Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
eb13c19f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
eb13c19f
编写于
4月 30, 2021
作者:
T
tianshuo78520a
提交者:
GitHub
4月 30, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
revert data_generator __init__.py (#32670)
* revert data_generator * test * add setup.py
上级
308073de
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
344 addition
and
0 deletion
+344
-0
python/paddle/fluid/incubate/data_generator/__init__.py
python/paddle/fluid/incubate/data_generator/__init__.py
+343
-0
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
python/paddle/fluid/incubate/data_generator/__init__.py
0 → 100644
浏览文件 @
eb13c19f
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
__all__
=
[
'MultiSlotDataGenerator'
,
'MultiSlotStringDataGenerator'
]
class
DataGenerator
(
object
):
"""
DataGenerator is a general Base class for user to inherit
A user who wants to define his/her own python processing logic
with paddle.fluid.dataset should inherit this class
"""
def
__init__
(
self
):
self
.
_proto_info
=
None
self
.
batch_size_
=
32
def
_set_line_limit
(
self
,
line_limit
):
if
not
isinstance
(
line_limit
,
int
):
raise
ValueError
(
"line_limit%s must be in int type"
%
type
(
line_limit
))
if
line_limit
<
1
:
raise
ValueError
(
"line_limit can not less than 1"
)
self
.
_line_limit
=
line_limit
def
set_batch
(
self
,
batch_size
):
'''
Set batch size of current DataGenerator
This is necessary only if a user wants to define generator_batch
Example:
.. code-block:: python
import paddle.fluid.incubate.data_generator as dg
class MyData(dg.DataGenerator):
def generate_sample(self, line):
def local_iter():
int_words = [int(x) for x in line.split()]
yield ("words", int_words)
return local_iter
def generate_batch(self, samples):
def local_iter():
for s in samples:
yield ("words", s[1].extend([s[1][0]]))
mydata = MyData()
mydata.set_batch(128)
'''
self
.
batch_size_
=
batch_size
def
run_from_memory
(
self
):
'''
This function generator data from memory, it is usually used for
debug and benchmarking
Example:
.. code-block:: python
import paddle.fluid.incubate.data_generator as dg
class MyData(dg.DataGenerator):
def generate_sample(self, line):
def local_iter():
yield ("words", [1, 2, 3, 4])
return local_iter
mydata = MyData()
mydata.run_from_memory()
'''
batch_samples
=
[]
line_iter
=
self
.
generate_sample
(
None
)
for
user_parsed_line
in
line_iter
():
if
user_parsed_line
==
None
:
continue
batch_samples
.
append
(
user_parsed_line
)
if
len
(
batch_samples
)
==
self
.
batch_size_
:
batch_iter
=
self
.
generate_batch
(
batch_samples
)
for
sample
in
batch_iter
():
sys
.
stdout
.
write
(
self
.
_gen_str
(
sample
))
batch_samples
=
[]
if
len
(
batch_samples
)
>
0
:
batch_iter
=
self
.
generate_batch
(
batch_samples
)
for
sample
in
batch_iter
():
sys
.
stdout
.
write
(
self
.
_gen_str
(
sample
))
def
run_from_stdin
(
self
):
'''
This function reads the data row from stdin, parses it with the
process function, and further parses the return value of the
process function with the _gen_str function. The parsed data will
be wrote to stdout and the corresponding protofile will be
generated.
Example:
.. code-block:: python
import paddle.fluid.incubate.data_generator as dg
class MyData(dg.DataGenerator):
def generate_sample(self, line):
def local_iter():
int_words = [int(x) for x in line.split()]
yield ("words", [int_words])
return local_iter
mydata = MyData()
mydata.run_from_stdin()
'''
batch_samples
=
[]
for
line
in
sys
.
stdin
:
line_iter
=
self
.
generate_sample
(
line
)
for
user_parsed_line
in
line_iter
():
if
user_parsed_line
==
None
:
continue
batch_samples
.
append
(
user_parsed_line
)
if
len
(
batch_samples
)
==
self
.
batch_size_
:
batch_iter
=
self
.
generate_batch
(
batch_samples
)
for
sample
in
batch_iter
():
sys
.
stdout
.
write
(
self
.
