<
gpuStream_t
>
(
new_stream
),
gpu_resource
->
Place
());
ref_count_
[
new_stream
]
++
;
gpu_resources_
.
emplace
(
new_stream
,
std
::
move
(
gpu_resource
));
// NOTE: stream may be used by multiple predictor, skip resource
// operation if resource of new_stream is already exists
bool
new_stream_existed
=
gpu_resources_
.
count
(
new_stream
)
>
0
;
if
(
!
new_stream_existed
)
{
auto
place
=
gpu_resources_
.
at
(
old_stream
)
->
Place
();
std
::
unique_ptr
<
GPUContextResource
>
resource
{
new
GPUContextResource
(
place
,
new_stream
)};
gpu_resources_
.
emplace
(
new_stream
,
std
::
move
(
resource
));
}
Decrease
(
old_stream
);
Increase
(
new_stream
);
}
int
ResourceManager
::
RefCount
(
void
*
stream
)
const
{
...
...
paddle/fluid/inference/api/resource_manager.h
浏览文件 @
eb97f4f0
...
...
@@ -82,16 +82,6 @@ class GPUContextResource {
int
GetGpuMaxThreadsPerBlock
()
const
;
std
::
array
<
int
,
3
>
GetGpuMaxGridDimSize
()
const
;
// If stream changes, we need to rebind all handle to new stream.
void
ReBindStream
(
gpuStream_t
stream
);
void
ReBindDnnHandle
(
gpuStream_t
stream
)
const
;
void
ReBindBlasHandle
(
gpuStream_t
stream
)
const
;
void
ReBindBlasTensorCoreHandle
(
gpuStream_t
stream
)
const
;
void
ReBindBlasTF32Handle
(
gpuStream_t
stream
)
const
;
void
ReBindSolverDnHandle
(
gpuStream_t
stream
)
const
;
void
ReBindSparseHandle
(
gpuStream_t
stream
)
const
;
void
ReBindEigenDevice
(
gpuStream_t
stream
,
GPUPlace
place
)
const
;
private:
void
InitGPUResource
(
void
*
stream
);
void
DestroyGPUResource
();
...
...
@@ -186,7 +176,7 @@ class ResourceManager {
void
DestroyGPUResource
(
void
*
stream
);
GPUContextResource
*
GetGPUResource
(
void
*
stream
)
const
;
int
RefCount
(
void
*
stream
)
const
;
void
GpuResource
ReBind
Stream
(
void
*
old_stream
,
void
*
new_stream
);
void
GpuResource
Switch
Stream
(
void
*
old_stream
,
void
*
new_stream
);
private:
void
Decrease
(
void
*
stream
);
...
...
test/cpp/inference/api/CMakeLists.txt
浏览文件 @
eb97f4f0
...
...
@@ -1028,6 +1028,18 @@ if(WITH_TESTING AND WITH_INFERENCE_API_TEST)
target_link_libraries
(
test_analyzer_capi_exp_xpu paddle_inference_c
)
endif
()
#TODO(inference): windows encounter a SEH error, we need to fix it.
if
(
NOT WIN32
)
inference_analysis_test
(
trt_rebind_stream_test
SRCS
trt_rebind_stream_test.cc
EXTRA_DEPS
paddle_inference_shared
ARGS
--infer_model=
${
TRT_MODEL_INSTALL_DIR
}
/trt_inference_test_models
)
endif
()
set
(
TRT_MODEL_QUANT_RESNET_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/small_quant_model"
)
if
(
NOT EXISTS
${
INFERENCE_DEMO_INSTALL_DIR
}
/small_quant_model.tgz
)
...
...
@@ -1378,6 +1390,10 @@ if(WITH_TESTING AND WITH_INFERENCE_API_TEST)
endif
()
if
(
WITH_GPU AND TENSORRT_FOUND
)
set_tests_properties
(
trt_mobilenet_test PROPERTIES TIMEOUT 240
)
if
(
NOT WIN32
)
set_tests_properties
(
trt_rebind_stream_test
PROPERTIES TIMEOUT 360 LABELS
"RUN_TYPE=EXCLUSIVE"
)
endif
()
if
(
WITH_MKLDNN
)
set_tests_properties
(
test_analyzer_bfloat16_resnet50 PROPERTIES TIMEOUT
120
)
...
