Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ea91ca2f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ea91ca2f
编写于
7月 27, 2022
作者:
Z
Zhong Hui
提交者:
GitHub
7月 27, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Eager] Add hierarchical_sigmoid yaml (#44638)
上级
ae25ab56
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
68 addition
and
10 deletion
+68
-10
paddle/phi/api/yaml/generator/api_base.py
paddle/phi/api/yaml/generator/api_base.py
+1
-1
paddle/phi/api/yaml/legacy_api.yaml
paddle/phi/api/yaml/legacy_api.yaml
+12
-0
paddle/phi/api/yaml/legacy_backward.yaml
paddle/phi/api/yaml/legacy_backward.yaml
+12
-1
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
+38
-7
python/paddle/nn/functional/loss.py
python/paddle/nn/functional/loss.py
+5
-1
未找到文件。
paddle/phi/api/yaml/generator/api_base.py
浏览文件 @
ea91ca2f
...
...
@@ -135,7 +135,7 @@ class BaseAPI(object):
'double'
:
'double'
,
'bool'
:
'bool'
,
'str'
:
'const std::string&'
,
'str[]
'
:
'const std::vector<std::string>&'
,
'str[]'
:
'const std::vector<std::string>&'
,
'Place'
:
'const Place&'
,
'DataLayout'
:
'DataLayout'
,
'DataType'
:
'DataType'
,
...
...
paddle/phi/api/yaml/legacy_api.yaml
浏览文件 @
ea91ca2f
...
...
@@ -1038,6 +1038,18 @@
func
:
hard_swish
backward
:
hard_swish_grad
# hierarchical_sigmoid
-
api
:
hierarchical_sigmoid
args
:
(Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, int num_classes, bool remote_prefetch, int trainer_id, int64_t[] height_sections, str[] epmap, str[] table_names, bool is_sparse)
output
:
Tensor(out), Tensor(pre_out), Tensor(w_out)
infer_meta
:
func
:
HierarchicalSigmoidInferMeta
optional
:
path, code, bias
kernel
:
func
:
hierarchical_sigmoid
data_type
:
x
backward
:
hierarchical_sigmoid_grad
# histogram
-
api
:
histogram
args
:
(Tensor x, int64_t bins, int min, int max)
...
...
paddle/phi/api/yaml/legacy_backward.yaml
浏览文件 @
ea91ca2f
...
...
@@ -935,6 +935,17 @@
func
:
hard_swish_grad
inplace
:
(out_grad -> x_grad)
-
backward_api
:
hierarchical_sigmoid_grad
forward
:
hierarchical_sigmoid (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, int num_classes, bool remote_prefetch, int trainer_id, int64_t[] height_sections, str[] epmap, str[] table_names, bool is_sparse) -> Tensor(out), Tensor(pre_out), Tensor(w_out)
args
:
(Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, Tensor pre_out, Tensor out_grad, int num_classes, bool remote_prefetch, int trainer_id, int64_t[] height_sections, str[] epmap, str[] table_names, bool is_sparse)
output
:
Tensor(x_grad), Tensor(w_grad), Tensor(bias_grad)
infer_meta
:
func
:
GeneralTernaryGradInferMeta
param
:
[
x
,
w
,
bias
]
optional
:
path, code, bias
kernel
:
func
:
hierarchical_sigmoid_grad
-
backward_api
:
huber_loss_grad
forward
:
huber_loss (Tensor input, Tensor label, float delta) -> Tensor(out), Tensor(residual)
args
:
(Tensor residual, Tensor out_grad, float delta)
...
...
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
浏览文件 @
ea91ca2f
...
...
@@ -172,10 +172,30 @@ def hsigmoidWithCustomTree(x, w, path_table, path_code, label, bias,
return
pre_output
,
out
def
python_api
(
input
,
weight
,
label
,
path_table
=
None
,
path_code
=
None
,
bias
=
None
,
num_classes
=-
1
,
is_sparse
=
False
,
remote_prefetch
=
False
):
assert
is_sparse
==
remote_prefetch
,
"is_sparse is equal to remote_prefetch in dygraph."
return
paddle
.
nn
.
functional
.
hsigmoid_loss
(
input
,
label
,
num_classes
,
weight
,
bias
,
path_table
,
path_code
,
is_sparse
)
python_out_sig
=
[
"Out"
]
class
TestHSigmoidOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
self
.
python_api
=
python_api
self
.
python_out_sig
=
python_out_sig
num_classes
=
101
feature_size
=
5
batch_size
=
20
...
...
@@ -193,11 +213,12 @@ class TestHSigmoidOp(OpTest):
self
.
user_grads
=
hsigmoid_grad
(
x
,
w
,
label
,
bias
,
num_classes
)
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
check_eager
=
True
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
,
'W'
,
'Bias'
],
[
'Out'
],
user_defined_grads
=
self
.
user_grads
)
user_defined_grads
=
self
.
user_grads
,
check_eager
=
True
)
@
skip_check_grad_ci
(
...
...
@@ -208,6 +229,8 @@ class TestHSigmoidOpSparse(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
self
.
python_api
=
python_api
self
.
python_out_sig
=
python_out_sig
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
...
...
@@ -237,7 +260,7 @@ class TestHSigmoidOpSparse(OpTest):
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
check_eager
=
True
)
class
TestHSigmoidOpWithSparseGrad
(
unittest
.
TestCase
):
...
...
@@ -318,6 +341,8 @@ class TestHSigmoidOpWithCostumTree(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
self
.
python_api
=
python_api
self
.
python_out_sig
=
python_out_sig
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
...
...
@@ -347,10 +372,12 @@ class TestHSigmoidOpWithCostumTree(OpTest):
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
check_eager
=
True
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
),
check_eager
=
True
)
@
skip_check_grad_ci
(
...
...
@@ -361,6 +388,8 @@ class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
self
.
python_api
=
python_api
self
.
python_out_sig
=
python_out_sig
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
...
...
@@ -394,10 +423,12 @@ class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
check_eager
=
True
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
self
.
check_grad
([
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
),
check_eager
=
True
)
class
TestHSigmoidLossAPI
(
unittest
.
TestCase
):
...
...
python/paddle/nn/functional/loss.py
浏览文件 @
ea91ca2f
...
...
@@ -920,7 +920,11 @@ def hsigmoid_loss(input,
# [2.11009121]
# [1.92374969]]
"""
if
in_dygraph_mode
():
out
,
_
,
_
=
_C_ops
.
final_state_hierarchical_sigmoid
(
input
,
weight
,
label
,
path_table
,
path_code
,
bias
,
num_classes
,
is_sparse
,
0
,
[],
[],
[],
is_sparse
)
return
out
if
_non_static_mode
():
out
,
_
,
_
=
_C_ops
.
hierarchical_sigmoid
(
input
,
weight
,
label
,
path_table
,
path_code
,
bias
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录