_gen_str
(
sample
))
batch_samples
=
[]
if
len
(
batch_samples
)
>
0
:
batch_iter
=
self
.
generate_batch
(
batch_samples
)
for
sample
in
batch_iter
():
sys
.
stdout
.
write
(
self
.
_gen_str
(
sample
))
def
_gen_str
(
self
,
line
):
'''
Further processing the output of the process() function rewritten by
user, outputting data that can be directly read by the datafeed,and
updating proto_info information.
Args:
line(str): the output of the process() function rewritten by user.
Returns:
Return a string data that can be read directly by the datafeed.
'''
raise
NotImplementedError
(
"pls use MultiSlotDataGenerator or PairWiseDataGenerator"
)
def
generate_sample
(
self
,
line
):
'''
This function needs to be overridden by the user to process the
original data row into a list or tuple.
Args:
line(str): the original data row
Returns:
Returns the data processed by the user.
The data format is list or tuple:
[(name, [feasign, ...]), ...]
or ((name, [feasign, ...]), ...)
For example:
[("words", [1926, 08, 17]), ("label", [1])]
or (("words", [1926, 08, 17]), ("label", [1]))
Note:
The type of feasigns must be in int or float. Once the float
element appears in the feasign, the type of that slot will be
processed into a float.
Example:
.. code-block:: python
import paddle.fluid.incubate.data_generator as dg
class MyData(dg.DataGenerator):
def generate_sample(self, line):
def local_iter():
int_words = [int(x) for x in line.split()]
yield ("words", [int_words])
return local_iter
'''
raise
NotImplementedError
(
"Please rewrite this function to return a list or tuple: "
+
"[(name, [feasign, ...]), ...] or ((name, [feasign, ...]), ...)"
)
def
generate_batch
(
self
,
samples
):
'''
This function needs to be overridden by the user to process the
generated samples from generate_sample(self, str) function
It is usually used as batch processing when a user wants to
do preprocessing on a batch of samples, e.g. padding according to
the max length of a sample in the batch
Args:
samples(list tuple): generated sample from generate_sample
Returns:
a python generator, the same format as return value of generate_sample
Example:
.. code-block:: python
import paddle.fluid.incubate.data_generator as dg
class MyData(dg.DataGenerator):
def generate_sample(self, line):
def local_iter():
int_words = [int(x) for x in line.split()]
yield ("words", int_words)
return local_iter
def generate_batch(self, samples):
def local_iter():
for s in samples:
yield ("words", s[1].extend([s[1][0]]))
mydata = MyData()
mydata.set_batch(128)
'''
def
local_iter
():
for
sample
in
samples
:
yield
sample
return
local_iter
# TODO: guru4elephant
# add more generalized DataGenerator that can adapt user-defined slot
# for example, [(name, float_list), (name, str_list), (name, int_list)]
class
MultiSlotStringDataGenerator
(
DataGenerator
):
def
_gen_str
(
self
,
line
):
'''
Further processing the output of the process() function rewritten by
user, outputting data that can be directly read by the MultiSlotDataFeed,
and updating proto_info information.
The input line will be in this format:
>>> [(name, [str(feasign), ...]), ...]
>>> or ((name, [str(feasign), ...]), ...)
The output will be in this format:
>>> [ids_num id1 id2 ...] ...
For example, if the input is like this:
>>> [("words", ["1926", "08", "17"]), ("label", ["1"])]
>>> or (("words", ["1926", "08", "17"]), ("label", ["1"]))
the output will be:
>>> 3 1234 2345 3456 1 1
Args:
line(str): the output of the process() function rewritten by user.
Returns:
Return a string data that can be read directly by the MultiSlotDataFeed.
'''
if
not
isinstance
(
line
,
list
)
and
not
isinstance
(
line
,
tuple
):
raise
ValueError
(
"the output of process() must be in list or tuple type"
"Examples: [('words', ['1926', '08', '17']), ('label', ['1'])]"
)
output
=
""
for
index
,
item
in
enumerate
(
line
):
name
,
elements
=
item
if
output
:
output
+=
" "
out_str
=
[]
out_str
.
append
(
str
(
len
(
elements
)))
out_str
.
extend
(
elements
)
output
+=
" "
.
join
(
out_str
)
return
output
+
"
\n
"
class
MultiSlotDataGenerator
(
DataGenerator
):
def
_gen_str
(
self
,
line
):
'''
Further processing the output of the process() function rewritten by
user, outputting data that can be directly read by the MultiSlotDataFeed,
and updating proto_info information.