...
test/cpp/inference/api/trt_rebind_stream_test.cc
0 → 100644
浏览文件 @
eb97f4f0
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <thread>
#include "gflags/gflags.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "test/cpp/inference/api/tester_helper.h"
namespace
paddle
{
namespace
inference
{
// TODO(inference): This case failed in windows with a SEH error, we need to fix
// it.
TEST
(
ReBindStream_single
,
use_gpu
)
{
std
::
string
model_dir
=
FLAGS_infer_model
+
"/mobilenet"
;
AnalysisConfig
config
;
config
.
EnableUseGpu
(
100
,
0
);
config
.
SetModel
(
model_dir
);
config
.
EnableTensorRtEngine
();
cudaStream_t
stream1
,
stream2
,
stream3
;
cudaStreamCreate
(
&
stream1
);
cudaStreamCreate
(
&
stream2
);
cudaStreamCreate
(
&
stream3
);
config
.
SetExecStream
(
stream1
);
auto
predictor
=
paddle_infer
::
CreatePredictor
(
config
);
auto
x_t
=
predictor
->
GetInputHandle
(
"x"
);
x_t
->
Reshape
({
1
,
3
,
224
,
224
});
float
x_data
[
3
*
224
*
224
]
=
{
0
};
x_t
->
CopyFromCpu
(
x_data
);
ASSERT_TRUE
(
predictor
->
Run
());
cudaDeviceSynchronize
();
ASSERT_TRUE
(
paddle_infer
::
experimental
::
InternalUtils
::
RunWithExternalStream
(
predictor
.
get
(),
stream2
));
cudaDeviceSynchronize
();
ASSERT_TRUE
(
paddle_infer
::
experimental
::
InternalUtils
::
RunWithExternalStream
(
predictor
.
get
(),
stream3
));
cudaDeviceSynchronize
();
}
TEST
(
ReBindStream_multi
,
use_gpu
)
{
std
::
string
model_dir
=
FLAGS_infer_model
+
"/mobilenet"
;
AnalysisConfig
config1
;
config1
.
EnableUseGpu
(
100
,
0
);
config1
.
SetModel
(
model_dir
);
config1
.
EnableTensorRtEngine
();
AnalysisConfig
config2
;
config2
.
EnableUseGpu
(
100
,
0
);
config2
.
EnableTensorRtEngine
();
config2
.
SetModel
(
model_dir
);
cudaStream_t
stream1
,
stream2
,
stream3
;
cudaStreamCreate
(
&
stream1
);
cudaStreamCreate
(
&
stream2
);
cudaStreamCreate
(
&
stream3
);
config1
.
SetExecStream
(
stream1
);
config2
.
SetExecStream
(
stream1
);
auto
predictor1
=
paddle_infer
::
CreatePredictor
(
config1
);
auto
predictor2
=
paddle_infer
::
CreatePredictor
(
config2
);
std
::
vector
<
float
>
x1
(
3
*
224
*
224
,
1.0
);
auto
x_t1
=
predictor1
->
GetInputHandle
(
"x"
);
x_t1
->
Reshape
({
1
,
3
,
224
,
224
});
x_t1
->
CopyFromCpu
(
x1
.
data
());
std
::
vector
<
float
>
x2
(
3
*
224
*
224
,
2.0
);
auto
x_t2
=
predictor2
->
GetInputHandle
(
"x"
);
x_t2
->
Reshape
({
1
,
3
,
224
,
224
});
x_t2
->
CopyFromCpu
(
x2
.
data
());
ASSERT_TRUE
(
predictor1
->
Run
());
cudaStreamSynchronize
(
stream1
);
ASSERT_TRUE
(
predictor2
->
Run
());
cudaStreamSynchronize
(
stream1
);
ASSERT_TRUE
(
paddle_infer
::
experimental
::
InternalUtils
::
RunWithExternalStream
(
predictor1
.
get
(),
stream2
));
cudaDeviceSynchronize
();
ASSERT_TRUE
(
paddle_infer
::
experimental
::
InternalUtils
::
RunWithExternalStream
(
predictor2
.
get
(),
stream2
));
cudaDeviceSynchronize
();
ASSERT_TRUE
(
paddle_infer
::
experimental
::
InternalUtils
::
RunWithExternalStream
(
predictor1
.
get
(),
stream3
));
cudaStreamSynchronize
(
stream3
);
ASSERT_TRUE
(
paddle_infer
::
experimental
::
InternalUtils
::
RunWithExternalStream
(
predictor2
.
get
(),
stream3
));
cudaStreamSynchronize
(
stream3
);
}
TEST
(
SwitchStream_multi
,
use_gpu
)
{
std
::
string
model_dir
=
FLAGS_infer_model
+
"/mobilenet"
;
AnalysisConfig
config1
;
config1
.
EnableUseGpu
(
100
,
0
);
config1
.
SetModel
(
model_dir
);
AnalysisConfig
config2
;
config2
.
EnableUseGpu
(
100
,
0
);
config2
.
SetModel
(
model_dir
);
AnalysisConfig
config3
;
config3
.
EnableUseGpu
(
100
,
0
);
config3
.
SetModel
(
model_dir
);
// config1.EnableTensorRtEngine();
// config2.EnableTensorRtEngine();
// config3.EnableTensorRtEngine();
cudaStream_t
stream1
,
stream2
,
stream3
;
cudaStreamCreate
(
&
stream1
);
cudaStreamCreate
(
&
stream2
);
cudaStreamCreate
(
&
stream3
);
config1
.
SetExecStream
(
stream1
);
config2
.
SetExecStream
(
stream1
);
config3
.
SetExecStream
(
stream1
);
auto
predictor1
=
paddle_infer
::
CreatePredictor
(
config1
);
auto
predictor2
=
paddle_infer
::
CreatePredictor
(
config2
);
auto
predictor3
=
paddle_infer
::
CreatePredictor
(
config3
);
std
::
vector
<
float
>
x1
(
3
*
224
*
224
,
1.0
);
auto
x_t1
=
predictor1
->
GetInputHandle
(
"x"
);
x_t1
->
Reshape
({
1
,
3
,
224
,
224
});
x_t1
->
CopyFromCpu
(
x1
.
data
());
std
::
vector
<
float
>
x2
(
3
*
224
*
224
,
2.0
);
auto
x_t2
=
predictor2
->
GetInputHandle
(
"x"
);
x_t2
->
Reshape
({
1
,
3
,
224
,
224
});
x_t2
->
CopyFromCpu
(
x2
.
data
());
std
::
vector
<
float
>
x3
(
3
*
224
*
224
,
2.5
);
auto
x_t3
=
predictor3
->
GetInputHandle
(
"x"
);
x_t3
->
Reshape
({
1
,
3
,
224
,
224
});
x_t3
->
CopyFromCpu
(
x3
.
data
());
// TODO(wilber): fix.
// NOTE: Must run once on master thread, but why?
// if remove the code, the unit test fail.
ASSERT_TRUE
(
predictor1
->
Run
());
cudaStreamSynchronize
(
stream1
);
ASSERT_TRUE
(
predictor2
->
Run
());
cudaStreamSynchronize
(
stream1
);
ASSERT_TRUE
(
predictor3
->
Run
());
cudaStreamSynchronize
(
stream1
);
auto
Run
=
[
&
](
paddle_infer
::
Predictor
*
p
,
std
::
vector
<
cudaStream_t
>
streams
)
{
for
(
auto
s
:
streams
)
{
paddle_infer
::
experimental
::
InternalUtils
::
RunWithExternalStream
(
p
,
s
);
}
};
std
::
thread
p1
(
Run
,
predictor1
.
get
(),
std
::
vector
<
cudaStream_t
>
{
stream1
,
stream2
,
stream3
,
stream3
,
stream2
,
stream2
});
std
::
thread
p2
(
Run
,
predictor2
.
get
(),
std
::
vector
<
cudaStream_t
>
{
stream1
,
stream3
,
stream1
,
stream2
,
stream1
,
stream3
});
std
::
thread
p3
(
Run
,
predictor3
.
get
(),
std
::
vector
<
cudaStream_t
>
{
stream1
,
stream1
,
stream2
,
stream3
,
stream3
,
stream2
});
p1
.
join
();
p2
.
join
();
p3
.
join
();
cudaDeviceSynchronize
();
}
}
// namespace inference
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录