The input line will be in this format:
>>> [(name, [feasign, ...]), ...]
>>> or ((name, [feasign, ...]), ...)
The output will be in this format:
>>> [ids_num id1 id2 ...] ...
The proto_info will be in this format:
>>> [(name, type), ...]
For example, if the input is like this:
>>> [("words", [1926, 08, 17]), ("label", [1])]
>>> or (("words", [1926, 08, 17]), ("label", [1]))
the output will be:
>>> 3 1234 2345 3456 1 1
the proto_info will be:
>>> [("words", "uint64"), ("label", "uint64")]
Args:
line(str): the output of the process() function rewritten by user.
Returns:
Return a string data that can be read directly by the MultiSlotDataFeed.
'''
if
not
isinstance
(
line
,
list
)
and
not
isinstance
(
line
,
tuple
):
raise
ValueError
(
"the output of process() must be in list or tuple type"
"Example: [('words', [1926, 08, 17]), ('label', [1])]"
)
output
=
""
if
self
.
_proto_info
is
None
:
self
.
_proto_info
=
[]
for
item
in
line
:
name
,
elements
=
item
if
not
isinstance
(
name
,
str
):
raise
ValueError
(
"name%s must be in str type"
%
type
(
name
))
if
not
isinstance
(
elements
,
list
):
raise
ValueError
(
"elements%s must be in list type"
%
type
(
elements
))
if
not
elements
:
raise
ValueError
(
"the elements of each field can not be empty, you need padding it in process()."
)
self
.
_proto_info
.
append
((
name
,
"uint64"
))
if
output
:
output
+=
" "
output
+=
str
(
len
(
elements
))
for
elem
in
elements
:
if
isinstance
(
elem
,
float
):
self
.
_proto_info
[
-
1
]
=
(
name
,
"float"
)
elif
not
isinstance
(
elem
,
int
)
and
not
isinstance
(
elem
,
long
):
raise
ValueError
(
"the type of element%s must be in int or float"
%
type
(
elem
))
output
+=
" "
+
str
(
elem
)
else
:
if
len
(
line
)
!=
len
(
self
.
_proto_info
):
raise
ValueError
(
"the complete field set of two given line are inconsistent."
)
for
index
,
item
in
enumerate
(
line
):
name
,
elements
=
item
if
not
isinstance
(
name
,
str
):
raise
ValueError
(
"name%s must be in str type"
%
type
(
name
))
if
not
isinstance
(
elements
,
list
):
raise
ValueError
(
"elements%s must be in list type"
%
type
(
elements
))
if
not
elements
:
raise
ValueError
(
"the elements of each field can not be empty, you need padding it in process()."
)
if
name
!=
self
.
_proto_info
[
index
][
0
]:
raise
ValueError
(
"the field name of two given line are not match: require<%s>, get<%s>."
%
(
self
.
_proto_info
[
index
][
0
],
name
))
if
output
:
output
+=
" "
output
+=
str
(
len
(
elements
))
for
elem
in
elements
:
if
self
.
_proto_info
[
index
][
1
]
!=
"float"
:
if
isinstance
(
elem
,
float
):
self
.
_proto_info
[
index
]
=
(
name
,
"float"
)
elif
not
isinstance
(
elem
,
int
)
and
not
isinstance
(
elem
,
long
):
raise
ValueError
(
"the type of element%s must be in int or float"
%
type
(
elem
))
output
+=
" "
+
str
(
elem
)
return
output
+
"
\n
"
python/setup.py.in
浏览文件 @
eb13c19f
...
...
@@ -188,6 +188,7 @@ packages=['paddle',
'paddle.fluid.transpiler',
'paddle.fluid.transpiler.details',
'paddle.fluid.incubate',
'paddle.fluid.incubate.data_generator',
'paddle.fluid.incubate.fleet',
'paddle.fluid.incubate.checkpoint',
'paddle.fluid.incubate.fleet.base',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录